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ABSTRACT

Systematic biases in satellite-based precipitation estimates can be the dominant component of their
uncertainty. These biases may not be reduced by averaging, which makes their evaluation particularly
important. Described here are several methods of evaluating the biases and their characteristics. Methods
are developed and tested using monthly average precipitation estimates from several satellites. Direct
estimates of bias are obtained from analysis of satellite–gauge estimates, and they indicate the general bias
patterns and magnitudes over land. Direct estimates cannot be computed over the oceans, so indirect-bias
estimates based on ensembles of satellite and gauge estimates are also developed. These indirect estimates
are consistent with direct estimates in locations where they can be compared, while giving near-global
coverage. For both bias estimates computed here, the bias uncertainty is higher than nonsystematic error
estimates, caused by random or sampling errors and which have been previously reported by others for
satellite estimates.

Because of their greater spatial coverage, indirect-bias estimates are preferable for bias adjustment of
satellite-based precipitation. The adjustment methods developed reduce the bias associated with each
satellite while estimating the remaining bias uncertainty for the satellite. By adjusting all satellites to a
consistent base, the bias adjustments also minimize artificial climate-scale variations in analyses that could
be caused by the addition or removal of satellite products as their availability changes.

1. Introduction

The longest available historical records of precipita-
tion are available from gauges. Over land regions gauge
observations are available for thousands of locations
over the past century, and in some regions sampling is
dense. Compared to satellite data, gauge observations
have the advantage of being direct in situ measure-

ments of surface precipitation. They are also usually
continuous observations throughout the day. But there
are large gaps in gauge sampling over oceans and less
developed land regions, and satellite estimates are
needed for any globally complete analysis of precipita-
tion. Besides incomplete sampling, gauge observations
may have biases, such as those due to blowing snow
over high latitudes (e.g., Groisman et al. 1991; Huffman
et al. 1997; Bogdanova et al. 2002).

Near-global precipitation estimates from satellite-
based observations are available beginning in the 1970s.
Because satellite observations are dense compared to
gauges, satellite-based observations have smaller spa-
tial sampling and random errors (e.g., Xie and Arkin
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1996, 1997). Random or uncorrelated errors are re-
duced by averaging a number of observations, even if
the observations are not well sampled over a spatial
region. Observations need to be spread over a spatial
region to reduce sampling errors. Both types of errors
may be small for satellite data, which tend to have many
observations per month over large regions. Satellites do
not completely sample the Earth’s surface, but com-
pared to in situ observations their sampling is relatively
dense. A larger problem with satellites is bias since they
remotely measure processes in the atmosphere. Biases
may be due to a diurnal sampling bias, tuning of the
instrument or the precipitation algorithm, or unusual
surface or atmospheric properties that the algorithm
does not correctly interpret. These biases have been
widely studied over the last several decades (e.g.,
Scofield 1987; Rosenfeld and Mintz 1988; Morrissey
1991; Xie and Arkin 1997; Gruber et al. 2000; McCol-
lum et al. 2000, 2002; Bowman et al. 2003). The newer
satellite algorithms and some of the newer instruments
may reduce bias relative to older algorithms and instru-
ments. However, it would be difficult to develop an
algorithm that accounts for all possible sources of bias,
and the older instrument records are needed for evalu-
ation of variations over the last several decades. There-
fore, methods are needed for analyzing satellite biases,
relative to each other or to some standard.

Here several methods for evaluating biases in satel-
lite mean monthly precipitation are developed and
tested. First, satellite biases are directly evaluated rela-
tive to gauges in regions where both estimates are avail-
able. The relative biases between different satellite
records are evaluated to see how consistent biases are
between satellites. Based on those results, an indirect-
bias estimate that is not dependent on gauges is devel-
oped.

2. Data

All data used in this study are monthly averages of
the satellite precipitation and gauge data, averaged to a
2.5° latitude–longitude grid. Most data used are the
same data that are used for the Global Precipitation
Climatology Project (GPCP; Huffman et al. 1997,
Adler et al. 2003). Additional supplementary data are
used to extend the analyses and to test the differences
caused by using different datasets.

a. Satellite precipitation data

Most of this study is based on eight satellite-based
estimates of precipitation: outgoing longwave radiation
(OLR) precipitation index (OPI), Geostationary Op-
erational Environmental Sounder (GOES) precipita-

tion index (GPI), adjusted GPI (AGPI), the Special
Sensor Microwave Imager (SSM/I) composite (SSM/
Ic), SSM/I emission (SSM/Ie), SSM/I scattering
(SSM/Is), Televion Infrared Observation Satellite
(TIROS) Operational Vertical Sounder (TOVS), and
the SSM/I–TOVS estimates. The OPI data are taken
from the Climate Prediction Center (CPC) Web site
(http://www.cpc.ncep.noaa.gov/products/global_precip/
html/wpage.cams_opi.html; Xie and Arkin 1998; Jan-
owiak and Xie 1999). The remaining satellite data are
from the GPCP data archive (http://www.ncdc.noaa.
gov/oa/wmo/wdcamet-ncdc.html; GPCP version 2;
Huffman et al. 1997; Adler et al. 2003). The OPI data
are available beginning in 1979. The other satellite
records all begin in 1986 or 1987. Data through 2003 are
used for this study.

There are other shorter-period satellite-based esti-
mates, including the Tropical Rainfall Measuring Mis-
sion (TRMM) and Advanced Microwave Scanning Ra-
diometer (AMSR-E) estimates. TRMM begins in 1998
and the AMSR in 2002, while the primary satellite
products used here all begin in 1987 or earlier. Here the
TRMM estimates are used to help validate the indirect
method. Because of its brief period of record the
AMSR data are not used in this study.

b. In situ precipitation data

The primary gauge data used are the Global Precipi-
tation Climatology Center (GPCC) gauge data (Rudolf
et al. 1994). They are the same gauge data used by
GPCP. Those gauge data are analyzed and some inter-
polation is used to fill regions without sampling (Huff-
man et al. 1997; Adler et al. 2003). Here the number of
gauges in each monthly 2.5° square is used to exclude
gauge data from squares with no observations (i.e.,
where GPCC data were interpolated to fill an area).
The GPCC gauge data is itself based on several
datasets, each using varying degrees of quality control,
processing, and adjustments. To evaluate the effect of
these processes on bias estimates, the gauge data of
Chen et al. (2002) are also used to estimate bias.

3. Direct-bias estimates

Briefly, direct-bias estimates are analyzed differences
between satellite and gauge estimates of precipitation.
The advantage of direct estimates is that they can quan-
tify for each satellite its bias properties, such as magni-
tude, variation, and spatial extent. The major disadvan-
tage of direct estimates is that they can only be com-
puted in the neighborhood of gauges, which have a
limited spatial coverage.
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a. Methods

Direct-bias estimates are computed from analyses of
satellite–gauge precipitation differences for each satel-
lite. Data used are the monthly 2.5° GPCP/GPCC data
discussed in section 2. The analysis is an optimum in-
terpolation (OI), which produces a smoother and more
complete bias estimate compared to simpler methods
such as linear interpolation [see appendix A and Reyn-
olds and Smith (1994) for more details on OI]. The OI
computes a set of optimal weights. Each observation is
assigned a weight that accounts for its noise and its
covariance with the interpolation point. Here covari-
ance is modeled as a function of distance from the in-
terpolation point, measured from the centers of the 2.5°
regions. Observations with less noise and greater co-
variance are given greater weight, compared to more
noisy or more distant points. For each region the noise
of satellite–gauge differences is here defined to be in-
versely proportional to the number of gauges in the 2.5°
region. In regions without gauges there are no differ-
ences. Those regions are filled in the OI using sur-
rounding differences. The OI analysis is the weighted
sum of the data using these optimal weights. In the
version of the OI used here, the analysis is damped
toward zero bias when there are few or no data. When
data are dense there is practically no damping. Here at
least two observations are required before the OI
analysis is performed, with no analysis for more
sparsely sampled regions. The weights minimize the er-
ror of the analysis, assuming that statistics of the biases
are known.

These analyses are computed for each month using
differences from over 12.5° latitude–longitude squares,
to produce an analyzed difference for the central 2.5°
region. To test the difference made by using a smaller
data-selection region, we also compute the OI using
data from 7.5° latitude–longitude regions, using data
from three months centered on the analysis month.
Comparisons indicate that there is little difference be-
tween the 12.5° one-month OI and the 7.5° three-month
OI. The zonal and meridional e-folding scales of the
differences were estimated where sufficient data were
available. In general, the meridional scales are most
consistent, ranging between 800 and 1200 km at most
latitudes. The zonal scales are largest in the Tropics,
where they can be 3000 km or larger. Zonal scales de-
crease to about 1000 km or less between 45° latitude
and the poles. Because of the short overlap period
when all data are available, and because our analysis
assigns a scale lower than most measured correlation
scales, as discussed below, we did not evaluate seasonal
variations in the bias scales.

These scales are relatively large, considering that
precipitation itself can be caused by smaller-scale pro-
cesses such as topography, frontal boundaries, and
thunderstorms. Several factors cause these scales to be
larger. One is the monthly averaging of the data, which
filters out individual precipitation events. Another is
the differencing between satellite and gauge data. Com-
pared to the precipitation, biases responsible for the
differences may be caused by larger-scale processes
such as systematic satellite instrument or algorithm
bias, or algorithm error caused by large-scale environ-
mental variations such as variations in the moisture
field.

Although the estimated e-folding distances are nearly
always larger, the OI analysis uses data from within
12.5° squares and it assumes a constant e-folding dis-
tance of 750 km. This produces a conservative analysis,
to minimize problems that may occur near discontinu-
ities in topography or land–sea boundaries. In addition,
the noise-to-signal variance ratio for individual gauges
is set to 1 (see Appendix A). Monthly averages are
sampled repeatedly over the month from both satellites
and gauges, and many 2.5° squares will average several
gauges, which would further reduce noise, so it is likely
that the noise/signal ratio is smaller than what is as-
sumed here. This setting of the ratio is also conserva-
tive, to avoid overinterpolation of the data. As dis-
cussed below, these OI statistic settings produce strong
analyses when the 12.5° sampling regions are more than
about a third full, with exponential damping to zero
bias as sampling becomes sparser.

b. Results

Examples of the directly computed satellite biases
are shown in Fig. 1, for the SSM/Ic and GPI satellite
estimates. The period 1996–2003 is representative, and
data are available for all satellites for that period. Bi-
ases are on the order of a few millimeters day�1, and
their magnitudes are generally about half or less than
the typical rainfall in regions where they occur. The
SSM/Ic bias is largest in the Northern Hemisphere in
winter, when the estimate is too low compared to
gauges. This may be due to incorrectly flagged surface
snow and ice cover, or from sampling gaps caused by
elimination of data due to surface snow and ice. The
GPI bias has maximum bias near 40°N in winter, where
the GPI estimate is too high. That is near the northern-
most limit of GPI data. Near the same time the GPI
estimate is also high near the equator. The apparent
cycle in Fig. 1 for the GPI and SSM/Ic products suggests
that both in the Tropics and in the extratropics these
algorithms should be seasonally adjusted, as is done
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with some of the other satellite algorithms (e.g., OPI
and TOVS).

The time-average direct bias over 1996–2003 for
SSM/Ic and GPI (Fig. 2) indicates that both estimates
have a large bias over equatorial Africa. For that re-
gion, evidence suggests that the overestimation is
caused by virga, which is interpreted as surface rainfall
by the satellites (McCollum et al. 2000). The GPI is also
high over mountainous regions and in the Tropics
around Indonesia. Over mountainous regions the algo-
rithm may be interpreting snow and ice as precipitation.
Over the Himalayas the surface temperature is cold
enough to make the GPI count it as precipitating
clouds, and around Indonesia the abundance of high
clouds may be responsible for the bias.

Table 1 gives the direct root-mean-squared bias
(RMSB), over 1996–2003. The RMSB is computed
from the analyzed satellite–gauge biases. The spatial
RMS of the bias is computed globally, but only for
regions where the number of defined 2.5° differences,
n, is large enough data to minimize damping (n � 20;
see Fig. 3). In addition, the global satellite-to-satellite
RMS differences are also given (RMSDsat). For the
RMSDsat, values are computed spatially over all re-

gions where satellite pairs are defined, and between
the given satellite and all other satellites. Thus, the
RMSDsat is computed over both land and water, while
the RMSB is only computed from land data. For both
the magnitudes are usually similar. The existence of
significant RMSDsat values indicates that satellite bi-
ases are different, and they could be reduced by com-
bining different satellite products. The similarity in
magnitude of RMSB and RMSDsat also suggests that
biases over oceans are approximately the same magni-
tude as those over land.

An estimate of direct-bias error can be estimated
from the OI damping of bias as sampling becomes more
sparse. With few data, the bias analysis is damped to
near zero and the error is approximately the RMSB for
the satellite. With many data there is little damping and
little error in the bias estimate. Damping with the num-
ber of data, n, is shown using average results where bias
is assigned a constant value of 1 and the observed sam-
pling is used for all satellite–gauge differences (Fig. 3).
This is referred to as the OI1 analysis. With 20 or more
differences there is almost no damping. An exponential
fit to OI1 has the least error using an e-folding scale of
r � 6, indicated by the dashed line. This simple rela-

FIG. 1. Directly analyzed zonal-average bias from the SSM/Ic and GPI, in mm day�1. The
contour interval is 0.5 mm day�1, with the zero contour omitted and shading as indicated.
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tionship may be used to scale the RMSB to estimate
direct-bias uncertainty as a function of n.

To test the sensitivity of these results to details of the
gauge dataset, the direct-bias analysis was repeated us-
ing the Chen et al. (2002) gauge analysis masked to
match the GPCC gauge sampling. Comparison of the
results of this analysis to the original analysis shows that
they both give nearly identical results. The largest dif-
ferences occur associated with islands in the western
tropical Pacific, where the Chen et al. (2002) data in-
clude some gauge data screened out of the GPCC
gauges. The global spatial correlations (Murphy and
Epstein 1989) between the GPCC-gauge biases and the
Chen et al.–based biases are about 0.8 to 0.9 for all
products except the OPI, which has correlations of
about 0.6 to 0.8. Thus, although they differ in some

details, the major bias results presented are not acutely
dependent on the choice of the gauge data used.

4. Indirect-bias estimates

Direct-bias estimates are unavailable over oceans
and land regions without gauges. To overcome this
problem, an indirect-bias estimate was developed. De-
velopment of the indirect method is supported by the
results of Table 1, which shows that satellites tend to
have different biases. Thus, their combination can have
a lower bias than any of the individual satellite prod-
ucts. This was found to be the case for biases of satel-
lite-based estimates of sea surface temperature (SST;
Reynolds et al. 2004). Their findings suggest that an
indirect approach can significantly reduce SST bias in
regions without in situ data.

FIG. 2. Time-average precipitation directly analyzed bias (1996–2003), for the SSM/Ic and
GPI satellite estimates, in mm day�1. The contour interval is 1 mm day�1, with the zero
contour omitted and shading as indicated.
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a. Methods

For the indirect method, the bias is the deviation of
the long-term mean (LTM) of a satellite estimate from
an estimate of the true LTM precipitation. Long term is
defined as the average over a number of years, either
for a given month or season, or for all months if the
annual mean is considered. Here the method is tested
for the annual mean. In general, the long-term average
should be at least 4 or 5 yr to prevent one or two un-
usual years from skewing the estimate (i.e., an ENSO
episode). Here an 8-yr average is used to provide suf-
ficient time averaging while allowing several different
bias estimates to be computed within the satellite pe-
riod.

For each precipitation estimate, i, the long-term av-
erage is

Ai �
1
N �

t�1

N

Pi�t�. �1�

Here t is the year, from year 1 to N, and Pi is the
precipitation for estimate i, for i � 1 to k. If the esti-
mates have different biases that range around zero bias,
then an estimate of the true LTM may be computed by
combining the k products. There are several ways to
combine them, including computing their mean or their
median. Here the median is used because it eliminates
outliers. Thus, the true LTM is estimated by

AT � median�Ai�, i � 1, . . . , k. �2�

Here the gauge data may be included as an estimate
along with the satellite estimates, although the gauge
data are only defined over land. Tests of the method are
performed with and without gauge data. An estimate’s
weight in Eq. (2) may be increased by including more
than one copy of that estimate. Using the method with
gauges, several different gauge weightings are tested. In
these tests, the LTMs of the GPCC gauge data are

binomially smoothed spatially and gauges associated
with isolated islands are removed.

Using Eqs. (1) and (2), the bias of each satellite prod-
uct is

Bi � Ai � AT . �3�

This bias may be removed from each type so that they
all have the same LTM value. Such adjustments should
minimize the bias. However, while different, the satel-
lite biases are not entirely independent. For example,
for the eight satellites that this study uses, the direct-
bias estimates have an average spatial correlation of
0.5, with values ranging between about 0.2 and 1.0 for
the different estimates. In addition, where gauges are
available they may also contain biases. Therefore, these
adjustments cannot remove all precipitation biases.
They will reduce bias and minimize artificial climate-
scale variations that may be caused by changes in data
types over the historical record.

The bias correction given by (3) accounts for long-
term bias over a number of years. However, it cannot
correct for short-period transient bias induced by me-
teorological variations, such as anomalous snow or ice
cover. The shortest-period bias that this can resolve is
defined by the long-term averaging period. Direct-bias
estimates resolve transient biases. However, those esti-
mates show that most bias is either constant or its vari-
ance is dominated by a seasonal cycle. Thus, this limi-
tation should not be a major problem for bias adjust-
ment. However, it would still be desirable at some
future time to have bias adjustments for all time scales.

In a bias-adjusted analysis, the bias of each satellite
type would be removed, with respect to the estimated
LTM. The bias error of the analysis is thus the error of
this LTM estimate. The mean-squared error of the
LTM may be estimated from the ensemble spread by

FIG. 3. Error of the OI with all values set to 1, as a function of
the number of values, n. Also shown is the exponential function
approximation as a function of n, using r � 6.

TABLE 1. RMSB, computed using all well-sampled analyzed bi-
ases over land from each satellite, from 1996 to 2003 and globally.
All SMMI satellites (composite, emission, and scattering) have
similar RMSB. Also given is the RMS difference between each
satellite and every other satellite, over all regions where the sat-
ellites are defined.

Satellite RMSB (mm day�1) RMSDsat (mm day�1)

OPI 0.9 2.0
AGPI 1.5 1.7
GPI 2.0 2.1
SSM/I 1.8 2.0
SSM/I–TOVS 1.5 1.8
TOVS 1.2 2.0
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Em
2 �

1
k �

i�1

k

�AT � Ai�
2. �4�

Outliers that are filtered out of the median estimate
[Eq. (2)] may influence this mean-squared estimate. To
limit their influence, the high and low Ai(m) values can
be discarded, and the error computed using the remain-
ing k-2 values. In discussions below, this is referred to
as the truncated error estimate. This bias error is inde-
pendent of other types of analysis errors such as ran-
dom and sampling errors.

b. Results

Ensemble LTM precipitation is computed using Eq.
(2), using the eight GPCP satellite estimates alone and
also using the satellites plus gauge data. Here data av-
eraged over the 8-yr period 1996–2003 are used for all
months to show the annual LTM estimate. At least 10
individual months are required for the LTM of each
type, and at least four LTMs are required to compute
the ensemble median. These restrictions eliminate esti-
mates over polar latitudes. The ensemble shows the
familiar mean patterns of precipitation (Fig. 4; for com-
parisons see, e.g., Xie and Arkin 1997).

Compared to gauge LTMs, the ensemble LTM from
satellites is similar over most regions. However, over
central Africa the satellite-based ensemble LTM is up
to 6 mm day�1 larger than the gauge estimate. There

tends to be an overestimate of all the satellite estimates
in that region (McCollum et al. 2000). Because the sat-
ellite biases are locally correlated, they are not reduced
in the ensemble. Including gauges in the ensemble
greatly reduces the differences. Before including gauge
data in the ensemble, the gauge LTM is smoothed and
filled slightly using spatial binomial filters. Smoothed
gauge data are not allowed to extend beyond the coasts,
and data from isolated islands are excluded from the
ensemble. Weighting the gauge data the same as every
other satellite has little effect over central Africa since
there are generally seven satellite estimates for that
region. However, weighting the gauge LTM to the
equivalent of four satellites greatly reduces the differ-
ence over central Africa (Fig. 5). The factor of 4 was
found by testing several factors and evaluating the re-
sults. A factor of 9 would guarantee that the satellite
estimates were filtered out of the median where gauge
estimates are available. Computing the median using a
factor of 4 will filter out the four most extreme satellite
estimates.

Averaged globally, the LTM ensembles from both
satellite-only and satellite plus gauges are almost the
same, as indicated on the lower left of the panels (2.58
and 2.60 mm day�1, respectively). However, over land
the global mean-absolute difference from gauges for
the satellite-only ensemble is 0.79 mm day�1, while in-
cluding gauges reduces it to 0.47 mm day�1. Differences

FIG. 4. The ensemble long-term mean precipitation in mm day�1, using only satellite data
(gauge weight � 0). The contour interval is 2 mm day�1, with shading as indicated.
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remain because of the use of ensembles and because
the gauge data used for the ensemble are smoothed
GPCC gauges, while the validation gauge data are the
unsmoothed GPCC gauges.

The root-mean-square error estimates [RMSE; the
square root of the error variance computed using Eq.
(4)] are computed for the LTMs shown above. Com-
parisons are shown of the RMSE divided by the en-
semble mean, with and without gauges in the ensemble
and also with and without truncation in the estimate of
the RMSE.

Using satellite estimates only, without truncation, the
ratio is small over most regions (Fig. 6, upper panel).
However, it is large over regions that receive low pre-
cipitation, where both the RMSE and the mean are
small. It is also large over high latitudes, including over
the oceans south of 45°S. The global average of the
ratio (on the lower left of the panel) is 0.33. This aver-
age ratio is higher than the uncertainty ratio estimate
based on the global energy balance study of Kiehl and
Trenberth (1997), which gives an estimated ratio of 0.2.
This energy-balance-based uncertainty ratio is itself
only a crude overall estimate of uncertainty, based on
uncertainty estimates in components of the energy bal-
ance. It is used here only for rough comparisons to our
results. Our overall results are supported by the rough
consistency with estimates based on the independent
energy-balance method.

To test the stability of this estimate we compute the
truncated version of the ratio (Fig. 6, lower panel). The
patterns in the truncated version are similar, but the
high values are reduced because of removal of the ex-
tremes. The global average value for the truncated ver-
sion is also reduced to 0.22, close to the value estimated
from the global energy balance. In both of the satellite-
only ensemble estimates, the RMSE over central Africa
is relatively low, since all satellites tend to be biased
high in that region.

Including gauges (weighted four times) in the en-
semble yields similar overall results to the ratios with-
out gauges in the ensemble, and the global averages are
similar for the full and truncated estimates (Fig. 7).
Including the gauges also increases the uncertainty in
central Africa, because the satellites all tend to give
higher values than the gauges.

The global indirect RMSB (Table 2) is computed us-
ing values wherever they are defined for the given sat-
ellite. These global values are smaller than the direct
method RMSB values, discussed earlier. Both the di-
rect-method RMSB and the global RMSDsat are be-
tween about 1 and 2 mm day�1, while the ensemble-
method RMSB values are all smaller. For both methods
the RMSB of the GPI is largest, indicating that it tends
to be the most biased. The direct method RMSB and
RMSDsat are larger because they account for month-
to-month variations, while the indirect RMSB only ac-

FIG. 5. The ensemble long-term mean using both satellite and gauge data, in mm day�1. The
gauge data are weighted times 4 where available (gauge weight � 4). The contour interval is
2 mm day�1, with shading as indicated.
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counts for the LTM bias, averaging out shorter-period
variations.

Why the ensemble method should reduce the LTM
bias and validation against several sets of measure-
ments is given in appendix B. Here validation against
TRMM precipitation estimates is summarized. The
TRMM estimates are only available beginning in 1998

for the region 40°S–40°N. But for their limited period,
they may give less biased precipitation estimates. At a
few oceanic locations where in situ data are available,
Bowman et al. (2003) found that the TRMM estimates
tend to have low biases. Their validation is limited to a
few sites, but they are encouraging and they suggest
that TRMM should be useful for comparisons over the

FIG. 6. Ensemble estimates of RMSE divided by ensemble mean using only satellite data,
using (top) all estimates and (bottom) truncating the high and low estimates of the ensemble.
The 0.4, 0.6, and 0.8 contours are drawn, with shading is as indicated.
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larger region. As a test, the satellite-only ensemble for
1998–2003 was compared to both TRMM precipitation
products: the microwave (TMI) and the radar (PR) es-
timates. For each, comparisons of the average absolute
bias over the entire region were computed, for each
individual satellite and for the ensemble. For the indi-
vidual satellites, the bias relative to TMI is on average

0.68 mm day�1 and the bias relative to PR is on average
0.93 mm day�1. Compared to both TMI and PR, the
SSM/Ic and AGPI have low biases while the OPI and
GPI biases are high. For the ensemble without gauge
data, the bias relative to TMI is reduced to 0.41 mm
day�1 (a 40% reduction from the average bias) and
relative to PR it is reduced to 0.73 mm day�1 (a 22%

FIG. 7. Ensemble estimates of RMSE divided by ensemble mean using both satellite and
gauge data, using (top) all estimates and (bottom) truncating the high and low estimates. The
0.4, 0.6, and 0.8 contours are drawn, with shading as indicated.
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reduction). This comparison confirms a reduction in
bias.

Where the mean can be validated against gauge or
TRMM estimates, the indirect method reduces the bias.
The indirect method also has a major advantage over
the direct method: it can analyze the bias with or with-
out gauges. This advantage makes the indirect method
preferable to the direct method.

c. Reconstruction of indirect estimates

A problem with the indirect method is that it can
only be used when there are a number of products for
computing an ensemble, and for 1979–86 there are only
gauges and the OPI satellite. Since the ensemble LTM
cannot be directly estimated for periods before 1986, a
method was developed to reconstruct most of the LTM
variance using the available data.

The reconstruction is based on the OPI data and em-
pirical orthogonal function (EOF) modes of the LTM,
computed from the more recent data (Fig. 8). The LTM
was computed for 10 overlapping 8-yr periods: 1987–94,
1988–95, . . . , 1996–2003. This is minimal data for com-
puting EOFs, so only the first two modes are consid-
ered, accounting for 86% of the LTM variance. For
these EOFs, undersampled regions are filled using spa-
tial binomial filtering. Most EOF variations are in the
Tropics. The first mode indicates a trend in the LTM,
which is largest over the Indonesian region with tele-
connections across the Pacific and into the extratropics.
The second appears to be linked to low-frequency
variations associated with ENSO precipitation.

To reconstruct the time series for the first two modes,
the OPI data are used to compute OPI LTMs. Those
OPI LTM estimates are projected onto each of the
EOF modes to minimize the mean-squared error of
each fit. This gives the relative variance of the OPI
associated with the mode. However, the OPI data are
themselves biased, so the time series must be further
bias corrected. This time series bias correction is done
by linear regression of the OPI-projected series against

the EOF series. The resulting coefficients are used to
correct the OPI-projected series.

The OPI data are able to almost completely recon-
struct the first-mode variance (Fig. 9, upper panel), and
they are also able to reconstruct most of the second-
mode variance (lower panel). Over the base period the
first mode appears to be a trend, but over the extended
period there is a suggestion of a decadal oscillation. The
OPI monthly values have damped variance compared
to some other satellite products, but these reconstruc-
tions indicate that their LTM values can be used to
reconstruct the ensemble LTM variance.

Much of the variance in the first two modes is over
land, especially for the first mode. Therefore, recon-
structions of the LTM using gauge data are also tested.
For the first mode the correlation is high for the base
period (0.99), but there is less variance in the indepen-
dent period compared to the OPI projections. For the
second mode, the gauge-projection correlation is lower
(0.54) compared to the OPI-projection correlation
(0.83). These comparisons indicate that the greater
sampling of the OPI should make its reconstruction
significantly more accurate than the gauge-based recon-
struction.

The reconstruction LTM error occurs because of
damping of the LTM variance. Total LTM variance,
�2

LTM, is computed from the same 10-yr base period
used for the EOFs and is the sum of the signal variance,
�2

s , and the error variance, E2
m,

�LTM
2 � � s

2 	 Em
2 . �5�

The error variance is computed from the means of
individual products, and it cannot be assumed to be
random over the EOF analysis period. Here the error
variance is assumed to be part of the EOF analysis, and
it is damped as much as the signal variance. Thus, if fs

is the total fraction of the variance accounted for by the
set of EOFs, then the EOF-damping error is (1 � fs)
(�2

s 	 E2
m). In addition to the EOF-damping error,

there is also error from the reconstructed error vari-
ance, fsE

2
m. The sum of these gives the total error vari-

ance of the reconstruction LTM,

ER
2 � Em

2 	 �1 � fs��s
2. �6�

This error estimate has one term reflecting uncertainty
in the estimate of the LTM and another term reflecting
uncertainty in estimates of temporal changes of the
mean.

The values of �2
LTM and E2

m can be computed using
the base-period data, allowing an estimate of �2

s to be
computed using Eq. (5). The temporal variation in the
LTM is relatively small, and in most regions �2

s 
 0.1 E2
m.

TABLE 2. RMSB relative to the ensemble estimate of the long-
term mean. The time-averaging period is 1996–2003 with weight-
ing of gauges by 4 and averaged globally wherever the satellite
product is defined.

Satellite RMSB (mm day�1)

OPI 0.6
AGPI 0.5
GPI 1.1
SSM/I 0.7
SSM/I–TOVS 0.7
TOVS 0.8
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Using the leading two EOF modes, the smallest pos-
sible signal-damping error is 0.14�2

s , when both are
perfectly reconstructed. In practice, the error is depen-
dent on how well each mode may be reconstructed,
which is reflected by the explained variance of the
mode reconstruction, r2. Reconstruction statistics for
the first-two-mode reconstructions, based on OPI and

gauge data, are listed in Table 3. For the OPI recon-
struction, fs � 0.81 and damping error � 0.19�2

s , while
for gauges-based reconstructions, fs � 0.74 and damp-
ing error � 0.26�2

s .
Differences in the LTM reconstruction, relative to

the full LTM over 1996–2003, are small and mostly in
the Tropics (Fig. 10). Note that this difference is much

FIG. 8. EOF modes 1 and 2 of the ensemble long-term mean. There are ten 8-yr overlapping
periods. The time series is labeled with the last of the 8 yr in the period. The contour interval
is 3, with the zero contour omitted and shading as indicated.
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less than the LTM values (shown in Fig. 5). The recon-
struction RMSE for the same period is slightly larger in
the tropical Pacific. However, the temporal variance
being reconstructed by the modes is still a small fraction
of the total LTM error.

5. Summary and conclusions

Two methods for evaluating the bias of satellite-
based precipitation estimates are developed and tested.
A direct method gives higher temporal resolution, but
it is not able to evaluate bias over oceans. The direct
method is based on local analyses of satellite–gauge
differences. An indirect method gives near-global spa-
tial resolution, but it is only able to resolve the LTM
bias. The indirect method is based on ensembles of the
various precipitation products. In the neighborhood of
gauges, those gauges can be incorporated into the indi-
rect method. In addition, most of the variance of this
indirect method can be reconstructed using its leading

modes, allowing the indirect bias to be reconstructed
for some years when only the OPI satellite product is
available. Because it can be computed near globally,
the indirect method based on ensembles is preferred for
bias adjustments.

Indirect biases are typically about 0.5–1 mm day�1,
with standard errors typically about 0.2 times the mean
precipitation. Bias errors are computed from the spread
of the ensemble members, and they tend to be largest in
regions where the mean precipitation is large. In tests of
the indirect-bias estimate computed without gauge
data, the indirect-bias estimates are consistent with sat-
ellite–gauge direct-bias estimates over most regions
where the comparison can be made. Although it is dif-
ficult to remove all satellite bias using these indirect-
bias estimates, bias-adjusted satellite precipitation has
several advantages over unadjusted satellite precipita-
tion. The global adjustment reduces the bias of each
satellite estimate, over oceans and land. The uncer-
tainty estimate for the adjustment allows users to make
an estimate of how the remaining bias may be affecting
low-frequency changes in the precipitation. In addition,
by adjusting all satellites to a common base, artificial
changes in precipitation analyses are minimized. Arti-
ficial changes are possible whenever the mix of satellite
data in an analysis is changed if the satellites have dif-
ferent biases. Adjusted data will all contain the same,
reduced bias.
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APPENDIX A

A Brief Discussion of the Optimum
Interpolation Method

Optimum interpolation is a method of statistical in-
terpolation, developed for meteorological data by Gan-

TABLE 3. Statistics needed for error estimation of reconstructed
LTM, using both OPI- and gauge-based reconstructions.

OPI Gauge

Mode F r r2 r2F r r2 r2F

1 0.70 1.00 1.00 0.70 0.99 0.98 0.69
2 0.16 0.83 0.69 0.11 0.54 0.29 0.05
Sum 0.86 0.81 0.74

FIG. 9. Time series for the LTM EOFs 1 and 2 and similar series
computed by projecting OPI data onto the modes. The regression
time series is the projected time series corrected for bias, based on
the common period. The % variance of the mode and the corre-
lation with the EOF time series is indicated in each panel.
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din (1963). The OI method used here is similar to the
OI described in detail by Reynolds and Smith (1994).
The OI interpolates data to a point, k, using a weighted
sum of the n surrounding observations,

Pk � �
i�1

n

wipi. �A1�

Here Pk is the interpolated value, pi is the ith observa-
tion, assigned a weight of wi. The set of weights as-
signed to the observations minimizes the mean-squared
error of the interpolation value, assuming that certain
data statistics are known. Because the method in theory
minimizes the error it is called optimum. However, be-
cause the data statistics are only approximately known,
the method is only approximately optimum. Here only
nearby data are used for interpolation, to minimize the
influence of uncertainties in the statistics.

Statistics needed to compute the weights include the
correlations between spatial points on the analysis re-
gion, the variance across the region, and the random
error or noise associated with each observation. Here
the observations are satellite–gauge precipitation dif-
ferences. The statistics are used to define the set of
weights. In practice, each weight is roughly propor-
tional to the correlation with the analysis point, and
also roughly inversely proportional to the random er-
ror. Here the correlation is estimated as a function of
distance between points in the region, and for simplicity
the variance is assumed to be constant across the analy-
sis region. The random error of each satellite–gauge
difference interpolated is estimated using the number
of stations in each monthly gauge 2.5° area, n. Here the
noise/signal variance ratio is assumed to be propor-
tional to 1/n for each 2.5° difference, with a minimum
ratio of 0.1 in regions where n � 10.

Most observations have correlations less than one
and all have some random error associated with them,
so all sets of weights are at least slightly damped. If
there are only a few observations with greatly reduced
weights, then the sum of the weights may be much less
than one and the interpolation greatly damped. For
example, there may be several observations with large
values, but if they are assigned weak weights because of
low correlations or high errors the interpolation value
will have a lower, damped value. Damping is greatest in
situations when data are sparse and not reliable enough
to produce a strong analysis. In our analysis damping
tends to be by a factor of 0.5 or less when there are
fewer than five observations (as indicated by Fig. 3).
There is little damping when the number of observa-
tions is 10 or more. In cases with little or no damping
the analysis may be referred to as a strong analysis.

APPENDIX B

Reduction of Bias in Indirect Estimates: Theory
and Validation

Bias is a type of partly correlated error. The assump-
tion behind indirect-bias estimates is that biases from
different sources have different causes, and therefore
they are not perfectly correlated. This was shown to be
so using the satellite direct-estimate biases with respect
to the gauge data. Spatial correlations were computed
between direct-estimate biases of each satellite and ev-
ery other satellite. Those direct-estimate bias spatial
correlations are generally between 0.4 and 0.8, with an
average of 0.6. The direct-estimate biases also tell us
the approximate magnitude of the biases from the dif-
ferent sources. Table 1 shows that, compared to gauges,
most have a monthly RMS bias between 1.2 and 2.0 mm

FIG. 10. The difference between the OPI-based reconstruction and the ensemble estimate (contour
interval � 0.2 mm day�1, with the zero contour omitted). Gauge data are included in the ensemble
estimate, weighted � 4.
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day�1, with an average of 1.5 mm day�1. The lower
value for OPI is to be expected since OPI is tuned to
the gauges, and this is likely an underestimate of global
OPI RMS bias, including regions without gauges. In the
same table, the monthly RMS difference between each
satellite and every other satellite yields similar values,
with an average of 1.9 mm day�1. Combined with the
RMS bias estimate, this intersatellite bias suggests that
the satellites used here have similar monthly RMS bias
values of around 2 mm day�1.

Because the correlation between biases is less than
one, combining the biases can reduce the RMS bias of
that ensemble. If the correlation were one then there
would be only one degree of freedom between the es-
timates and the ensemble bias would simply be the av-
erage RMS bias without any reduction. With a corre-
lation less than one the ensemble RMS bias is reduced:

E2 �
�Ek

2
n�

. �B1�

Here �E2
k is the average of the individual bias error

variance estimates and E2 is the reduced error variance,
and n� is the number of independent degrees of free-
dom. For completely uncorrelated errors n� � n, the
number of individual observations. Because of this re-
duction, random errors tend to be small whenever a
large number of observations are combined, which is
typical for monthly satellite observations. Bias errors
are unlikely to be completely uncorrelated, and in gen-
eral we can expect to find n� 
 n. The larger n�, the
more the reduction of the ensemble bias uncertainty.
As long as n� � 1, the ensemble error variance will be
less than the average of the individual estimates.

The equation for computing the variance of the sum
of correlated random variables can be found in many
books on statistics (e.g., Larson 1982). That equation
can be simplified by setting all weights to 1/n, assuming
that all individual variances are constant, and that all
correlations between random variables are constant.
These simplifications make it simple to estimate the
number of degrees of freedom, and to show its depen-
dence on correlation, r. Making these simplifications
allows us to write

1
n�

� �1
n

	
n � 1

n
r�. �B2�

As noted above, the bias spatial correlation is approxi-
mately r � 0.6 for the monthly values. Thus, there are
approximately 1.5 degrees of freedom. For the tempo-
ral LTM estimates, biases from many months are aver-
aged, so there may be many more degrees of freedom

further reducing the bias in the ensemble estimate
LTM.

To show how this works in practice, validation is
shown against three standards: the gauge data (over
land only), the TRMM Microwave Imager (TMI; over
oceans only) precipitation estimate, and the TRMM
Precipitation Radar (PR; over land and oceans). Since
the TRMM estimates begin in 1998, validation is given
for the 1998–2003 period. All validations are over the
area 40°S–40°N. Gauges give a direct precipitation
measurement, and therefore can be expected to have
lower biases than remote estimates from satellites, as
discussed in the text. In addition, measurements have
shown that the TRMM estimates have relatively low
bias compared to the other satellite estimates used in
this study (Bowman et al. 2003). Although these stan-
dards cover different regions, and none of them are
completely free of bias, the combined results help to
validate the indirect method. Encouraging is the con-
sistency with the expected error reduction based on
Eqs. (B1) and (B2). Spatial averaged values are given in
Table B1.

The table shows that both forming ensembles and
time averaging reduces the bias, to the point where the
LTM ensemble RMS bias is about a third to a half of
the average monthly bias. Comparison of the monthly
average and ensemble RMS bias values indicates be-
tween 1.3 and 1.8 degrees of freedom, consistent with
the estimate of 1.5 based on spatial correlations and
discussed above.

Comparison of the ensemble estimates between the
monthly and LTM estimates shows that there are be-
tween 3 and 7 temporal degrees of freedom in this av-
eraging period, which reduce the LTM RMS bias com-
pared to the monthly values. As an additional check,
the direct-estimate RMS bias in Table 1 was recom-
puted. For Table 1 the mean-squared bias was com-
puted for each month and those values were then av-

TABLE B1. Spatial (40°S–40°N) averages of RMS bias relative
to three standards: gauge data, TMI, and PR data. Bias is com-
puted over 1998–2003, in mm day�1. The average bias of the
satellites used in this study (Avg sat) and the bias of the satellite
ensemble (Ens sat) is given. The left columns give average of
monthly values, and the right columns give bias for time-averaged
(LTM) values.

Monthly
validation

LTM (1998–2003)
validation

Avg sat Ens sat Avg sat Ens sat

Gauge 2.54 2.23 1.41 1.27
TMI 1.46 1.08 0.68 0.41
PR 1.86 1.58 0.93 0.73
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eraged in time. For this check the data were first aver-
aged in time, and the mean-squared bias of those
averages was computed. Comparison of the direct-
estimate errors of the mean to the mean of the errors
also indicates approximately 3 to 7 degrees of freedom
in the time period, consistent with the temporal degrees
of freedom in the indirect estimates.

These comparisons show that forming ensembles or
weighted means of the different satellite estimates re-
duces the bias on all time scales. Thus, multisatellite
products will tend to have lower biases than the average
bias of the individual products. However, there is
greater bias reduction in LTM estimates. Both the tem-
poral degrees of freedom and the satellite-to-satellite
degrees of freedom contribute to reduction of the LTM
ensemble bias.
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