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Instability of a current sheet in the Earth’s magnetotail has been investigated by two-dimensional

fully kinetic simulations. Two types of magnetic configuration have been studied; those with

uniform normal magnetic field along the current sheet and those in which the normal magnetic field

has a spatial hump. The latter configuration has been proposed by Sitnov and Schindler [Geophys.

Res. Lett. 37, L08102 (2010)] as one in which ion tearing modes might grow. The first type of con-

figuration exhibits electron tearing modes when the normal magnetic field is small. The second

type of configuration exhibits an instability which does not tear or change the topology of magnetic

field lines. The hump in the initial configuration can propagate Earthward in the nonlinear regime,

leading to the formation of a dipolarization front. Secondary magnetic islands can form in regions

where the normal magnetic field is very weak. Under no conditions do we find the ion tearing

instability. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4899043]

I. INTRODUCTION

A tearing instability, by definition, is one in which mag-

netic field lines are torn or broken, leading to the reconfigu-

ration of a laminar field-reversed configuration into one with

multiple islands. The collisionless tearing instability of the

Earth’s magnetotail in the presence of a Bz field has had a

long and vexing history. It began with the identification of

the electron tearing mode by Coppi et al.1 in a magnetotail

without Bz, with electron inertia providing the mechanism

for breaking field lines. However, it was shown later that the

electron tearing instability is stabilized by magnetized elec-

trons due in the presence of a magnetic field Bz normal to the

current sheet,2–4 which cannot be neglected in the Earth’s

magnetotail. By means of heuristic arguments, Schindler3

proposed that the electron tearing instability is replaced by

the ion tearing instability since the ions remain unmagne-

tized despite the presence of Bz. This led to significant debate

in the magnetospheric physics community, with some ques-

tioning the very existence of the instability. Lembege and

Pellat5 argued that the ion tearing mode is stable because of

the density compression in the current sheet. Pellat et al.6

discussed that the ion tearing instability cannot exist even

considering the effect of pitch angle scattering or the sto-

chastic changes of the adiabatic invariant of electrons,7,8

because the effects of density compression are barely

affected by such mechanisms.9 Wang and Bhattacharjee10

argued that only the electron tearing mode exists when Bz

becomes small, and no tearing instability is possible in the

presence of significant Bz because of the strongly stabilizing

effects of ion compression in the Earth’s magnetotail.

Pritchett et al.11 and Pritchett12 performed kinetic simula-

tions and showed that the ion tearing instability is suppressed

when electron physics (magnetization by Bz) is included.

Harrold et al.13 argued that there is no topological change in

the magnetic field by the instability when there is a normal

magnetic field; therefore, such a magnetic geometry is

intrinsically resilient to the tearing instability independent of

the mechanism that breaks field lines.

Recently, there has been a revival of this debate, stimu-

lated in part by new observations of the so-called dipolariza-

tion front by THEMIS spacecraft. Sitnov and Schindler14

have recently proposed a new magnetic field configuration

that they claim can destabilize the ion tearing mode. In this

configuration, there is a hump of the normal magnetic field

Bz in a current sheet. Sitnov and Swisdak15 and Sitnov

et al.16 have studied such a magnetic configuration by means

of two-dimensional (2D) particle-in-cell (PIC) simulations

and suggest that as the hump of Bz moves earthwards, a dipo-

larization front is eventually formed. They argue that the for-

mation of the dipolarization front is facilitated by the ion

tearing instability.

In this paper, consistent with our earlier results, we demon-

strate by means of fully kinetic, 2D PIC simulations that there

is no ion tearing instability in the magnetotail in the presence of

a significant Bz-field, notwithstanding the novel configura-

tion(s) considered by Sitnov and co-workers. The only linear

tearing instability that can occur in a magnetotail is the electron

tearing instability, and that too when the magnitude of Bz is

very small. However, the configuration proposed by Sitnov and

co-workers exhibits an instability which does not tear or change

the topology of magnetic field lines and yet, in a late nonlinear

stage leads to the reduction of Bz to small and negative values

that can support reconnection and the formation of secondary

islands. However, the formation of the dipolarization front

itself does not necessarily involve reconnection.

The following is a layout of this paper. In Sec. II,

we describe our simulation method, initial conditions, anda)Electronic address: naoki.bessho@nasa.gov
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plasma parameters. Unlike some other studies, we do not

impose an external dawn-dusk electric field Ey in our study.

In Sec. III, we show our simulation results. In Sec. IV, we

conclude with a summary and a discussion of our findings.

II. SIMULATION METHOD

The details of the simulation code are described in

Ref. 17. The simulation domain is in the x-z plane and given

by 0 < x < 200w and �12:5w < z < 12:5w, where w is the

sheet width at x¼ 0. The magnetic field and density in the

initial state have the following forms, and comprise an

approximate solution of the Vlasov equation in a 2D general-

ized Harris sheet with a finite Bz:

Bx ¼ �
B0

g xð Þ tanh
z

wg xð Þ

� �
; (1)

Bz ¼ wB0

g xð Þ0

g xð Þ 1� z

wg xð Þ tanh
z

wg xð Þ

� �� �
; (2)

n ¼ n0

g xð Þ2
sech2 z

wg xð Þ

� �
þ nb þ � x; zð Þ; (3)

where g(x) is a function of x with gð0Þ ¼ 1; gðxÞ0 is

dgðxÞ=dx, nb is the background density (with no drift in the y
direction), and �ðx; zÞ is a function given by

� x; zð Þ ¼
n0g xð Þ02

g xð Þ4
z2sech2 z

wg xð Þ

� �
þ n0w2 g xð Þ00g xð Þ � g xð Þ02

g xð Þ2

� n0w
g xð Þ00g xð Þ � 2g xð Þ02

g xð Þ3
z tanh

z

wg xð Þ

� �
; (4)

which is derived by substituting Eqs. (1) and (2) into

Ampere’s law, @Bx=@z� @Bz=@x ¼ ð4pne=cÞðvyi � vyeÞ. We

use conditions, B2
0=8p¼ n0ðTiþ TeÞ; jvdi� vdej ¼ ð2c=weB0Þ

ðTiþ TeÞ and vdi=vde ¼ �Ti=Te, where Ti and Te are the ion

and electron temperature, respectively, c is the speed of light,

e is the elementary charge, and vdi and vde represent the drift

speed of ion and electron, respectively, in the y direction in

drifting Maxwell distributions for particles. We consider two

types of g(x) (Case I and Case II). In Case I,

gðxÞ ¼ expð�1x=wÞ; (5)

where �1 is a positive constant. In this type of simulation, Bz

along z¼ 0 is uniform, and it is equal to �1B0, as seen in Fig.

1(a). This configuration is the same as in Pritchett et al.11

and Pritchett,12 and we can neglect �ðx; zÞ in the density n
when �1 � 1. In Case II,

gðxÞ ¼ expð�1hðx=wÞÞ; (6)

hðx=wÞ ¼ x=wþ ða=�2Þf1þ tanh½�2ðx� x0Þ=w�g; (7)

where �2 is a positive constant. In this type of simulation, Bz

along z¼ 0 has a hump, shown in Fig. 1(b). This is the case

discussed by Sitnov and Schindler.14 Note that in Case II,

�ðx; zÞ in the density n cannot be neglected even when

�1 � 1, and is needed to balance the Jy � Bz force by the

pressure gradient along x. The magnetic configuration in

Sitnov and Swisdak15 and in Sitnov et al.16 has left-right

symmetry, and it is slightly different from Case II of our sim-

ulation. The configuration in Pritchett18 is similar to Case II.

Our boundary conditions are as follows. We impose

conducting walls along z, and open boundaries along x (both

at left and right), where light waves perpendicular to the

boundaries can pass through without reflection. For imple-

menting open boundary conditions, we follow the methodol-

ogy discussed in Ref. 19. For particle injection from the

boundaries, we calculate the particle number at one cell out-

side of the simulation box using Eq. (3) and obtaining

@n=@x, and inject both the current sheet component and the

background component, which are Maxwellian distributions.

Note that in 2D configurations in which Bz 6¼ 0, Eqs. (1)–(4)

are approximate solutions of the equilibrium state; therefore,

particularly in high z regions, the deviation of these solutions

from exact equilibrium solutions of the Vlasov-Maxwell sys-

tem generates an initial perturbation in Ey which produces

non-equilibrium flows which can interfere with the identifi-

cation of a linear instability. To mitigate the effect of the ini-

tial perturbation, we set the z boundaries not too far from

z¼ 0, and wave-damping regions are placed near the con-

ducting walls in the domain 9:6w < jzj < 12:5w, where a

damping factor between zero and unity is multiplied to the

terms �ð4p=cÞJ þr� B in Ampere’s law, where J is the

current density.

We use the following parameters: the sheet width

w ¼ 0:5di0, where di0 is the ion skin depth based on the den-

sity n0, the temperature ratio Ti=Te ¼ 5 (the background

plasma also has the same temperature and the same tempera-

ture ratio), the Alfv�en speed vA based on the density n0, and

the magnetic field B0 is 1/15 of the speed of light. We

employ 2048 grid points in the x-direction, and 256 in the z-

direction. We use the mass ratio mi=me from 25 to 400 to

determine the dependence of the instability on the mass ratio.

We use a fixed number of particles to represent both the cur-

rent sheet component and the background component at t¼ 0

in all the runs, with a total of about 108 particles. For the

background plasma (represented by nb in Eq. (3)), we use

about 131 particles per cell. For the current sheet component

FIG. 1. (Top and middle) contours of magnetic flux function. (Bottom) time

evolution of Bz along z¼ 0. (a) Case I (�1 ¼ 0:005; mi=me ¼ 25). (b) Case II

(�1 ¼ 0:03; �2 ¼ 0:1; a ¼ 2:0; mi=me ¼ 100).
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of plasmas, the particle number at x¼ 0 (represented by n0)

depends on the magnetic field configuration. For example,

for Case I, when �1 ¼ 0:00125, n0 is equal to 904 particles

per cell, while when �1 ¼ 0:02, n0 is equal to 3395 particles

per cell. Table I shows the ratio nb=n0 in each simulation.

III. SIMULATION RESULTS

A. Case I: Uniform Bz along z 5 0

We first investigate a current sheet in which Bz is con-

stant (¼ �1B0) along z¼ 0. Fig. 1(a) shows the time-

evolution of the contour of the magnetic flux function (the

top and middle panels), and Bz along z¼ 0 (the bottom

panel). In these plots, the mass ratio is mi=me ¼ 25 and the

magnitude of Bz along z¼ 0 is 0.005B0 (�1 ¼ 0:005). Since

there is a finite value of Bz at t¼ 0, the topology of the mag-

netic field is not amenable to tearing, and none occurs until

Xit ¼ 10 (where Xi is the ion cyclotron frequency based on

B0), even though fluctuations in Bz grow in the early stage

(Xit < 10). When Bz locally reaches values close to zero

around Xit ¼ 10, magnetic islands start to form. At

Xit ¼ 20, there are multiple magnetic islands (the middle

panel). Fig. 2(a) displays the dependence of the growth rate

on the wave number with �1 ¼ 0:0025, for the mass ratio 25.

Results for other mass ratios are qualitatively very similar.

The fastest growing mode is around kw¼ 0.4, where k is the

wave number, and its growth rate is around 0:2Xi. The maxi-

mum growth rate depends on the mass ratio, and it becomes

smaller when the mass ratio is higher.

We have studied the scaling of growth rates with the

mass ratio and the magnitude of Bz. Fig. 2(b) shows the de-

pendence of the growth rate (the average between kw¼ 0.31

and 0.5) on the mass ratio, in the runs with �1 ¼ 0:0025. In

the case of small mass ratios, the growth rate does not

depend on the mass ratio very much, but in the regime of

high mass ratios, the growth rate decreases as the mass ratio

increases. The black straight line represents a power law pro-

portional to ðmi=meÞ�1=4
, and the magnitude of the growth rate

is about one-third of the asymptotic electron tearing stability

theory,1,20 c¼p1=2ðvTe=wÞðqe=2wÞ3=2½ðTiþTeÞ=Te�ð1�k2w2Þ,
where vTe and qe are the electron thermal speed and the elec-

tron gyro-radius in a magnetic field B0, respectively. The

overall dependence on the mass ratio in the regime of high

mass ratio suggests that the instability is the electron tearing

mode. If this were the ion tearing mode, the growth rate c=Xi

would not depend on the electron-to-ion mass ratio.3 We

speculate that the systematically smaller growth rates

observed in our simulations might be because the current

sheet width in our numerical study is of the order of the ion

skin depth, which is very thin compared with the current sheet

in the asymptotic theory in which the ideal region is assumed

to be well separated from the electron and ion kinetic scales.

The growth rate of the electron tearing mode is proportional

to the value of D0,10 which represents how large the free

energy in the ideal region is. It is possible that D0 (or available

free energy) in the simulation is much smaller than that in the

asymptotic theory, because of the thinness of the current

sheet.

Figure 2(c) shows the dependence of the growth rate on

�1, the magnitude of Bz=B0. Three colors show results for dif-

ferent mass ratios. In high �1 regime, the growth rate in each

simulation is close to zero, but when �1 becomes smaller than

a certain critical value in each mass ratio, the growth rate

increases. In the low �1 regime, the curve for each mass ratio

becomes flat and does not depend on �1 very much. This tend-

ency is consistent with the argument given by Pellat et al.,6

who maintain that the tearing mode is unstable when

kqez > 1, where qez is the electron gyroradius in Bz

(qez ¼ vTe=ðeBz=mecÞ); in other words, when the wave length

becomes smaller than the scale of electron gyro-radius, the

electron kinetics becomes important and the tearing mode

grows. Using the relations w ¼ 0:5di0; B2
0=8p ¼ n0ðTi þ TeÞ,

TABLE I. The ratio nb=n0.

Case �1 nb=n0

I 0.00125 0.145

I 0.0025 0.129

I 0.005 0.104

I 0.00707 0.0878

I 0.01 0.0707

I 0.0141 0.0536

I 0.02 0.0387

II (x¼ 30w) 0.03 0.0191

II (x¼ 70w) 0.03 0.0256

FIG. 2. Dependence of the growth rate in a run of Case I on: (a) the wave

number k, (b) the mass ratio, and (c) the magnitude of Bz along z¼ 0

(�1 ¼ Bz=B0). In (b), the black straight line is 1/3 of the theoretical value by

the asymptotic theory of the electron tearing mode.
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and Ti ¼ 5Te, we obtain kqez ¼ ð2kw=61=2Þðme=miÞ1=2ð1=�1Þ.
If we use kw ¼ 0:3� 0:4, the condition kqez > 1 is equiva-

lent to �0:3ðmi=meÞ�1=2 > �1. We see that Fig. 2(c) is quali-

tatively consistent with this prediction; the critical value of

�1, below which the tearing mode grows, for the mass ratio 25

is larger than that for the mass ratio 400.

These results are consistent with the conclusion that the

unstable wave is the electron tearing mode, where the elec-

tron physics causes the instability. Previous studies,11,12 dis-

cussed the ion tearing mode, and Pritchett12 interpreted the

decrease of the growth rate at high mass ratios as the stabili-

zation of the ion tearing mode by electron physics. However,

in that study the dependence of the growth rate on the mass

ratio when kqez > 1 was not considered. We have done two

scaling studies: the first one is on the mass ratio where

kqez > 1 is satisfied for all the growing waves, and the sec-

ond one is on the magnitude of Bz, where we found a drop in

the growth rate when kqez < 1 for different mass ratios. We

thus conclude that in these cases, if there is an instability, it

is the electron tearing mode, not the ion tearing mode.

B. Case II: Spatially varying Bz along z 5 0

Next, we have investigated a case in which Bz is spa-

tially varying and has a hump along z¼ 0. In this magnetic

field configuration, Sitnov and Schindler14 have predicted

recently that the ion tearing instability can grow. To see if

the ion tearing mode grows, we consider the parameter range

kqez � 1, where the electron tearing mode is suppressed. Fig.

1(b) shows the time evolution of the magnetic field lines (the

top and middle panels), and Bz along z¼ 0 until Xit ¼ 24,

where the mass ratio is 100, �1 ¼ 0:03; �2 ¼ 0:1; a ¼ 2:0,

and x0 ¼ 30w (the location of the peak in Bz). With these pa-

rameters, kqez � 1 for modes around kw � 0:4. Although the

electron tearing mode is stable, the bottom panel of Fig. 1(b)

shows that instability grows. The peak of the hump is seen to

move leftward (earthward), but the dynamics does not cause

a reduction of Bz to zero or negative values. Therefore, there

is no change of magnetic field-line topology or island forma-

tion, and at this initial stage, the instability cannot be

described as a tearing mode (see the middle panel of Fig.

1(b), at Xit ¼ 24). The top panel of Fig. 3 shows the time

evolution of Bz along z¼ 0 after Xit ¼ 24. The hump of Bz

moves further earthward, with its magnitude increasing

exponentially. At Xit ¼ 42, a late nonlinear stage of the

instability, the Bz field exhibits a negative value behind the

hump. Around that time, the tearing instability starts to

grow. The middle and the bottom panels of Fig. 3 show the

time evolution of the magnetic flux function, and we see that

a magnetic island is formed and ejected tailward.

The time-evolution of the system at this late nonlinear

stage exhibits a complex character that cannot be attributed

to a simple eigenmode. Rather, mode-coupling effects

become very important. Fig. 4(a) displays the growth rate of

each N mode (N is defined in k ¼ 2pN=Lx, where Lx is the

system length in the x direction, Lx ¼ 200w) as a function of

time for the simulation with mi=me ¼ 100. In the early phase

(Xit < 25), the dominant modes are low-N modes (N< 10),

as shown by the red (N¼ 1), magenta (N¼ 7), and purple

(N¼ 9) curves in the figure. These modes start to grow line-

arly after Xit � 10, when the initial transient evolution (due

to the initial perturbation in Ey explained in Sec. II) ends. In

Fig. 4(b), the growth rates of these low-N modes are plotted

as the blue curve with closed circles. These modes are

expected to be unstable because the instability condition k <
�1ð4=wpÞð1þ aÞ2 ¼ 0:34=w (see the discussion in Sitnov

and Schindler,14 where the instability condition by Lembege

and Pellat,5 k < �1ð4=wpÞ, is modified by introducing a

hump of Bz with a 6¼ 0) is satisfied for N< 11.

Higher-N modes (N> 11) are stable during the early

stage (Xit < 25); however, as shown with the blue and the

light blue curves in Fig. 4(a) (N¼ 13 and 14), these modes

become unstable after Xit � 25. This is likely due to mode-

coupling effects, which occur in a large amplitude nonlinear

wave and induce the wave steepening. In Fig. 4(b), the trian-

gles in the blue curve are the modes that are destabilized af-

ter Xit � 25. These modes have larger growth rates than

initially unstable modes (N< 11). After Xit ¼ 35, much

higher-N modes (N> 18) start to grow, and these modes

have much larger growth rates as shown in the blue curve

with squares in Fig. 4(b). These modes (N> 18) make further

steepening of the hump in Bz, as seen in the top panel of Fig.

3. Eventually with the aid of these high-N modes (N> 11),

breaking of the magnetic field lines occurs, and a magnetic

island behind the hump is formed around Xit ¼ 42.

Figure 4(b) shows the dependence of the growth rate c
in three different mass ratios mi=me ¼ 25, 100, and 400. The

curves with circles are initially unstable modes (N< 11), and

they depend weakly on the mass ratio. The growth rates

FIG. 3. (Top) time evolution of Bz along z¼ 0 in Case II (�1 ¼ 0:03;
�2 ¼ 0:1; a ¼ 2:0; mi=me ¼ 100). (Middle and bottom) contours of mag-

netic flux function.
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increase weakly with the mass ratio (c=Xi / ðmi=meÞ0:12
),

which is contrary to the expectations for the electron tearing

eigenmode discussed earlier in this paper. The growth rates

in the nonlinear stage for N> 11 show much larger values.

The dependence of these nonlinear growth rate on the mass

ratio shows some complication; the growth rates for

mi=me ¼ 400 in 11 < N < 18 are larger than those for the

other mass ratios, but for higher N-modes with N> 18 the

growth rates for mi=me ¼ 100 show the largest values. While

these dependencies are complicated, we expect that this sec-

ondary instability associated with a hump in Bz, which has a

strong multi-mode character, will play an important role in

supporting a dipolarization front even with realistic mass ra-

tio in the Earth’s magnetotail.

IV. DISCUSSION AND SUMMARY

We have performed PIC simulations for the instability

of a current sheet in the Earth’s magnetotail in the presence

of a finite Bz. We have demonstrated instability in two types

of magnetic configuration. In the case of a uniform Bz along

z¼ 0 (Case I), we have shown that the relevant instability

when Bz is small is the electron tearing mode, not ion tearing.

In the case of spatially varying Bz along z¼ 0 (Case II), an

instability that is qualitatively different from the electron

tearing mode has been observed. The hump of Bz moves

earthwards, and a magnetic island is eventually formed in

the late nonlinear stage. We note that the hump of Bz is ini-

tially located where the current sheet width is around 2:5qi0

(qi0: the ion gyro-radius in B0), and this result is fairly con-

sistent with Sitnov and Swisdak,15 who observe significant

growth when the current sheet width becomes 1:7qi0. Sitnov

et al.16 called this the “slippage instability,” relating to the

ion tearing instability. Although the qualitative features seen

in their simulations and ours are quite similar, our physical

interpretations are quite different in that we do not describe

the underlying linear instability as a tearing mode which

must entail a change of topology, not seen in our simulations.

Instead, field line breaking occurs in a late nonlinear stage,

and eventually a magnetic island is ejected tailward.

As mentioned above, the thickness of the current sheet

at the Bz hump plays an important role in the growth of the

instability. Pritchett18 demonstrated that a 2-D current sheet

with a hump of Bz is stable. However, in his simulation, the

Bz hump is located where the current sheet thickness is more

than 6qi0, which is much larger than that in our result and in

Sitnov and Swisdak.15 We have also performed a simulation

where the thickness of the current sheet at a Bz hump is 8qi0

(the peak of Bz is located at x ¼ 70w: data not shown). In

that simulation, no significant growth of the instability as

well as the formation of a dipolarization front occurs, but

only a slight decay of the hump (20% reduction of the hump)

occurs in the early stage (before Xit � 10, likely due to

departures of the initial equilibrium from perfect force bal-

ance). In that simulation, from Xit � 10 to the end of the

simulation (Xit � 50), the profile of the hump of Bz does not

change very much and the current sheet is stable. Therefore,

we conclude that even in a 2-D case, as Sitnov and

Swisdak15 discussed, a current sheet with a Bz hump is unsta-

ble when the thickness of the current sheet at the hump is

less than approximately 2qi0.

Whether this instability that shows up in the presence of

a hump in Bz is essentially a fluid or a kinetic instability

remains an open question. Recently, Zhu et al.21 discussed

instability in the presence of spatially varying Bz along z¼ 0

using resistive MHD global simulations, and they have iden-

tified a so-called axial tail instability which does not appear

to have a tearing character. The magnetic configuration in

their study has a dip in Bz, instead of a hump as in our stud-

ies. Further studies are necessary to investigate the nature of

this instability in both kinetic and fluid models. What com-

plicates this determination is the role played by plasma con-

vection in both kinetic and fluid models, which renders the

linear eigenmode problem non-self-adjoint. Under these con-

ditions, the linear stability of the magnetotail cannot be sim-

ply described in terms of the standard eigenmodes of a static

plasma, and multi-mode effects can exhibit complex tran-

sient behavior.

We remark that the instability in the presence of a hump

of Bz can lead to the formation of a dipolarization front dur-

ing a magnetotail substorm without necessarily involving

magnetic reconnection. As we see in Fig. 3, a thin, di-scale

FIG. 4. In a run of Case II (�1 ¼ 0:03; �2 ¼ 0:1; a ¼ 2:0): (a) the mode am-

plitude as a function of time (mi=me ¼ 100). (b) The growth rate as a func-

tion of kw.
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Bz structure is formed by the instability, even before the

magnetic island is formed, due to the steepening of the mag-

netic structure in the nonlinear stage. Magnetic reconnection

occurs after the formation of the dipolarization front, and it

is caused by the instability in the late nonlinear stage. The

formation of a dipolarization front due to this type of insta-

bility is consistent with the picture put forward by Sitnov

and Swisdak15 and Sitnov et al.16 Further analytical and nu-

merical studies are needed in order to elucidate the formation

and evolution of the dipolarization front due to the instability

and its possible implications for particle acceleration.

In conclusion, we have demonstrated that the Earth’s

magnetotail exhibits the collisionless electron tearing

instability only when the Bz-field is very small or zero.

When the Bz-field has a spatial hump, we confirm the ex-

istence of an instability discussed by Sitnov and co-work-

ers,15,16 but it is not one that tears field lines. In the

nonlinear regime, this instability can lead to the formation

of a dipolarization front and subsequently to magnetic

reconnection when Bz is reduced to very small values or

zero. Under no circumstances, do we find the ion tearing

instability.
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