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ABSTRACT

This study assesses the impact of satellite rainfall error structure on soil moisture simulations with the

NASA Catchment land surface model. Specifically, the study contrasts a complex satellite rainfall error model

(SREM2D) with the standard rainfall error model used to generate ensembles of rainfall fields as part of the

Land Data Assimilation System (LDAS) developed at the NASA Global Modeling and Assimilation Office.

The study is conducted in the Oklahoma region, which offers good coverage by weather radars and in situ

meteorological and soil moisture measurement stations. The authors used high-resolution (25 km, 3-hourly)

satellite rainfall fields derived from the NOAA/Climate Prediction Center morphing (CMORPH) global sat-

ellite product and rain gauge–calibrated radar rainfall fields (considered as the reference rainfall). The LDAS

simulations are evaluated in terms of rainfall and soil moisture error. Comparisons of rainfall ensembles gen-

erated by SREM2D and LDAS against reference rainfall show that both rainfall error models preserve the

satellite rainfall error characteristics across a range of spatial scales. The error structure in SREM2D is shown to

generate rainfall replicates with higher variability that better envelop the reference rainfall than those generated

by the LDAS error model. Likewise, the SREM2D-generated soil moisture ensemble shows slightly higher

spread than the LDAS-generated ensemble and thus better encapsulates the reference soil moisture. Soil

moisture errors, however, are less sensitive than precipitation errors to the complexity of the precipitation error

modeling approach because soil moisture dynamics are dissipative and nonlinear.

1. Introduction

Surface and root zone soil moisture control the parti-

tioning of available energy incident on the land surface.

For this reason, soil moisture is a key variable in the

water cycle that impacts local weather, such as cloud

coverage and precipitation, and hydrological parame-

ters, such as runoff and evapotranspiration (Betts and

Ball 1998). Therefore an accurate characterization of

soil water content can lead to improvements not only

in weather and climate prediction, but also in hazard

mitigation (floods and droughts), agricultural planning,

and water resources management. Arguably, soil mois-

ture is an important parameter for the derivation of

flood warning schemes based on rainfall thresholds

(Martina et al. 2005; Carpenter et al. 1999). In such sys-

tems, quantitative soil moisture information is needed for

the selection of the proper rainfall–runoff threshold curve

to use with the estimated rainfall volume data for issuing

flood warnings.

Information on soil moisture may be obtained from

three main sources: ground measurements, remote sens-

ing, and land surface models. A common approach to

estimate soil moisture at regional–global scales is to run

a land surface model forced with meteorological ob-

servations. The physical formulation of a land surface

model integrates the atmospheric forcing and produces
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estimates of soil moisture. Different sources of error af-

fect land surface model predictions: errors in the atmo-

spheric forcing, faulty estimates of the model parameters,

and deficient model formulations (Reichle et al. 2004).

Indirect measurements of surface soil moisture can be

obtained from satellite sensors that measure the micro-

wave (MW) emission by the land surface (e.g., Jackson

1993; Njoku et al. 2003). However, satellite data cover-

age is spatially and temporally incomplete and retrievals

are prone to errors because of limitations in the instru-

ment sampling, difficulties in the parameterization of

the physical processes that relate brightness tempera-

ture with the near-surface soil moisture, and difficulties

in obtaining a global distribution of the parameters of

the retrieval algorithm. Moreover, it is difficult to re-

trieve soil moisture in areas where the fraction of water

is significant (i.e., coastal areas) and/or when the soil is

frozen or densely vegetated.

Data assimilation systems merge satellite retrieval in-

formation with the spatially and temporally complete

information predicted by the land surface models to pro-

vide a superior product. This is achieved by correcting

the model predictions (e.g., of soil moisture) with a sto-

chastic filtering technique that uses differences between

the model predictions and satellite estimates along with

the associated uncertainty of each data source. Constrain-

ing the model with observations using data assimilation

methods has been demonstrated as an effective way to

integrate data with models. Studies have confirmed that

assimilating satellite-retrieved soil moisture improves

the dynamic representation of soil moisture (Reichle et al.

2007).

The quality of the assimilation estimates depends

critically on the realism of the error estimates for the

model and the observations (Reichle et al. 2008). Ar-

guably, the way model errors are handled in standard

land data assimilation systems could use improvement,

which should lead to better estimates. One such system

is the Land Data Assimilation System (LDAS) devel-

oped at the National Aeronautics and Space Adminis-

tration (NASA) Global Modeling and Assimilation

Office. Specifically, LDAS applies perturbations to the

model forcing and state variables to obtain an ensemble

of land surface fields that reflects modeling uncertainty.

Perturbations to the precipitation forcing are of particu-

lar importance to the modeling of soil moisture uncer-

tainty, which motivates our investigation of the impact

of the rainfall error model on the simulation of the soil

moisture error characteristics. Specifically, the precipi-

tation perturbations generated by the LDAS error model

are spatially and temporally correlated and lognormally

distributed multiplication factors. Recent studies have

proposed more complex satellite rainfall error models for

generating error ensembles of satellite rainfall fields

(Bellerby and Sun 2005; Hossain and Anagnostou 2006a).

Hossain and Anagnostou (2006a) investigated one of

those rainfall error models, the multidimensional Sat-

ellite Rainfall Error Model (SREM2D), to describe the

uncertainty in soil moisture predictions from a land

surface model forced with satellite rainfall fields.

In this paper we seek to expand the Hossain and

Anagnostou (2006a) study by conducting numerical in-

vestigations to (i) assess the impact of satellite rainfall

error structure on soil moisture uncertainty simulated

by the NASA Catchment land surface model (CLSM

or Catchment model); (ii) contrast the more complex

SREM2D rainfall error model to the standard rainfall

error model used in LDAS to generate rainfall ensem-

bles; and (iii) further investigate the propagation of pre-

cipitation errors into soil moisture errors.

We begin with a description of the experiment do-

main, period, and data employed in the study (section 2),

followed by a brief overview of LDAS (section 3) and a

description of the rainfall error schemes (section 4). In

section 5, we describe the experiments and in section 6

we present and discuss our results. We conclude with the

major findings in section 7.

2. Study region and data

a. Study area and period

The region of Oklahoma (OK) in the midwestern

United States was chosen as the study area for its

smooth terrain, good coverage by weather radars, and

dense network of hydrometeorological stations from

the Oklahoma Mesonet (Brock et al. 1995, their Fig. 1).

The region is characterized by a continental climate

associated with cold winters and hot summers. Its to-

pography rises gently from an altitude of 88 m MSL in

the southeastern corner to a height of 1515 m MSLat the

tip of the ‘‘Panhandle’’ in the northwestern corner. The

study region is discretized into a 25 km 3 25 km Carte-

sian modeling grid (348–378N, 1008–958W), representing

a total area of about 137 500 km2, over which radar and

satellite rainfall data were interpolated (see discussion

below). The western half of the domain is characterized

by drier conditions, compared to the wetter eastern half,

as shown by the cumulative rain map. The study period

includes three continuous years from 1 January 2004 to

31 December 2006.

b. Data description

Data from various sources were used for this study.

We focus on two high-resolution rainfall products: the

Weather Surveillance Radar-1988 Doppler (WSR-88D)
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radar rainfall and the National Oceanic and Atmo-

spheric Administration (NOAA)/Climate Prediction

Center morphing (CMORPH) satellite rainfall. Along

with supplemental surface meteorological forcing data

from the Global Land Data Assimilation System

(GLDAS) project, the radar and satellite precipitation

products are used to force the land surface model and

generate soil moisture fields. The coarser (and global)

GLDAS forcing data were chosen over the finer-scale

North American LDAS (NLDAS) forcing data, as the

target of this study is to include better precipitation error

characterization in global land data assimilation. Finally,

we also employ ground observations of soil moisture from

in situ stations for a comparison with the land surface

model integrations.

The radar dataset is extracted from the Stage IV Na-

tional Weather Service (NWS) WSR-88D precipitation

estimates with real-time adjustments based on mean-

field radar–rain gauge hourly accumulation comparisons

(Fulton 1998). The Stage IV product is a national mosaic

of precipitation estimates based on the Stage II products

from all WSR-88D radars across the continental United

States. WSR-88D Stage IV data are available at 4-km

resolution and hourly time steps. There are many sources

of uncertainty in the WSR-88D rain-rate estimates, in-

cluding the drop size distribution, the vertical structure

of raindrops between the sampling volume and the ground,

geometric effects of the spreading radar beam, small-

scale variability of precipitation within a sampling volume,

and erroneous radar echoes, such as anomalous propaga-

tion of the radar beam (Krajewski et al. 2006). The above-

mentioned mean-field bias adjustment of radar rainfall

toward rain gauge measurements is designed to reduce the

uncertainty in radar rainfall estimates.

The satellite product used here is the NOAA/Climate

Prediction Center morphing product (Joyce et al. 2004).

The product interpolates successive passive microwave

rainfall estimates based on high-frequency infrared (IR)

images. Specifically, the algorithm uses motion vectors

derived from half-hourly geostationary satellite IR imagery

to interpolate the less frequent but relatively high-quality

rainfall estimates obtained from low-earth orbit MW

sensors. The dynamic morphological characteristics (such

as shape and intensity) of precipitation features are in-

terpolated between consecutive microwave sensor sam-

ples through time-weighted linear interpolation. This

process yields spatially and temporally continuous MW

rainfall fields that have been guided by IR imagery and

yet are independent of IR rain retrievals. The CMORPH

product is available half-hourly at 8-km resolution. It has

been shown to have a high probability of rain detection

as well as high temporal and spatial correlation when

compared to ground-observed rainfall data across the

Oklahoma region (Anagnostou et al. 2010). For this

study, we regridded and aggregated the satellite and

radar precipitation datasets to the 25-km modeling grid

and a 3-hourly time step for analysis and input to the

land surface modeling system.

The remainder of the surface meteorological forc-

ing data (including air temperature and humidity,

radiation, and wind speed) are from the GLDAS proj-

ect (Rodell et al. 2004; http://ldas.gsfc.nasa.gov) based

on output from the global atmospheric data assimila-

tion system at the NASA Global Modeling and As-

similation Office (GMAO; Bloom et al. 2005). The

GLDAS data used here are identical to those custom-

ized for the GMAO seasonal forecasting system (3-

hourly time steps and 28 3 2.58 resolution in latitude

and longitude).

Besides the above-mentioned surface meteorological

observations, the OK Mesonet also provides soil mois-

ture observations that we use in our study to demon-

strate the viability of the land surface modeling system.

Measurements are taken at four depths (5, 25, 60, and

75 cm) and 30-min resolution at 106 automated observ-

ing stations located throughout the state (Fig. 1). The

soil moisture dataset is quality controlled and includes

quality flags in the dataset. For our study period, soil

moisture observations of sufficient quantity and quality

at all four measurement depths were available at 21 of

FIG. 1. (a) The 25-km grid covering the experiment domain and locations of OK Mesonet stations (black dots). The

triangular symbols represent OK Mesonet stations where sufficient soil moisture observations were available at four

different depths during the study period. (b) The 3-yr (2004–06) cumulative WSR-88D rainfall (mm).
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the 106 OK Mesonet stations (Fig. 1) and were used to

evaluate the Catchment model (section 3b).

3. LDAS

a. Overview

The land surface model used in LDAS and in this

study is the Catchment land surface model (Koster et al.

2000). The Catchment model is a nontraditional mod-

eling framework that includes an explicit treatment of

subgrid soil moisture variability and its effect on runoff

and evaporation. The basic computational unit of the

model is the watershed, whose boundaries are defined

by topography. Within each element, the vertical profile

of soil moisture is given by the equilibrium soil moisture

profile and the deviations from the equilibrium profile

in a 1-m root zone layer and in a 2-cm surface layer.

Moreover, the model describes the horizontal redis-

tribution of soil moisture (based on the statistics of the

catchment topography) in each watershed. The soil and

vegetation parameters used in the Catchment model

are from the NASA Goddard Earth Observing System,

version 5 (GEOS-5) global modeling system (Rienecker

et al. 2008).

In a data assimilation system, the model-generated

soil moisture is corrected toward the observational es-

timate. The LDAS data assimilation system is based

on the ensemble Kalman filter (EnKF) and dynamically

updates model error covariance information by produc-

ing an ensemble of model predictions, which are indi-

vidual model realizations perturbed by the assumed

model error (Reichle et al. 2007). The ensemble ap-

proach is widely used in hydrologic data assimilation

because of its flexibility with respect to the type of model

error (Crow and Wood 2003) and is well suited to the

nonlinear character of land surface processes (Reichle

et al. 2002a,b). As already mentioned, the accurate spec-

ification of model and observation errors is the key to

successful data assimilation (Reichle et al. 2008). Here,

we focus on the ability of the modeling system to char-

acterize precipitation and soil moisture errors without

actually assimilating soil moisture observations into the

land surface model.

b. Evaluation of model soil moisture

Our study of the rainfall error models depends in part

on the ability of the Catchment model to describe soil

moisture dynamics in a realistic manner. Numerous stud-

ies have demonstrated the Catchment model’s viability

for large-scale soil moisture modeling (Reichle et al. 2009;

Bowling et al. 2003; Nijssen et al. 2003; Boone et al. 2004).

For further demonstration, this section compares soil

moisture time series from OK Mesonet station observations

and corresponding Catchment model simulations, gen-

erated by forcing the model with WSR-88D rainfall

and GLDAS meteorological forcing fields. The model

was spun up by looping 3 times over the 3 yr of forcing

data.

In situ soil moisture measurements and output from

land surface models designed for global simulations (such

as the Catchment model) typically exhibit systematic dif-

ferences in their estimates of soil moisture (Reichle et al.

2004). These systematic differences are, among other

reasons, related to (i) the point-scale character of the in

situ observations versus the distributed nature of the

model estimates and (ii) a mismatch in the available

measurement depths and the vertical resolution of the

land surface model. Regarding the latter point, surface

soil moisture hereafter refers to the OK Mesonet soil

moisture measured at 5-cm depth and the 0–2-cm surface

soil moisture output from the Catchment model. The root

zone soil moisture is defined here as the 0–100-cm output

from the Catchment model and the corresponding depth-

weighted average over the 5-, 25-, 60-, and 75-cm OK

Mesonet observations (with weights of 0.15, 0.27, 0.25,

and 0.33, respectively).

In global soil moisture modeling and data assimila-

tion the systematic differences can be addressed through

rescaling or bias estimation (Reichle et al. 2007; De

Lannoy et al. 2007). Here, we focus on anomaly time se-

ries, specifically standard-normal deviates that capture

the phase correspondence between model estimates and

in situ measurements, regardless of potential mean biases

or differences in dynamic range (Entekhabi et al. 2010b).

Figure 2 shows standard-normal deviate daily time series

of (i) model-predicted surface and root zone soil mois-

ture, and (ii) corresponding Mesonet observations during

the three summer seasons [months of June, July, August,

and September (JJAS)] of 2004, 2005, and 2006. The

standard-normal deviates shown in Fig. 2 are computed

by subtracting the 2004–06 JJAS mean and dividing by

the corresponding standard deviation. Two representa-

tive Mesonet stations (one in the wetter eastern half and

one in the drier western half of the region) and the

corresponding 25-km gridcell model simulations were

selected to show standard-normal deviate time series.

A station-average standard-normal deviate time series

is also computed across the 21 good-quality Mesonet

stations and the corresponding 25-km grid cells where

sufficient OK Mesonet observations were available for

all four measurement depths.

Figure 2 demonstrates that the standard-normal deviate

time series are consistent between surface and root zone soil

moisture, and that the variations of the Catchment model

soil moisture are consistent with the OK Mesonet mea-

surements. The correlation coefficients between Mesonet
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FIG. 2. Standard-normal deviate daily time series of (a),(c),(e) surface and (b),(d),(f) root zone soil moisture for (a),(b) a station average

and individual values at the two stations at (c),(d) 36.8898N, 94.8458W and (e),(f) 35.8428N, 98.5268W. Corresponding WSR-88D rainfall

time series are also shown. Summer (June–September) time series are shown for 2004–06 and are separated by a vertical line in the plots.
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and Catchment model soil moisture across the 21 stations

are 0.56 for surface soil moisture and 0.63 for root zone

soil moisture. For the individual stations shown in Figs. 2

the correlation coefficients are 0.82 (0.86) for the surface

soil moisture (root zone soil moisture) at the eastern

station and 0.70 (0.70) for the western location. The root

zone soil moisture variations are smoother than those of

surface soil moisture because the upper few centimeters

of the soil are more exposed to the atmosphere and vary

more rapidly in moisture content in response to rainfall

forcing and evaporation. Based on this analysis, we are

confident of the viability of the soil moisture modeling

system for use in this study.

4. The rainfall error models

a. Overview

The objective of the study is to contrast the LDAS

rainfall error model with the more complex SREM2D

rainfall error model for characterizing rainfall and soil

moisture uncertainty. The LDAS model describes rain-

fall error by scaling the precipitation forcing based on

an ensemble of multiplicative perturbation fields that

are correlated in space and time (Reichle et al. 2007).

This implies that in LDAS all ensemble members agree

in terms of rain occurrence and differ only in terms of

rainfall-rate magnitude. A spatial correlation structure is

imposed based on a two-dimensional Gaussian correla-

tion function. Temporal error correlation is modeled with

a first-order autoregressive process in the LDAS error

model, but was set to zero in this work for compatibility

with the SREM2D implementation. This error structure

is parsimonious in its input parameter requirements and

is numerically convenient, but it can only approximate

the rain-rate error variability, which is not a holistic

representation of satellite retrievals that are susceptible

to significant rain detection and false detection uncer-

tainties (Hossain and Anagnostou 2006a).

A more inclusive characterization of precipitation

uncertainty is based on the Hossain and Anagnostou

(2006b) SREM2D rainfall error model. The model was

originally developed to use ‘‘reference’’ rainfall fields as

input that represents the ‘‘true’’ surface rainfall, and it

employs stochastic space–time formulations to charac-

terize the multidimensional error structure of corre-

sponding satellite retrievals. Reversing in this study the

definition of input in SREM2D, the multidimensional

structure of deviations from the reference (i.e., radar)

rainfall was derived with respect to the satellite rainfall

estimates (input field). This process generates ensem-

bles of radar-like rainfall fields from satellite rainfall

retrievals that can be used to force the land surface

model, thus generating ensembles of model-predicted

soil moisture fields. This approach is although similar to

the LDAS scheme, allows more complexity in the error

modeling structure of rainfall.

Again, the precipitation error in the LDAS model as-

sumes a perfect delineation of rainy and nonrainy areas

and simply scales the input precipitation forcing with

a multiplicative perturbation (different scaling factor for

each time, location, and ensemble member). This implies,

for example, that all LDAS ensemble members have

zero precipitation whenever the input precipitation is

zero. In SREM2D ensemble members, by contrast, rain

can occur in areas where the input precipitation is zero.

Specifically, the joint spatial probability of successful

delineation of rainy and nonrainy areas is characterized

in SREM2D using Bernoulli trials of a uniform distri-

bution with a correlated structure generated based on

Gaussian random fields. These Gaussian random fields

are transformed into uniform distribution random fields

via an error function transformation. For additional de-

tails on SREM2D we refer the reader to Hossain and

Anagnostou (2006b).

Modeling the spatial structures for detection is an

important element of SREM2D as real sensor data are

known to exhibit spatial clusters for false rain and false

no-rain detection. In summary, the key difference be-

tween the two error models is that SREM2D charac-

terizes the spatial structure of the successful delineation

of rainy and nonrainy areas, while both models describe

the spatial variability of rain-rate estimation error.

The reference rainfall is defined here as the Stage IV

WSR-88D product while the satellite rainfall is the

CMORPH global product. For this study, CMORPH

rainfall estimates were adjusted to the mean climatology

of the radar rainfall to be consistent with the LDAS as-

sumption of unbiased rainfall forcing fields. The bias

adjustment factor was determined based on the 3-yr time

series of WSR-88D and CMORPH rainfall estimates

over Oklahoma. Figure 3 illustrates the consistency in the

cumulative area-average precipitation during the study

period between the radar precipitation and the adjusted

CMORPH precipitation.

The input parameters for the SREM2D and LDAS

precipitation error models are summarized in Table 1. In

both error models, we set the mean value for the log-

normal multiplicative perturbations to unity to obtain

(nearly) unbiased replicates. The remaining parameters

were calibrated to obtain replicates of the CMORPH

precipitation that reproduce the overall standard de-

viation of the CMORPH versus radar rainfall errors (as

will be demonstrated below in Table 2). From Table 1

we note that the standard deviation parameter value for

multiplicative perturbations is 0.2 for SREM2D and 0.4

for LDAS. The SREM2D parameter is smaller because
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in the more complex SREM2D, variability is added from

additional sources (e.g., rain detection and false detec-

tion uncertainties), whereas in LDAS the uncertainty

is entirely determined by the multiplicative perturba-

tions. As stated above, time correlation was not applied

in this study. Error correlation lengths for the multiplica-

tive error (SREM2D and LDAS) and for the delineation

of rainy and nonrainy areas (SREM2D only) range from

70 to 190 km (Table 1). Additional SREM2D param-

eters include a lookup table for the probability of suc-

cessful rain detection (not shown in Table 1).

b. Performance of the rainfall error models

Before we analyze the performance of the SREM2D

and LDAS error models in terms of the error statistics of

the generated ensemble rainfall fields, it is instructive to

discuss sample realizations of the precipitation replicates.

Figure 4 shows snapshots (for three consecutive time

steps) of a precipitation event from radar and satellite,

along with one representative member each from the

LDAS and SREM2D ensembles. Generally, the struc-

ture of the radar (reference) rainfall is well captured by

the satellite as well as by the perturbed fields. By design,

each LDAS ensemble member is only a rescaled version

of the satellite rain field (with spatially distributed scaling

factors). In contrast, SREM2D may introduce rain in

pixels where the satellite does not measure rain (to sta-

tistically represent the rain detection error) while it may

assign zero to pixels where the satellite detects rain (to

statistically represent the false detection error). This is

due to parameterizations in SREM2D that describe the

probability of detection and false alarms as a function

of satellite rainfall. This is apparent in the top panelsof

Fig. 4, where the SREM2D replicate introduces pre-

cipitation in the southwestern quadrant of the domain,

where no rain was estimated by CMORPH. During the

second 3-h time step (middle row of Fig. 4) the SREM2D

ensemble member shows a dry area in the southeastern

corner of the domain (which corresponds to a dry region

in the radar measurement), while the satellite detects rain

in those pixels (false alarm case). The same effect can be

observed in the last snapshot (bottom row of Fig. 4),

where a dry area along the western border of the domain

is well captured by the SREM2D perturbed field, even

though CMORPH erroneously detected rain. Note that

the perturbed LDAS and SREM2D fields in Fig. 4 are

just one ensemble member: they are not meant to repli-

cate the true field, but rather to illustrate the statistical

properties of the ensemble.

The generated ensemble fields are also assessed in

terms of the first- (mean) and second-order (variance)

error statistics against the reference (radar) and con-

trasted to the same statistics determined for the ad-

justed CMORPH satellite dataset. Three spatial scales

are considered—100 km (8 grid cells), 50 km (55 grid

cells), and 25 km (220 grid cells)—to assess how the er-

ror modeling techniques can represent the mean and

variance of satellite error across scales. Results are pre-

sented in Table 2. The error is here defined as the

TABLE 1. Error model parameters.

Units LDAS SREM2D

Mean of lognormal

multiplicative error

Dimensionless 1.00 1.00

Std dev of lognormal

multiplicative error

Dimensionless 0.40 0.20

False alarm mean

rain rate

mm h21 n/a 0.24

No-rain probability

of detection

Dimensionless n/a 0.96

Correlation length for

multiplicative error

km 90 90

Correlation length for

successful rain detection

km n/a 190

Correlation length for

successful no-rain detection

km n/a 70

TABLE 2. Mean and std dev of rainfall error (difference between

satellite–ensembles and radar in mm h21) conditional to radar or

satellite being . 0.

25 km 50 km 100 km

Spatial scale Mean

Std

dev Mean

Std

dev Mean

Std

dev

Adjusted CMORPH 0.00 1.09 0.00 0.82 0.00 0.55

LDAS realizations 20.01 1.19 20.01 0.90 20.01 0.61

SREM2D realizations 0.00 1.14 0.00 0.84 0.00 0.56

FIG. 3. Cumulative hyetograph during the study period (2004–06)

of the WSR-88D dataset, the satellite dataset (adjusted CMORPH),

and the mean of ensembles produced by perturbing the adjusted

CMORPH rainfall with the LDAS error model (LDAS pert) and

SREM2D (SREM2D pert).
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difference at 3-h time steps between the adjusted

CMORPH satellite rainfall (or LDAS ensemble member,

or SREM2D ensemble member) and the reference radar

rainfall. In the case of perturbed rainfall fields, the values

reported in the table are the average of the error statistics

(mean and standard deviation) across the individual en-

semble members.

The bias values shown in Table 2 are negligible across

all scales because we adjusted the CMORPH precipita-

tion to match the 3-yr total radar precipitation (see Fig. 3

and discussion above), and because the perturbations

generated by both precipitation error models are de-

signed to be unbiased, which is also illustrated in Fig. 3.

Moreover, the error standard deviation decreases with

increasing scale and is well represented by both error

models. This suggests that after calibration the two error

schemes can adequately capture the magnitude of the

rainfall error, which is consistent with the results of

Hossain and Anagnostou (2006a).

5. The soil moisture simulation experiments

The Catchment model was forced with perturbed and

unperturbed precipitation fields to generate soil moisture

fields in two different modes: simulation and open loop

runs, which are described next and schematized in Fig. 5.

All Catchment model integrations were initialized from

a spinup simulation conducted with the WSR-88D radar

precipitation (section 2a).

a. Simulation mode—No precipitation perturbations

As shown in the center and left portions of Fig. 5, the

WSR-88D (radar) and unperturbed, adjusted CMORPH

(satellite) rainfall fields force the Catchment model to

generate surface and root zone soil moisture fields. The

soil moisture output from the model integration forced

with the radar rainfall represents the reference for soil

moisture. Soil moisture modeling errors are then com-

puted by differencing the soil moisture estimates derived

from CMORPH and the reference soil moisture. Alter-

natively, in situ soil moisture observations from the OK

Mesonet could be considered as the reference. However,

the problem with using the in situ data in the subsequent

soil moisture error investigation is that the effect of

rainfall error could not be isolated from other error

sources. This would make it difficult to study the signifi-

cance of precipitation error model complexity in char-

acterizing the predictive uncertainty of soil moisture.

FIG. 4. Rainfall maps for the event of 4 Jul 2005 for the three time steps: (top to bottom) 0600–0900, 0900–1200, and 1200–1500 local time (LT).
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b. Ensemble mode with precipitation perturbations

Ensemble runs are Monte Carlo simulations as shown

in the rightmost box in Fig. 5. The adjusted CMORPH

satellite precipitation fields were perturbed using the

SREM2D and, separately, the LDAS rainfall error model,

to force the Catchment model. Each ensemble integra-

tion consists of 24 members and generates an ensemble

of soil moisture fields. Each ensemble integration is then

evaluated against the reference soil moisture fields ob-

tained from the simulation experiments (without pre-

cipitation perturbations) in terms of error statistics.

Put differently, we analyze the skill of the LDAS and

SREM2D ensemble integrations to represent the soil

moisture modeling error with respect to the reference

fields.

6. Results and discussion

a. Rainfall to soil moisture error propagation

Figures 6, 7, and 8 illustrate time series of 0–2-cm

surface soil moisture and 0–100-cm root zone soil mois-

ture from the Catchment model forced with the un-

perturbed (reference) radar rainfall (thick lines), the

unperturbed satellite precipitation (thin lines), and the

LDAS and SREM2D perturbed rainfall (ensemble en-

velopes shown in gray shading). Time series are shown

for a representative interval of four warm-season months

(June–September 2005). Two different spatial scales are

considered: the average over the whole domain (Fig. 6)

and the 25-km gridcell resolution (Figs. 7 and 8). For the

latter, two representative grid cells have been selected—

one in the eastern half (representing wetter conditions)

and the other in the western half of the region (repre-

senting drier conditions).

As expected, the domain-average soil moisture time

series (Fig. 6) show less variability than the correspond-

ing time series at the 25-km scale (Figs. 7 and 8), with

a commensurately smaller ensemble spread. Figure 6

indicates little difference between the SREM2D and

LDAS ensemble integrations at the domain-average

scale, both in terms of the rainfall and the soil mois-

ture time series. At the 25-km scale (Figs. 7 and 8),

however, the ensemble envelope of SREM2D is wider

than that of LDAS and better encapsulates the radar-

measured rainfall because the SREM2D rainfall error

model generates more variability. This behavior is evi-

dent in both surface and root zone soil moisture time

series, which show similar ensemble envelopes for both

depths.

FIG. 5. Experiment setup of the error propagation study.
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b. Exceedance and uncertainty ratios

The wider ensemble envelopes of the SREM2D en-

semble increase the probability of encapsulating the

reference simulations between the lower and upper en-

semble bounds of the ensemble. In this section we pres-

ent two metrics, the exceedance ratio (ER) and the

uncertainty ratio (UR), that further quantify the ability

of the ensemble integrations to capture precipitation and

soil moisture errors. The exceedance ratio measures the

potential of the error model to capture the observed

fields, while the UR provides information about the

relative predictive capability, specifically, the ratio of

the ensemble spread relative to a reference value. Each

metric is computed for the perturbed rainfall (or soil

moisture) with respect to the radar rainfall (or radar

rainfall–forced soil moisture). Two contrasting issues are

considered in using these statistics: if the uncertainty

limits are too narrow (i.e., ER is high), then the com-

parison with the reference fields suggests that the model

errors are underestimated; on the other hand, if the limits

are too wide (i.e., UR is high), the model may not have an

adequate predictive capability (Hossain et al. 2004).

Specifically, the exceedance ratio is defined as

ER 5
N

exceedance

N
t

, (1)

where Nexceedance is the number of times the reference

rainfall (or reference-derived soil moisture) falls outside

the ensemble envelope and Nt is the total number of

times and locations. The uncertainty ratio is defined as

the ratio of the simulated uncertainty (defined as the

average difference between the upper and lower limits

of the ensemble envelope) normalized by the corre-

sponding reference variable (defined as the average

precipitation or soil moisture):

UR 5

�
N

t

i51
(q̂i

upperlim � q̂i
lowerlim)

�
N

i

i51
qi

. (2)

In other words, UR represents the bulk variability in the

perturbed variable relative to the typical value of that

variable (Hossain and Anagnostou 2005).

FIG. 6. Representative 4-month (Jun–Sep 2005) time series of (a),(b) cumulative rainfall, (c),(d) surface soil

moisture, and (e),(f) root zone soil moisture domain average. Results shown are from (a),(c),(e) LDAS error model

and (b),(d),(f) SREM2D.
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The statistics presented above were calculated for

different spatial scales (25, 50, and 100 km). The left-

most panels of Fig. 9 show that, for precipitation, ER

assumes considerably higher values in the LDAS error

model compared to SREM2D. Specifically, in the best

case—at the 25-km scale—the radar rainfall measure-

ment is included in the envelope of the LDAS realizations

only 80% of the time on average. This percentage reduces

to a value lower than 70% at coarser resolutions. On the

other hand, in the case of SREM2D, about 95% of the

time the reference precipitation is between the minimum

and the maximum value of the ensemble at all spatial

scales. The difference between the two error models is

due to the SREM2D potential of producing rain even

where the input precipitation is zero, and of assigning no

rain to areas where the reference measures precipita-

tion. The scale dependence in the ER values of LDAS

is attributed to the fact that this error model does not

account for rain detection uncertainties that may in-

troduce biases at coarser scales. As expected, the UR

exhibits lower values in the case of LDAS error model

relative to SREM2D, confirming that the more complex

SREM2D generates higher variability than the LDAS

approach.

The center and rightmost panels of Fig. 9 show the ER

and UR metrics for soil moisture estimates from the

Catchment model. Values of ER are considerably higher

in soil moisture compared to precipitation, indicating

that the output from both ensemble integrations gener-

ally captures soil moisture error variability less defini-

tively than rainfall error. Again, the uncertainty structure

is similar for surface and root zone soil moisture, with

comparable ER values. UR is slightly lower for root

zone than for surface soil moisture because deeper soil

moisture carries less variability, as already discussed.

Similar to what was shown for precipitation, SREM2D-

derived soil moisture fields have higher potential (40%

at the 25-km scale) of enveloping reference fields than

those derived by the LDAS error propagation scheme

(30% at the 25-km scale). The downside of producing

more variability is that the ensemble spread could be

overestimated, which could result in excessive weight

given to the observations in ensemble-based data as-

similation.

FIG. 7. Representative 4-month (Jun–Sep 2005) time series of (a),(b) cumulative rainfall, (c),(d) surface soil

moisture, and (e),(f) root zone soil moisture at a 25-km grid cell in the eastern half of the region. Results shown are

from (a),(c),(e) LDAS error model and (b),(d),(f) SREM2D.
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In the propagation from rainfall to soil moisture, the

exceedance ratio is amplified: while ER is close to 0.05

for precipitation fields, ER reaches values of 0.65 on

average for soil moisture (Fig. 9). In contrast, the

uncertainty ratio drops considerably in the propaga-

tion from precipitation to soil moisture: UR values for

precipitation replicates range from 1 to 4, while UR

values for soil moisture replicates are only 0.05–0.15.

This dampening of the variability of the error is due to

two effects: the integration of highly intermittent pre-

cipitation into more smoothly varying soil moisture,

and the natural lower and upper bounds of soil mois-

ture relative to rainfall. Figure 9 thus clearly demon-

strates that soil moisture error variability is attenuated

in the rainfall to soil moisture transformation process

in a nonlinear fashion.

In summary, the difference between the SREM2D

and LDAS error models that was evident in terms of

rainfall reduces considerably when the simulated soil

moisture fields are considered (Fig. 9). Perturbing pre-

cipitation with a more complex precipitation error ap-

proach leads to only slightly higher variability in the

simulated soil moisture fields and only a moderate in-

crease of the potential of enveloping the reference.

This suggests that the sensitivity of soil moisture data

assimilation to the choice of precipitation error model

may be limited.

c. Relative bias and relative root-mean-square error

To further highlight the features of the rain error

models and the propagation of error statistics from

precipitation to soil moisture we now present two ad-

ditional error metrics: the relative bias (rBIAS) and

relative root-mean-square error (rRMSE). Specifically,

we first compute reference values for these two statistics

that measure the errors between the unperturbed (ad-

justed) CMORPH precipitation (or corresponding soil

moisture fields) and the reference WSR-88D radar pre-

cipitation (or corresponding soil moisture fields). These

reference statistics, shown with dots in Fig. 10, are defined

as follows:

rBIAS 5

�
N

k51
(q̂

k
� q

k
)

�
N

k51

q̂
k

1 q
k

2

� � and (3)

FIG. 8. Same as Fig. 7 but in the western half of the region.
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rRMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

k51
(q̂

k
� q

k
)2

vuut
std(q

k
)

, (4)

where N 5 total number of time steps 3 total number

of grid cells, q̂ represents CMORPH precipitation (or

corresponding soil moisture fields), and q is the refer-

ence WSR-88D radar precipitation (or corresponding

soil moisture fields).

Next, we compute the same statistics for each in-

dividual member of the LDAS (or SREM2D) ensemble

for precipitation and soil moisture (again versus the ref-

erence radar precipitation or corresponding reference

soil moisture). In Eqs. (3) and (4), q̂ can then be read as

precipitation (or soil moisture) from a single member of

the LDAS (or SREM2D) ensemble. The rBIAS and

rRMSE metrics for the individual ensemble members

are then averaged across the ensemble, separately for

SREM2D and LDAS (shown in Fig. 10 as squares), and

can be compared to the reference statistics. Ideally, the

statistics calculated for the ensemble members should

replicate, at least on average, the reference error statistics.

The metrics described in this section differ from the ones

shown in Table 2; here we are computing relative (unit-

less) statistics, while Table 2 presents the mean and the

standard deviation of the errors.

Figure 10 shows that, broadly speaking, both rainfall

error models yield similar rBIAS and rRMSE values,

and that both error models adequately reproduce the

reference statistics. A closer inspection of the rBIAS

values for precipitation reveals a small residual bias in

LDAS perturbed precipitation. Furthermore, the abso-

lute value of rBIAS for soil moisture is slightly larger

than that for rainfall, which again suggests that the

precipitation to soil moisture error transformation is

nonlinear. On the other hand, the relative RMSE is

appreciably smaller for soil moisture than for precip-

itation, which confirms what was shown in the uncer-

tainty ratios and again reflects the integrating nature

of the soil moisture. Together, these statistics illustrate

the nonlinear transformation of precipitation error that

introduces biases in soil moisture simulations, while

dampening error variability. This corroborates our ob-

servation in the previous section that simulated soil

moisture ensembles are less sensitive to the complexity

of the precipitation error structure than precipitation

ensembles themselves.

FIG. 9. (a)–(c) ER and (d)–(f) UR for (a),(d) rainfall, (b),(e) surface soil moisture, and (c),(f) root zone soil moisture determined at

three scales of aggregation. The plotted point with vertical bars indicate the ensemble mean and 1 std dev of the ER and UR values. Scales

differ between the precipitation UR and soil moisture UR.
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7. Conclusions

This study focused on the sensitivity of soil moisture

errors to rainfall error modeling of different complexity

within the LDAS developed at the NASA GMAO. The

simpler LDAS rainfall error model was contrasted with

the more complex SREM2D rainfall error scheme, which

accounts for actual satellite rainfall error characteristics,

such as probability of detection and probability of false

alarm. We find that SREM2D provides more uncertainty

in the precipitation ensemble and better encapsulates

the reference precipitation (WSR-88D dataset). Gener-

ally, the SREM2D ensemble reproduces the reference

error statistics (relative bias and relative RMSE) better

than the LDAS error ensemble (Fig. 10).

Soil moisture simulations are shown to be less sensi-

tive to the complexity of the precipitation error model-

ing approach than the precipitation fields themselves

because of the dampening of the error variability along

with a nonlinear increase of the mean error. This can be

attributed to different factors: (i) the rain to soil mois-

ture error propagation is a nonlinear and integrating

process, and (ii) soil moisture dynamics are inherently

dissipative (i.e., perturbations are damped in time), re-

ducing the apparent sensitivity of soil moisture relative

to precipitation.

The higher variability added by SREM2D to the pre-

cipitation ensemble has little effect on soil moisture sim-

ulations. The ensemble produced by perturbing the

forcing precipitation with a more complex precipitation

error approach leads to only a slightly higher potential of

enveloping the reference modeled soil moisture.

One caveat to our results is that we tested the pre-

cipitation to soil moisture propagation of errors only

with the Catchment land surface model. Future studies

should investigate the sensitivity to different approaches

for land surface modeling. Nevertheless, we are confi-

dent that our general conclusions remain valid if other

land surface models are substituted for the Catchment

model, even if some details of the error statistics are

likely to change. Note also that this work was done with

a view toward land data assimilation at the global scale,

for which the Catchment model has been used success-

fully (Reichle et al. 2007).

When used in stand-alone mode, both precipita-

tion error models investigated here include the option

FIG. 10. Error statistics of rainfall of adjusted CMORPH and of ensemble fields perturbed by LDAS and SREM2D models with respect

to the reference (WSR-88D) rainfall: (a) rBIAS and (d) rRMSE. (b),(e) As in (a),(d), but for surface soil moisture simulated by the CLSM

forced with adjusted CMORPH precipitation and ensemble rainfall perturbed by LDAS and SREM2D with respect to soil moisture

simulated by CLSM forced with reference (WSR-88D) precipitation fields. (c),(f) As in (b),(e), but for root zone soil moisture. Error bars

indicate the std dev of the metric across the ensemble.
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of generating precipitation replicates that are subject to

temporally correlated errors. Such temporal error cor-

relations were not used here because their use would

have made the integration of SREM2D into the LDAS

far more difficult, and thus were left for future work. It is

possible that the addition of temporal error correlations

increases the ability of the LDAS error model to gen-

erate precipitation replicates with enhanced variability

and thus reduces its exceedance ratio, bringing it more in

line with that of SREM2D-generated replicates.

Our results suggest future studies on how SREM2D

can be employed to improve the use of remotely sensed

data in a land data assimilation system. Such studies

should focus on understanding and quantifying the im-

pact of precipitation error modeling on the efficiency of

assimilating soil moisture fields in a land data assimila-

tion system.

Finally, the results obtained from this study provide

useful information about the use of satellite rainfall

observations to model hydrologic processes, thus pro-

viding valuable feedback for future hydrologic missions,

including the NASA Global Precipitation Measurement

Mission (http://gpm.gsfc.nasa.gov) and the NASA Soil

Moisture Active Passive Mission (http://smap.jpl.nasa.

gov; Entekhabi et al. 2010a). The results also aid the

development or implementation of satellite rainfall ob-

servations into land data assimilation systems.

Acknowledgments. V. Maggioni was supported by a

NASA Earth System Science Graduate Fellowship. R.

Reichle was supported by NASA Grant NNX08AH36G.

E. Anagnostou was supported by NASA Grant

NNX07AE31G. Computing was supported by the NASA

High End Computing Program. The authors thank Faisal

Hossain from the Tennessee Technological University

for his precious help with the SREM2D model.

REFERENCES

Anagnostou, E. N., V. Maggioni, E. I. Nikolopoulos, T. Meskele,

F. Hossain, and A. Papadopoulos, 2010: Benchmarking high-

resolution global satellite rainfall products to radar and rain

gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens.,

48, 1667–1683.

Bellerby, T., and J. Sun, 2005: Probabilistic and ensemble repre-

sentations of the uncertainty in IR/microwave rainfall prod-

uct. J. Hydrometeor., 6, 1032–1044.

Betts, A. K., and J. H. Ball, 1998: FIFE surface climate and site-

average dataset 1987–89. J. Atmos. Sci., 55, 1091–1108.

Bloom, S., and Coauthors, 2005: Documentation and validation of

the Goddard Earth Observing System (GEOS) Data Assimi-

lation System: Version 4. Vol. 26, Series on Global Modeling

Data Assimilation Tech. Rep. 104606, 187 pp. [Available from

Global Modeling and Assimilation Office, NASA Goddard

Space Flight Center, Greenbelt, MD 20771.]

Boone, A., and Coauthors, 2004: The Rhone aggregation land

surface scheme intercomparison project: An overview. J. Cli-

mate, 17, 187–208.

Bowling, L. C., and Coauthors, 2003: Simulation of high latitude

hydrological processes in the Torne–Kalix basin: PILPS Phase

2(e) 1: Experiment description and summary intercomparisons.

Global Planet. Change, 38, 1–30.

Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus,

S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The

Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic

Technol., 12, 5–19.

Carpenter, T. M., J. A. Sperfslage, K. P. Georgakakos, T. Sweeney,

and D. L. Fread, 1999: National threshold runoff estimation

utilizing GIS in support of operational flash flood warning

system. J. Hydrol., 224, 21–44.

Crow, W. T., and E. F. Wood, 2003: The assimilation of remotely

sensed soil brightness temperature imagery into a land surface

model using ensemble Kalman filtering: A case study based on

ESTAR measurements during SGP97. Adv. Water Resour.,

26, 137–149.

De Lannoy, G. J. M., R. H. Reichle, P. R. Houser, V. R. N. Pauwels,

and N. E. C. Verhoest, 2007: Correcting for forecast bias in soil

moisture assimilation with the ensemble Kalman filter. Water

Resour. Res., 43, W09410, doi:10.1029/2006WR005449.

Entekhabi, D., and Coauthors, 2010a: The Soil Moisture Active

and Passive (SMAP) Mission. Proc. IEEE, 98, 704–716,

doi:10.1109/JPROC.2010.2043918.

——, R. H. Reichle, R. D. Koster, and W. T. Crow, 2010b: Per-

formance metrics for soil moisture retrievals and application

requirements. J. Hydrometeor., 11, 832–840.

Fulton, R. A., 1998: WSR-88D Polar-to-HRAP mapping. National

Weather Service, Hydrologic Research Laboratory Tech.

Memo., 34 pp. [Available online at http://www.nws.noaa.

gov/oh/hrl/papers/wsr88d/hrapmap.pdf.]

Hossain, F., and E. N. Anagnostou, 2005: Numerical investigation

of the impact of uncertainties in satellite rainfall estimation

and land surface model parameters on simulation of soil mois-

ture. Adv. Water Resour., 28, 1336–1350.

——, and ——, 2006a: Assessment of a multi-dimensional satellite

rainfall error model for ensemble generation of satellite rainfall

data. Geosci. Remote Sens. Lett., 3, 419–423.

——, and ——, 2006b: A two-dimensional satellite rainfall error

model. IEEE Trans. Geosci. Remote Sens., 44, 1511–1522.

——, ——, T. Dinku, and M. Borga, 2004: Hydrological model

sensitivity to parameter and radar rainfall estimation uncer-

tainty. Hydrol. Processes, 18, 3277–3291.

Jackson, T. J., 1993: Measuring surface soil moisture using passive

microwave remote sensing. Hydrol. Processes, 7, 139–152.

Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004:

CMORPH: A method that produces global precipitation esti-

mates from passive microwave and infrared data at high spatial

and temporal resolution. J. Hydrometeor., 5, 487–503.

Koster, R. D., J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar,

2000: A catchment-based approach to modeling land surface

processes in a general circulation model: 1. Model structure.

J. Geophys. Res., 105, 24 809–24 822.

Krajewski, W. F., and Coauthors, 2006: A remote sensing observa-

tory for hydrologic sciences: A genesis for scaling to conti-

nental hydrology. Water Resour. Res., 42, W07301, doi:10.1029/

2005WR004435.

Martina, M. L. V., E. Todini, and A. Libralon, 2005: A Bayesian

decision approach to rainfall thresholds based flood warning.

Hydrol. Earth Syst. Sci. Discuss., 2, 2663–2706.

JUNE 2011 M A G G I O N I E T A L . 427



Nijssen, B., and Coauthors, 2003: Simulation of high latitude hy-

drological processes in the Torne–Kalix basin: PILPS Phase

2(e) 2: Comparison of model results with observations. Global

Planet. Change, 38, 31–53.

Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chan, and

S. V. Nghiem, 2003: Soil moisture retrieval from AMSR-E.

IEEE Trans. Geosci. Remote Sens., 41, 215–229.

Reichle, R. H., D. McLaughlin, and D. Entekhabi, 2002a: Hydro-

logical data assimilation with the ensemble Kalman filter.

Mon. Wea. Rev., 130, 103–114.

——, J. P. Walker, R. D. Koster, and P. R. Houser, 2002b: Ex-

tended versus ensemble Kalman filtering for land data as-

similation. J. Hydrometeor., 3, 728–740.

——, R. D. Koster, J. Dong, and A. A. Berg, 2004: Global soil

moisture from satellite observations, land surface models, and

ground data: Implications for data assimilation. J. Hydrometeor.,

5, 430–442.

——, ——, P. Liu, S. P. P. Mahanama, E. G. Njoku, and M. Owe,

2007: Comparison and assimilation of global soil moisture

retrievals from the Advanced Microwave Scanning Radiometer

for the Earth Observing System (AMSRE) and the Scanning

Multichannel Microwave Radiometer (SMMR). J. Geophys.

Res., 112, D09108, doi:10.1029/2006JD008033.

——, W. T. Crow, and C. L. Keppenne, 2008: An adaptive en-

semble Kalman filter for soil moisture data assimilation. Water

Resour. Res., 44, W03423, doi:10.1029/2007WR006357.

——, M. G. Bosilovich, W. T. Crow, R. D. Koster, S. V. Kumar,

S. P. P. Mahanama, and B. F. Zaitchik, 2009: Recent advances

in land data assimilation at the NASA Global Modeling and

Assimilation Office. Data Assimilation for Atmospheric, Oce-

anic and Hydrologic Applications, S. K. Park and L. Xu, Eds.,

Springer Verlag, 407–428.

Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data As-

similation System—Documentation of Versions 5.0.1, 5.1.0,

and 5.2.0. Technical Report Series on Global Modeling and

Data Assimilation, NASA/TM–2008–104606, Vol. 27, NASA,

118 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/

docs/GEOS5_104606-Vol27.pdf.]

Rodell, M., and Coauthors, 2004: The Global Land Data Assimi-

lation System. Bull. Amer. Meteor. Soc., 85, 381–394.

428 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 12


