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ABSTRACT

Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth’s atmosphere is

critical in assessing the planet’s radiation budget and for advancing human understanding of climate change

issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated

boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by

integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging

scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm.

It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration

of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a

space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed de-

scriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within

individual lidar profiles and the fully automated multiresolution averaging engine within which this profile

scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to op-

timize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate

spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are

illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by

comparisons to existing layer height distributions obtained by other airborne and space-based lidars.

1. Introduction

On 28 April 2006, eight years of close collaboration

between the National Aeronautics and Space Admin-

istration (NASA) and the Centre National d’Etudes

Spatiales (CNES) came to fruition with the launch of the

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) mission from Vandenberg Air

Force Base in California (Winker et al. 2007). Launched

simultaneously with the Cloudsat satellite aboard a single

Delta-II rocket, CALIPSO is now an integral part of

NASA’s A-Train of Earth-observing remote sensing sat-

ellites (Stephens et al. 2002). The primary payload aboard

CALIPSO is the Cloud-Aerosol Lidar with Orthogonal

Polarization (CALIOP). CALIOP is an elastic back-

scatter lidar that transmits linearly polarized laser light

at 532 and 1064 nm and measures range-resolved back-

scatter intensities at both wavelengths using a three-

channel receiver. For the 532-nm signal, a polarizing beam

splitter separates the backscattered light into components

polarized parallel and perpendicular to the polarization

plane of the laser output. These are then measured
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independently using a pair of photomultipliers. The total

backscatter at 1064 nm (i.e., both parallel and perpen-

dicular polarizations) is measured using a single avalanche

photodiode. An in-depth description of the CALIOP in-

strument can be found in Hunt et al. (2009). Winker et al.

(2009) provide a summary of the CALIPSO mission goals

and a top-level overview of the end-to-end CALIOP

data analysis architecture.

The fundamental measurements made by CALIOP

are calibrated range-resolved profiles of backscatter

intensity (Powell et al. 2009). Embedded within these

profiles are the signals from a variety of geophysical

entities, including clouds, aerosol layers, regions of clear

air, and the returns from the earth’s surface. As shown

in the left panel of Fig. 1, all of these can be present

within a single profile. Examination of the right panel of

Fig. 1 shows that, even over a short time, CALIOP can

encounter a large number of dissimilar scenarios. In the

span of ;20 min, CALIOP observes instances of mul-

tiple cloud layers (e.g., at ;438N and ;68N); faint, pos-

sibly subvisible, cirrus (;208S, at ;15 km MSL); lofted

aerosol layers (;328N, ;4 km vertically); aerosol layers

beneath overlying cirrus (at the equator and at ;168S);

cumulus embedded in boundary layer aerosols (;268N);

and aerosol extending above broken cloud decks (;108S).

The fundamental data products derived from the

CALIOP profile measurements are the spatial locations

of these many different types of geophysical entities.

The function of the CALIOP layer detection algorithm

is thus to untangle scenes such as that shown in Fig. 1,

to identify those portions of the profiles backscattered

from clouds, aerosols, and/or the earth’s surface, and to

clearly separate those backscattered portions from the

ambient ‘‘clear air’’ scattering (i.e., from regions of purely

molecular atmosphere). To refer in general to any of the

several types of CALIOP detection targets, we adopt

the term ‘‘feature.’’ Features are composed of a generic

substance called particulates and are defined as any ex-

tended, vertically contiguous region of enhanced back-

scatter that rises significantly above the signal magnitude

expected from a purely molecular atmosphere. A suc-

cessful detection scheme must be able to identify naturally

occurring features characterized by backscatter intensities

that vary over many orders of magnitude. To accom-

plish this goal, we have constructed a selective, iterated

boundary location (SIBYL) algorithm, in which a nested

multiresolution spatial averaging scheme is driven by

a robust profile scanning engine that incorporates an

adaptive context-sensitive threshold algorithm. After av-

eraging the profile data to an initial horizontal resolu-

tion, SIBYL invokes the profile scanner to search for the

presence of features. Where features are detected, the

backscatter data between feature top and feature base

are removed from the profile, and the data below the

feature base are corrected for the estimated signal atten-

uation that occurs as the lidar beam propagates through

the layer. These feature-cleared profiles are then averaged

to a new, coarser spatial resolution, thereby increasing

FIG. 1. (left) CALIOP 5-km horizontal average profile (15 laser pulses) of 532-nm attenuated backscatter coefficients measured over the

Yellow Sea (36.18N, 126.68E) on 13 Aug 2006 at ;1741:18 UTC. Clouds, aerosols, and the ocean surface return all appear as signal

enhancements rising above the ambient molecular backscatter intensity. (right) Time history of CALIOP backscatter measurements

acquired on 13 Aug 2006 from ;1738:49 to ;1758:15 UTC, illustrating the wide range of feature locations and backscatter intensities that

can be encountered during a single orbit segment. The red arrow at the top of the image denotes the location of the profile data shown in

the left panel.
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the signal-to-noise ratio (SNR) of the remaining data so

that subsequent profile scans can identify progressively

fainter features.

The complexity of the SIBYL scheme arises as a di-

rect consequence of the harsh retrieval environment in

which the algorithm must function. Because of the mass

and power restrictions imposed on space-based plat-

forms and the very large distance between the satellite

and the measurement targets (;705 km), the SNR of the

CALIPSO measurements is substantially lower than is

typical for ground-based and/or airborne lidars. Some

degree of spatial averaging is thus required to detect all

but the strongest cloud and surface signals. Figure 2 il-

lustrates the necessity of averaging. The left panel shows

a full-resolution CALIOP profile taken from the data

shown in Fig. 1 at 19.28S, 113.98E. Although a strong

echo from the earth’s surface is plainly visible at 0 km,

the remainder of the data appears to be feature-free

noise. When these same data are averaged to a 20-km

horizontal resolution, as shown in the right panel of Fig. 2,

an aerosol layer clearly emerges at ;2.2 km and the

molecular signal profile begins to take its expected shape.

However, SIBYL’s capacity to improve profile SNR via

averaging is limited. Taken together, the relatively low

pulse rate of the laser (20.16 Hz), the high speed at which

the satellite traverses the ground track (;7 km s21), and

the constantly changing atmospheric content impose

stringent limitations on the amount of horizontal aver-

aging that can reasonably be done. These restrictions on

spatial averaging are further constrained by the essential

science objectives of the CALIPSO mission, which re-

quire accurate separation of clouds and aerosols at the

highest possible spatial resolution (Winker et al. 2009).

The retrieval difficulties cited thus far are exacerbated

by the solar background signals present during daytime

observations. Unlike passive sensors that rely heavily, or

even entirely, on reflected sunlight for their measure-

ments, CALIOP is an active sensor that is equipped with

its own light source and thus can acquire profile data

continuously during both the daytime and nighttime

portions of every orbit. Although the magnitude of the

additional background signal introduced during daytime

operations is relatively easy to measure and remove, the

concomitant noise remains and exerts a pronounced and

deleterious effect on the backscatter SNR.

Although the task of detecting layer boundaries within

the CALIOP data is handled exclusively by the SIBYL

algorithm, the equally important task of classifying layers

as clouds or aerosols is, with one exception, accomplished

externally by separate data processing modules. The

algorithms used to discriminate between clouds and

aerosols are described in Liu et al. (2009). The analyses

subsequently applied to identify different aerosol types

are outlined by Omar et al. (2009). Similarly, Hu et al.

(2009) describe the methods used to determine cloud

ice-water phase. SIBYL’s sole contribution to the layer

classification task is the high-resolution boundary layer

cloud-clearing process described in section 3b.

2. The CALIOP profile scanning engine

The profile scanning technique implemented in SIBYL

relies on several basic assumptions. First, because CALIOP

is an accurately controlled, near-nadir-viewing instrument,

all nominal backscatter profiles will contain at least one

feature (i.e., either a totally attenuating cloud or aerosol

layer or the earth’s surface). We further assume that the

global structure of the molecular components of the at-

mosphere (i.e., clear air) is well understood and can

be reliably modeled, and that reasonably accurate digital

elevation maps of the surface of the planet are readily

available. Rayleigh scattering theory is well developed

and easily applied to scattering from molecules at the

CALIOP wavelengths so that, based on our knowledge

of the molecular density profile and surface elevation

at any point along the CALIPSO orbit track, we can

compute an accurate model that describes the expected

backscatter return from the purely molecular compo-

nents of the column being observed. Yet despite being

well calibrated (Powell et al. 2009), the backscatter pro-

files measured by CALIOP can and will deviate from

these theoretical expectations. The two most prominent

perturbations are the presence of clouds and aerosols

in the atmosphere and the existence of random noise

and occasional systematic uncertainties in the lidar mea-

surements. The sole function of the CALIOP profile

scanner is to positively identify all instances of the for-

mer while summarily rejecting all instances of the latter.

FIG. 2. (left) An example of the native SNR of the CALIOP data

shown by a single, full-resolution 532-nm attenuated backscatter

profile acquired 13 Aug 2006 at 19.28S, 113.98E; (right) the same

data incorporated into a 20-km (60 profile) horizontal average. The

aerosol layer at ;2.2 km is present in both profiles, but its presence

only becomes apparent in the averaged data.
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In section 3a, we briefly review the fundamentals of

threshold detection schemes for noisy signals. The

signal regime (attenuated scattering ratios) in which the

scanning algorithm is applied is described in section 3b.

The remaining subsections explain the rationale and the

procedures for building a range-dependent threshold ar-

ray and the justification and mechanics for the context-

sensitive adjustments to the initial array that are required

to compensate for signal attenuation.

a. Threshold detection fundamentals

In the atmosphere, the backscatter intensity measured

at any range can come either from molecules alone or

from the combination of molecules and particulates. For

well-calibrated and noise-free measurements, differen-

tiating between a signal from molecules only, Vm, and one

from molecules plus some particulate contribution, Vm1p,

is relatively straightforward, because the expected mo-

lecular contribution can generally be well characterized.

The two classes of signals can easily be separated by

establishing a threshold value VT 5 Vm 1 DVm such that

only those signals exceeding VT are identified as fea-

tures. When noise is not a consideration, DVm does no

more than place an upper bound on the expected fidelity

of the molecular model used to estimate Vm. In practice,

however, the lidar signal is always contaminated with

some amount of noise. Uncertainties are introduced

from a variety of sources, including the stochastic pro-

cesses governing photoelectron multiplication in the

detectors, natural variations in the solar background

signals, and the Poisson-distributed photon arrival rates

of the backscattered laser light (Liu et al. 2006). As a

result, the measured magnitudes of both Vm and Vm1p

are not fixed values but are instead characterized by

probability distributions. Estimating VT now becomes

somewhat more complex in that, for any range bin, sep-

aration of Vm1p from Vm requires some knowledge of

the first two moments of the Vm distribution. Further-

more, successful detection of the complete vertical ex-

tent of the initial feature and of any secondary features

that may also be present requires updated assessments

of the signal attenuation resulting from overlying layers.

Figure 3 illustrates the detection problem. In the pres-

ence of noise, a threshold detection scheme is susceptible

to two kinds of errors: the measured backscatter inten-

sity of legitimate features may fall below the detection

threshold, which results in missed features (false nega-

tives), or the noise excursions from a molecular signal

may exceed the threshold, which results in the identifi-

cation of phantom features (false positives). Given a

sufficiently stable atmospheric scene, the probability of

successful detection can be increased considerably by

applying additional signal averaging. In such cases, av-

eraging will reduce the standard deviations about Vm

and Vm1p, which in turn will decrease the overlap region

between the two distributions and diminish the fraction

FIG. 3. Schematic comparing (left) the expected signal distribution due to molecules only to (right) the

distribution expected from a combination of molecules and particulates. A detection threshold VT par-

titions the feature histograms into three distinct regions: the fraction of successful detections is repre-

sented by the green area, the probability for false positive detections is represented by the red area, and

the probability for false negatives (missed features) is shown in brown.
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of false positives and false negatives reported. However,

as discussed earlier, the combination of the CALIPSO

science requirements and CALIOP design constraints

frequently compromises our ability to confidently av-

erage sufficient amounts of data while simultaneously

avoiding the spatial smearing of separate, dissimilar

features. The threshold selection problem therefore re-

mains the same, irrespective of the underlying distribu-

tions and the amount of averaging applied. In all cases,

an optimal value of VT must be chosen to maximize the

likelihood of successfully detecting a feature while si-

multaneously minimizing the occurrence of spurious

identifications due to noise.

The existing literature on mathematical detection

theory is well developed (e.g., Kay 1998). As several

specific derivations of the theoretical expectations for

detection limits and detection efficiencies for space-

based lidar measurements are given elsewhere (Liu et al.

2002; Vaughan et al. 2005), further discussion of these

topics is postponed and will appear in future publica-

tions. The focus of this work is on the practical consid-

erations required to establish the threshold values used

in the CALIOP retrieval processes.

b. Attenuated scattering ratios

The CALIOP level 1 data products report range-

dependent profiles of attenuated backscatter coefficients

bl9(r), defined as

b9
l
(r) 5 [b

l,m
(r) 1 b

l,p
(r)] T2

l,m(r) T2
l,O3

(r) T2
l,p(r), (1)

where b9l,m(r) and b9l,p(r) are, respectively, the volume

backscatter coefficients for molecules (m) and particu-

lates (p) at wavelength l (either 532 or 1064 nm); and

T2
l,m(r), T2

l,O3
(r), and T2

l,p(r) represent signal attenuation

terms (two-way transmittances) due to, respectively, mol-

ecules, ozone (O3), and particulates (Powell et al. 2009).

SIBYL searches are conducted using the 532-nm total

attenuated backscatter signal, as small aerosol particles

are more efficient scatterers at 532 nm than at 1064 nm.

For a space-based, near-nadir pointing lidar operating

at the CALIOP wavelengths, b9l(r) measured in clear

air is an increasing function of range (i.e., a decreasing

function of altitude above the surface). To transform

this range-dependent function into one that is constant

with range, we use molecular and ozone number density

profiles supplied by the NASA Global Modeling and

Assimilation Office (GMAO; Bloom et al. 2005) to con-

vert the 532-nm attenuated backscatter coefficients into

attenuated scattering ratios, R9(r), such that

R9(r) 5
b9

532
(r)

b9
GMAO

(r)
5 1 1

b
532,p

(r)

b
532,m

(r)

" #
T2

532,p(r), (2)

where

b9
GMAO

(r) 5 b
532,m

(r) T2
532,m(r) T2

532,O3
(r) (3)

represents the molecular attenuated backscatter coeffi-

cients derived from the GMAO model data. In com-

pletely clear air, b9532,p(r) 5 0 and T2
532,p(r) 5 1, so that,

absent any excursions due to noise, R9(r) 5 1 for the

entire atmospheric portion of the profile.

c. Establishing an initial threshold level

Conceptually, the CALIOP profile scanner is very

similar to the algorithms used to detect clouds in up-

looking ground-based radar data (Uttal et al. 1993) and

lidar data (Winker and Vaughan 1994). Once a thresh-

old level has been established, the profile data are ex-

amined sequentially, beginning immediately below the

532-nm calibration region (;30 km) and moving down-

ward toward the surface. Feature boundaries are deter-

mined by locating the first (top) and last (base) points of

those regions where the profile data exceeds the thresh-

old value for all points within some predetermined alti-

tude range (i.e., over some minimum feature thickness).

Because the backscatter signal is attenuated by passing

through the feature, this first estimate of feature base must

be further refined by searching downward to identify that

point at which R9(r) is no longer a decreasing function of

range. Where the CALIOP scheme deviates from previous

methods is in defining an initial threshold, which, rather

than being a constant, is instead a range-dependent array

that accounts for expected variations in profile magnitude

and SNR due to both continuous changes in molecular

density as a function of altitude and step changes in the

CALIPSO onboard averaging scheme (Hunt et al. 2009).

The initial magnitude of the threshold array is taken to

be identical to a molecular attenuated backscatter model

derived from GMAO-provided profiles of molecular and

ozone number densities indexed to the latitude and

longitude of the profile footprint. To estimate the mea-

surement uncertainties necessary to construct the final

threshold array, two categories of noise are considered.

The first category consists of those contributions that,

for a single-shot profile, remain constant with respect to

range from the lidar. Included in this portion of the noise

budget are the detector dark current and the noise re-

sulting from solar background light. This quantity is

measured on board the satellite for each laser pulse by

computing the standard deviation of the background-

subtracted backscatter profiles in a region of the profile

where molecular scattering is essentially negligible (;80 to

;65 km). Paradoxically, however, because the CALIOP

profile data are averaged both vertically and horizontally

on board the satellite prior to being downlinked (see
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Table 1), these range-invariant background noise mea-

surements must by transformed into a range-dependent

array before they can be properly incorporated into the

threshold. For feature detection using averaged profiles,

a single composite value PBKG is computed as the root

sum square of the background noise measurements made

on board the satellite for each of the single-shot profiles

used to construct the average. Then, PBKG is converted

to units of attenuated backscatter coefficients, and an

array of b9BKG(r) values is generated by scaling the con-

verted PBKG value according to the spatial averaging

strategies employed in various altitude regimes. Doing

so produces step discontinuities in the final threshold

array that mirror the step changes in SNR seen in the

CALIOP attenuated backscatter profiles.

The second noise category incorporated into the

CALIOP threshold scheme encompasses all sources for

which the magnitudes of the contributions are range de-

pendent within a single-shot measurement. For the pur-

poses of constructing the threshold, this range-dependent

component is modeled as Poisson-distributed detector

noise, proportional to the square root of the magnitude of

the expected backscatter intensity. No attempt is made to

incorporate an excess noise factor or to model the more

complex Neyman type-A distribution (Teich 1981) that is

appropriate for the photomultipliers used for the 532-nm

channels.

In the attenuated backscatter coefficient regime, the

range-dependent threshold is defined as

b9
T

(r) 5 b9
GMAO

(r) 1 C
0

b9
BKG

(r)

1 C
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b9

GMAO
(r

0
) b9

GMAO
(r)

q
, (4)

where, as above, b9BKG(r) represents contributions from

range-invariant noise that have been scaled to account

for CALIOP variable onboard signal averaging. The

range-dependent noise sources are quantified by theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b9

GMAO
(r

0
) b9

GMAO
(r)

p
term, which expresses the relative

change in the standard deviation of the molecular signal

that can be expected with respect to the top of the profile

(at r0) and any other point (r $ r0). A complete derivation

of this range-dependent noise term is given in Vaughan

et al. (2005). For averaged profiles, the molecular model

(b9GMAO) used to compute the range-dependent compo-

nents is constructed by simple averaging of the molecular

models associated with each laser pulse used to create the

averaged profile. Here, C0 and C1 are independent, em-

pirically determined scaling constants used to balance the

contributions of the various noise components. Higher

values are appropriate for more conservative search

strategies that minimize the occurrence of false positives

but simultaneously risk increasing the number of false

negatives. In general, both C0 and C1 are set to the same

value, which is usually between 1.5 and 2.0, depending

on the detection sensitivity desired and the amount of

horizontal profile averaging done. (The exact values used

are reported in the metadata included with all CALIOP

data products.) For use within the SIBYL profile scan-

ner, b9T(r) is transformed into the attenuated scattering

ratio regime by dividing by b9GMAO(r), so that

R9
T

(r) 5
b9

T
(r)

b9
GMAO

(r)

5 1 1 C
0

b9
BKG

(r)

b9
GMAO

(r)
1 C

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b9

GMAO
(r

0
)

b9
GMAO

(r)

s
. (5)

Figure 4 shows R9T (r) applied to an averaged CALIOP

attenuated scattering ratio profile drawn from the scene

shown in Fig. 1. The step discontinuities introduced into

b9T (r) by the variable onboard averaging scheme are

clearly seen at altitudes of 20.2, 8.3, and 20.5 km.

d. Context-sensitive threshold adjustments

Within any profile, the uppermost feature top is

identified at that altitude where the profile data first

exceeds the threshold values over some minimum fea-

ture thickness. Base determination is less straightfor-

ward, and the correct identification will depend on the

(as yet undetermined) effects of feature attenuation. In

any clear-air region above the first feature detected, the

expected value of R9(r) is always 1. However, as is evi-

dent by inspection of Eq. (2), in the clear air immedi-

ately beneath the first feature, where bP(r) once again

equals 0, the expected value of R9(r) is a new, lower

constant equal to the two-way transmittance of the fea-

ture just detected. The data below cloud base in Fig. 4

illustrate this change. Base identification is thus a two-step

TABLE 1. CALIOP data averaging scheme applied to all back-

scatter profile measurements prior to downlink. Onboard data ac-

quisition resolution is 20.16 Hz horizontally (;0.33 km) and 10 MHz

vertically (;15 m; Hunt et al. 2009). The standard deviation of

the background signal is measured and downlinked single-shot

(;1/3 km) resolution. The rightmost column provides the scale

factors required to compute b9BKG as a function of onboard aver-

aging region [i.e., as in Eq. (4)] for application to a single-shot

532-nm total attenuated backscatter profile obtained from the

CALIOP level 1 data products.

Altitude region
Horizontal

resolution

(km/shots)

Vertical

resolution

(meters/bins)

Threshold

correction

(background)Top Base

40.0 30.1 5.00/15 300/20 1

30.1 20.2 0.67/5 180/12
ffiffiffi
5
p

20.2 8.2 1.00/3 60/4 5

8.2 20.5 0.33/1 30/2 5
ffiffiffi
6
p

20.5 22.0 0.33/1 300/20
ffiffiffiffiffi
15
p
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process. While R9(r) remains above R9T(r), the scanner

increments the estimate of base altitude. When R9(r)

first drops below R9T(r), the scanner will continue to

increment the base altitude estimate as long as R9(r) is a

decreasing function of range. Once the base altitude has

been ascertained, the feature two-way transmittance

T2
feature is estimated by computing the mean attenuated

scattering ratio over some fixed distance extending

downward from the feature’s lower boundary. Assum-

ing 0 , T2
feature , 1, which cannot be guaranteed for

optically thin layers in noisy profiles, to maintain the

detection efficiency of the threshold in the search for

additional features, all threshold values below feature

base are multiplied by T2
feature so that below the base

R9updated(r) 5 T2
feature R9initial(r). An example of this con-

text-sensitive threshold rescaling scheme is shown in

Fig. 4, where the solid gray line represents the initial

threshold computed according to Eq. (5), and the dashed

blue line represents the updated threshold computed

following the detection of the cirrus cloud between 15.6

and 12.4 km. We note too that although the text above

references only the uppermost feature in a profile, the

rescaling procedure described is applied in an identical

fashion for every feature detected within a profile, so that,

for example, below the base of the third feature found in a

profile, R9
updated

(r) 5 T2
feature3 T2

feature2 T2
feature1 R9

initial
(r).

3. A nested multigrid averaging scheme

In the spatial analysis of the CALIOP backscatter

data, we seek to detect features at the highest possible

spatial resolution while simultaneously ensuring that the

SNR within each feature is sufficient to meet the re-

quirements of the extinction retrieval algorithm (Young

and Vaughan 2009). Strong features, such as stratocu-

mulus clouds, can be easily identified at the highest

possible horizontal resolution (single shot), as, even in

the presence of strong solar background noise, their

backscatter intensities contrast sharply with the much

weaker scattering from the ambient molecular atmo-

sphere. At the other end of the intensity spectrum, very

faint features, such as disperse aerosols and subvisible

cirrus, cannot be reliably identified at high spatial reso-

lutions, simply because the magnitude of the scattering

from these features is often indistinguishable from the

local molecular background and its associated noise. To

locate the boundaries of these weaker features requires

enhancing the contrast between the scattering from the

feature itself and the scattering from contiguous regions

of clear air; that is, we seek to reduce the degree of

overlap between the histograms shown in Fig. 3. Tradi-

tionally, this enhancement is accomplished by averaging

profile data both horizontally and vertically prior to

searching for weaker features (e.g., as shown in Fig. 2).

However, any such averaging scheme must be applied

judiciously; otherwise, optically and/or meteorologi-

cally dissimilar features could be irretrievably com-

mingled. Even within a single horizontally extensive

feature (e.g., the cirrus deck centered at ;148S in Fig. 1),

capturing the natural spatial variability within the layer

requires that averaging be limited to the minimum

amount necessary. To detect spatial boundaries over the

full range of feature backscatter intensities measured by

CALIOP, SIBYL relies primarily on an iterated multi-

resolution averaging scheme. The function of the profile

scanner described in section 3 is to identify feature

boundaries within individual profiles. The function of

the averaging engine described in this section is to en-

hance the contrast between features and clear air and

then to repeatedly feed the newly constructed profiles

back into the profile scanner.

Figure 5 shows a schematic of the SIBYL averaging

engine. The engine consists of two loops or cycles. The

FIG. 4. Attenuating cirrus over aerosol in a 5-km averaged profile

of attenuated scattering ratios measured on 13 Aug 2006 at 13.28N,

115.28E. The solid gray line shows the initial threshold array

computed using Eq. (5). The dashed blue line shows the modified

threshold recomputed after detecting the base of the cirrus cloud

located at ;12.4 km. In the clear-air regions both above and below

the cirrus, the value of the attenuated scattering ratios is seen to

remain constant (albeit noisy). At the 5-km averaging level, the

aerosol layer between ;2 km and the surface appears to be little

more than a region of enhanced noise.
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lower, multiresolution layer detection (MRLD) loop

scans a sequence of profiles constructed using succes-

sively greater horizontal averaging, corresponding to

successively coarser spatial resolutions. Features de-

tected at higher spatial resolutions (less averaging) are

removed from consideration in successive scans. Do-

ing so allows subsequent additional averaging to in-

crease the visibility (i.e., contrast) of weaker features

while simultaneously reducing the risk of spatial smear-

ing. The process is initiated by averaging the profile data

to a 5-km horizontal resolution. As currently configured,

the lower loop scans data averaged to three different

horizontal resolutions: 5, 20, and 80 km. This progression

of resolutions, which increases the backscatter SNR by a

factor of 2 at each step, was chosen after consultations

with members of the cloud modeling and passive sensor

measurements communities. The initial 5-km resolution

is determined by the maximum horizontal averaging

distance used by the CALIOP onboard data averaging

scheme. The upper high-resolution cloud-clearing loop

(HRCCL) in the averaging engine decomposes the 5-km

profiles into their constituent high-resolution profiles

and rescans only those regions where a feature was ini-

tially detected at 5 km. The following subsections provide

details on the operation of both cycles of the averaging

engine.

a. Multiresolution layer detection

Because SIBYL is configured for a maximum averag-

ing distance of 80 km, level 1 data are analyzed over 80-km

intervals that contain an uninterrupted sequence of 240

profiles. The intermediate steps of the MRLD process

(i.e., the lower loop in Fig. 5) are illustrated in Fig. 6,

using the 20-km data segment that begins at 17.28S,

114.38E in Fig. 1. Figure 6a shows the attenuated scat-

tering ratios and initial threshold array for the first of

four consecutive profiles that have been averaged to a

5-km horizontal resolution. Contained within this profile

are three features: a transparent cirrus layer between

15.4 and 12.4 km, a strong surface return at 0 km, and an

aerosol layer between 2.1 km and the surface. As shown

in Fig. 6b, the cirrus and the surface spike both rise well

above the threshold and thus are detected and removed

in the initial scan of the profile. Despite the adaptive

threshold adjustments to account for the initial estimate

of cirrus two-way transmittance (see the step change at

12.4 km), the aerosol layer goes undetected because it

never exceeds the threshold for the required minimum

distance. Immediately following the 5-km scan, those

profile segments lying between any two features are as-

sessed by using a sliding window technique that identifies

the most likely regions of clear air therein (Vaughan et al.

FIG. 5. SIBYL flow diagram showing the relationship between the lower MRLD loop (see section 4a)

and the upper HRCCL (see section 4b). The current implementation uses three horizontal averaging

resolutions (i.e., N 5 3): 5, 20, and 80 km. Only the 5-km resolution (K 5 1) is processed in the upper loop.
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2005). The attenuation resulting from each feature de-

tected is estimated by using the mean attenuated scat-

tering ratios from these ‘‘most likely to be clear air’’

regions, and the R9(r) profile below feature base is re-

normalized to remove these attenuation effects. This step

is illustrated in Fig. 6c, where R9(r) between 12.4 and

2.1 km is now seen to be centered around a mean value

of 1, which indicates clear air. The goal of this remove-

and-renormalize procedure is to produce a profile rep-

resenting the backscatter that would have been measured

had the detected feature(s) not been present. However,

full realization of this ideal is prevented by the loss of

the photons backscattered and extinguished within each

feature, and this loss of signal degrades the SNR in the

data below. At this point, we also assume that the at-

tenuation of all data below the lowest feature detected

at the 5-km resolution is so severe that these data

cannot be reliably used in subsequent coarser spatial

averages. These data are therefore excluded when con-

structing subsequent coarser-resolution profiles.

After all of the sixteen 5-km averaged profiles within

the 80-km horizontal data segment have been processed

in a manner identical to the first, the resulting feature-

cleared, attenuation-corrected profiles are averaged to-

gether to form a sequence of four 20-km averages. The

first 20-km profile in this sequence is shown in Fig. 6d.

Also shown is the profile scanner’s updated threshold

array, which automatically accounts for the improved

SNR resulting from averaging. The aerosol layer be-

tween ;2.1 km and the surface now clearly exceeds the

threshold and thus is detected at the 20-km averaging

resolution. Following the invocation of the profile scan-

ner, the analysis of the 20-km profile proceeds exactly

as at 5 km: all detected layers are removed, their two-

way transmittances are estimated, and the profile data

below are renormalized to account for attenuation losses.

When all four 20-km profiles have been analyzed, the

resulting feature-cleared attenuation-corrected profiles

are averaged together to form a single 80-km averaged

profile. Applying the profile scanner to this 80-km av-

erage completes the processing cycle for the lower loop

of the averaging engine.

b. High-resolution cloud clearing

For the ensuing layer typing and extinction retrievals,

it is important that SIBYL identify homogeneous fea-

tures that consist solely of a single class of scattering

species (i.e., either cloud or aerosol). In the free tro-

posphere and stratosphere, this task is made relatively

easy by the larger horizontal spatial scales of the fea-

tures that typically occupy these regions. However, the

spatial distribution of targets in the planetary bound-

ary layer (PBL) in particular, and the surface-attached

aerosol layer in general, is significantly different. For

example, the horizontal extents of fair weather cumulus

can be on the order of 200 m or less (Lane et al. 2002),

whereas the aerosol layers in which these clouds are

embedded can span hundreds of kilometers (Anderson

et al. 2003). To separate these strongly scattering fine-

scale clouds from the more extensive, fainter aerosol

layers, SIBYL integrates an HRCCL into its two-cycle

averaging engine.

FIG. 6. The illustrated version of the SIBYL multiresolution layer detection process: (a) representative profile from Fig. 1 at 17.28S,

114.38E, which shows cirrus over moderate aerosol (green line) and the initial threshold array (blue line); (b) detection and removal of

cirrus, in which in-line adaptations to the threshold magnitude at 12.4 km are insufficient to detect the aerosol layer; (c) correcting for

cirrus attenuation enhances the aerosol backscatter intensity; and (d) average of four consecutive cloud-cleared attenuation-corrected

profiles, in which aerosol now easily exceeds the revised threshold. All profiles shown have been averaged to a nominal horizontal

resolution of 5 km (15 laser pulses). The vertical resolution of the profiles varies as a function of altitude, as described in Hunt et al. (2009).
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The operation of the HRCCL is similar in concept to

the multiresolution search routine used to detect lay-

ers in the backscatter data acquired by the Geoscience

Laser Altimetry System (GLAS; Palm et al. 2002)1. Rather

than beginning the search for features at an intermediate

spatial resolution, as does SIBYL, the GLAS algorithm

initiates its detection scheme using the coarsest spatial

resolution (0.25 Hz, which is equivalent to ;28 km

horizontally). Subsequent searches at finer resolutions

are conducted only in those regions where features were

first identified in the coarse-resolution scan. Similarly,

those CALIOP profiles for which a feature is identified

at the 5-km averaging level are decomposed into finer

horizontal averages of 1 km and, if possible, 1/3 km, and

additional searches are conducted in those altitude re-

gimes where features were first detected in the 5-km

data. The CALIOP onboard averaging scheme dictates

the resolutions at which these additional searches are

conducted. From ;8.3 to ;20.2 km, the backscatter data

are averaged to a 1-km horizontal resolution prior to

being downlinked, hence the final 1/3-km search cannot

be conducted above ;8.3 km.

The search for high-resolution features occurs on the

initial pass through the MRLD loop, after the profile

scanner has identified feature boundaries at 5 km but

prior to the feature-removal and attenuation-correction

steps. For all layers with top altitudes less than ;20.2 km,

a secondary search is conducted at a 1-km resolution.

The spatial and optical properties for features detected

at 1 km are recorded in the data products. However,

the feature-removal and attenuation-correction steps so

critical to the performance of the MRLD scheme are not

implemented for the 1-km search, as they are not re-

quired within the context of the HRCCL analyses.

If layers with tops below ;8.3 km are detected at

1 km, a final scan is conducted at the highest horizontal

resolution (1/3 km) of the downlinked data. Once again,

the spatial and optical properties for features detected at

the 1/3-km resolution are separately recorded in the

CALIOP data products. Unlike the searches at all other

SIBYL resolutions, the 1/3-km scan is no longer looking

for features of all types but is instead devoted solely to

the detection of clouds and surface returns. To guard

against the inclusion of aerosol layers in the 1/3-km re-

sults, an additional term is added to the search threshold.

In the attenuated scattering ratio regime, the augmented

expression for the threshold array becomes
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The max(b9aerosol) term represents the largest aerosol

backscatter coefficient that one could reasonably expect

to occur in nature. Here, C2, like C0 and C1, is an em-

pirically determined scale factor and thus far C2 has been

set uniformly to 1. Consistent with a global distribution of

aerosol backscatter coefficients derived by the authors

from measurements made during the Lidar In-space

Technology Experiment (LITE; Winker et al. 1996),

max(b9aerosol) is set to 0.0075 km21 sr21 for nighttime data

acquisition. The daytime value is adjusted upward to ac-

count for additional noise and possible diurnal increases

in aerosol backscatter intensities. In retrospect, these

values appear quite conservative, because CALIPSO

has measured aerosol backscatter intensities far in ex-

cess of anything encountered during LITE.2

If, within any 5-km data segment, the HRCCL detects

cloud tops below an altitude of 4 km at the 1/3-km reso-

lution, a special high-resolution cloud-clearing routine is

triggered. This fixed height of 4 km was chosen because

it lies above the PBL, the most heterogeneous region of

the atmosphere, for most CALIOP measurements and

thus it represents a nominal, not actual, demarcation of

the PBL. In those 1/3-km profiles for which clouds were

detected within the nominal PBL, all backscatter data

from the top of the highest cloud detected in the PBL

downward to the end of the profile are removed. A re-

vised 5-km averaged profile is then constructed using

these newly cloud-cleared 1/3-km profile segments. This

revised profile contains all data contained in the 5-km

original profile except for the data at and below the tops

of the clouds detected in the PBL. A second 5-km profile

scan is then conducted using this newly created cloud-

cleared profile, with the express purpose of attempting

to detect the presence of any aerosols that may be sur-

rounding the just removed clouds. Following this scan,

the HRCCL terminates and the MRLD process resumes.

Whenever this PBL cloud-clearing process is required,

the results obtained in the initial 5-km scan are discarded

and only those features (if any) detected during the

1 The multiresolution layer detection loop described in section 4a

is, on the other hand, radically different from the GLAS ap-

proach. Users who seek to compare results from the two datasets

are urged to be cognizant of the differences inherent in the two

schemes.

2 The difference in the maximum aerosol backscatter intensities

measured by the two systems is largely due to the limited dynamic

range of the LITE receiver electronics (12 bits versus ;22 bits for

CALIPSO).
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second 5-km scan are reported in the CALIOP 5-km

layer products. The cloud-cleared and re-averaged 5-km

backscatter profile is used in all subsequent steps of the

MRLD, and any layers detected during the second 5-km

scan are treated exactly as described in section 3a. Op-

erating together, the HRCCL and the MRLD enable the

separate detection of small-scale clouds lying within faint

aerosol layers that can only be detected after extensive

horizontal averaging (up to 80 km).

c. Eliminating false positives

Each stage of the MRLD implicitly focuses on a spe-

cific, though not precisely defined, class of targets; that

is, the 5-km scans are designed to identify the most ro-

bust features, whereas the 80-km scan seeks out the most

tenuous layers. Furthermore, given the SNR require-

ments imposed by the CALIOP extinction retrieval, we

specifically do not want to identify those weaker features

that may be detectable at the 5-km resolution, because

the poor SNR within these features will generate sub-

optimal retrievals of extinction and optical depth. SIBYL

therefore imposes a lower bound on the layer-integrated

attenuated backscatter, g9, on all features detected. Can-

didate features that do not exceed this minimum value

are rejected, and thus these backscatter data are not

removed in the feature clearing process. Weak, albeit

genuine, features rejected at higher resolutions will pre-

sumably be retrieved on subsequent lower-resolution

scans, where the g9 thresholds are necessarily less strin-

gent. An additional and equally important benefit of

the g9 threshold test is the reduction of the false positive

rate. In effect, weaker features are required to exhibit

some degree of horizontal persistence before they are

positively identified by SIBYL.

d. Systematic errors

Given an atmosphere where the backscatter coeffi-

cients remain essentially unchanged in the CALIPSO

along-track (i.e., horizontal) direction, the unwanted

signal contributions from random noise can be reduced

to arbitrarily small levels by increased signal averaging.

Systematic uncertainties, however, impart biases to the

signal that cannot be reduced by the SIBYL multigrid

averaging scheme. There are two primary sources of bias

errors in the feature detection process: input errors from

the level 1 calibration coefficients used to convert raw

backscatter profiles into attenuated backscatter coeffi-

cients, and self-inflicted errors resulting from erroneous

estimates of the feature two-way transmittances made in

the MRLD loop (the second of these is essentially a

localized version of the first). Small systematic errors

(e.g., ,5%) are generally benign at higher spatial resolu-

tions because the random components typically dominate

the profile noise budget. However, because successive

averages will not reduce their contributions, bias errors

will exert relatively more influence at coarser spatial

resolutions.

4. Performance examples

During the development phase, SIBYL was rigorously

and repeatedly tested using synthetic data generated by

high-fidelity simulation software that models all com-

ponents of the CALIOP transmitter and receiver and

generates both the signal and the noise characteristic of

analog detection of backscattered laser light (Powell

2005). Detailed results for many of these tests are given

in the CALIPSO algorithm theoretical basis document

(ATBD; Vaughan et al. 2005). When using synthetic

data where all layer boundaries are known exactly,

quantitative performance metrics can be developed to

describe the SIBYL detection efficiency with respect to

some underlying truth. When assessing the algorithm’s

performance on real-world measurements, however,

access to this ‘‘underlying truth’’ is no longer available;

the degree to which SIBYL succeeds (or fails) can only

be determined by internal consistency checks (i.e., did

the algorithm detect all the features that a trained ob-

server would identify in an image of the data?) and by

comparisons to other reliable measurements of the same

set(s) of spatial properties. Brief explorations of both

tactics are given in the following subsections.

a. Qualitative assessment of algorithm performance

Figure 7 shows all layer boundaries detected by

SIBYL for the backscatter data shown in Fig. 1. The

features are color coded according to the amount of hor-

izontal averaging required for their detection. Consistent

with the operation of the HRCCL, all 1/3-km features are

embedded in 1-km features, which in turn are embedded

in features detected at some coarser resolution. Simi-

larly, spatial inhomogeneities and/or attenuation effects

can result in layers detected at the 5-, 20-, and 80-km

resolutions lying in direct contact with one another.

Examples of such ‘‘vertically adjacent’’ layers occur

frequently in the lower altitudes between ;308 and

;208N, wherever an 80-km (black) feature lies imme-

diately above layers detected at some higher resolu-

tion. Layers can also be wholly embedded within other

layers that are detected at coarser resolutions. An ex-

ample is seen at ;18.18S, between 14 and 15 km, where

a 20-km feature lies embedded within a second feature

detected at 80 km.

Following the execution of SIBYL, a cloud-aerosol

discrimination (CAD) algorithm is applied to all fea-

tures detected. As explained in Liu et al. (2004, 2009),
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the CAD algorithm consists of a confidence function

applied to the spatial and optical properties measured

for each feature. The return value is a signed floating

point number between 21.0 and 1.0. The sign of the

result indicates feature type, whereas the magnitude

quantifies the confidence with which the classification is

made. In addition to the features rendered using the

standard color palette, a small number of features in

Fig. 7 are displayed in red. The red color indicates those

features that, irrespective of feature type and the aver-

aging required for detection, have very low confidence

values (,0.2) or were otherwise flagged by the CAD

algorithm as being suspicious. Though the CAD values

were not originally designed to provide an assessment of

overall feature viability, by happy coincidence we have

found that uncertainties in the layer classification pro-

cess (i.e., low CAD values) are strongly correlated with

false positives in the detection process.

As demonstrated in Fig. 7, the detection performance

of SIBYL is generally quite good. All major features of

the scene are captured, including tentacles of lofted

aerosol between 3 and 9 km centered at ;358N, broken

cumulus embedded in deep aerosol layers (28–158S),

aerosol beneath clouds (e.g., 68–188S), multilayer cloud

decks (e.g., 428 and 198N), and subvisible cirrus (38N).

The number of false negatives is acceptably small and

confined to weakly scattering layers with small spatial

scales (e.g., 218N at 16 km). The few false positives are

readily identified by the CAD score assigned to the feature.

As can be seen by comparing Figs. 7 and 1, the data

products that result from CALIOP’s iterated multi-

resolution layer detection scheme are best understood

as a sequence of coarse contour plots of backscatter

intensity reported at regular intervals of 80 km hori-

zontally. As would be expected from the ‘‘detect, re-

move, and reaverage’’ sequence of the MRLD, layers

detected at finer resolutions are seen to be embedded

within other layers detected at coarser resolutions. The

histograms of backscatter intensity shown in Fig. 8 fur-

ther illustrate this notion. These distributions were com-

piled using all data acquired during August 2006. To

reduce the statistical side effects imparted by estimating

(and sometimes misestimating) attenuation corrections

for overlying layers, only the uppermost feature in any

column was included in this analysis. The resulting 5-km

histogram is seen to be asymmetric and multimodal,

befitting the very broad distribution of scattering targets

that can be detected at that resolution. At 20 and 80 km,

the histograms appear roughly lognormal, albeit with

a pronounced tail in the upper range of values. The

enhancement in this region is thought to arise partly

from those instances when intermittent, finer-resolution

features differentially attenuate portions of lower lying,

coarser-resolution features (e.g., a single 5-km feature

FIG. 7. Vertical feature mask image showing the location of all layers detected in the 13 Aug 2006 data shown originally in Fig. 1. Layers

detected at 1/3, 1, 5, 20, and 80 km are shown in plum, light green, yellow, silver, and black, respectively. Low confidence layers (CAD

scores less than 20) are shown in red, irrespective of the amount of averaging required for detection.
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at 12 km overlying a 20-km feature at 9 km). This par-

tial obscuration leads to underestimates of backscatter

intensity in the detection phase of the analysis. These

underestimates are subsequently corrected (and, on oc-

casion, overcorrected) during the extinction retrieval

process (Young and Vaughan 2009).

b. Interinstrument comparisons

Comparing CALIPSO cloud-detection accuracies with

those reported by other instruments is an inherently dif-

ficult task. Spatial and temporal mismatches, vertical and

horizontal sampling rates, and differing SNRs, viewing

geometries, and retrieval schemes, all complicate the

picture. Ideally, CALIOP validation would be done

using aircraft instruments such as the NASA airborne

high spectral resolution lidar (HSRL; Hair et al. 2008)

and the Cloud Physics Lidar (CPL; McGill et al. 2002)

that flies on board the NASA high-altitude ER2 aircraft.

Numerous flights of both validation platforms have al-

ready been conducted, and the initial comparisons are

highly encouraging (e.g., McGill et al. 2007; Liu et al.

2008).

Figure 9 compares the layer boundaries retrieved by

CALIPSO and CPL for data acquired 12 August 2006 as

part of the CALIPSO-Cloudsat Validation Experiment

(CC-VEX; McCubbin et al. 2006). Figure 9 shows the

532-nm attenuated backscatter coefficients measured by

CALIPSO (top panel) and CPL (bottom panel) in the

region of the exact coincidence of the two instruments

(32.18N, 75.48W). The boundaries of the uppermost

layer detected by each instrument are shown using white

(tops) and maroon (bases) lines. At the time of coinci-

dence, the ER2 was 37 m from the CALIPSO subsat-

ellite point and thus, considering pointing uncertainties,

was likely making measurements within several hundred

meters or less of the CALIOP footprint. The temporal

matching of the datasets is less exact; although both li-

dars flew identical flight tracks for the data segment

shown, the ER2 required over 36 min to span the same

distance that CALIPSO covered in 66 s.

Examining the uppermost layer at and immediately to

the south of the coincidence point, the top and bottom

panels of Fig. 9 show that both CALIPSO and CPL layer

detection algorithms correctly identify the full depth of

the feature. However, although the top altitudes are in

excellent agreement, as seen in the middle panel, the base

altitudes reported by the two instruments differ consid-

erably. The largest disparities occur within the opaque

regions of the layer, where the backscatter signal is totally

extinguished, so that neither instrument can reliably detect

the true base. In such cases, only an apparent base can be

reported. The additional penetration (i.e., lower apparent

base heights) reported by CALIPSO is the result of mul-

tiple scattering. In those areas where the uppermost layer

is transparent and additional features are visible below,

both instruments can make estimates of the true base. For

FIG. 8. Distributions of integrated attenuated backscatter measured at 532 nm for features

detected at 5 (green), 20 (blue), and 80 km (red) during August 2006. Data were extracted from

the 5-km cloud layer products and the 5-km aerosol layer products distributed in CALIOP data

release 2.01. To reduce overestimates of g9532 at 20 and 80 km, the histograms were compiled by

using only the uppermost feature in each 5-km column.
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these transparent regions, the agreement between the

CALIPSO and CPL base altitudes is greatly improved.

c. Statistical validation

In addition to point-to-point comparisons of inde-

pendent measurements, we are also investigating ways

to validate the CALIOP retrievals via comparisons to

the spatial and/or temporal statistics amassed from other

space-based sensors. Several different approaches can

be taken. First we can compare distributions of cloud

heights derived solely from space-based lidars (i.e., from

CALIOP, GLAS, and LITE). The drawbacks to this

FIG. 9. (top) CALIPSO measurements from 12 Aug 2006 and (bottom) coincident CPL measurements. The top

altitude of the uppermost layer detected is indicated with a white line and the base altitude is shown in maroon.

(middle) The spatial extent of layers detected by CALIPSO is shown in white, while CPL feature altitudes are

overplotted using red (tops) and green (bases) lines. Exact coincidence was at ;0705:50 UTC (32.18N, 75.48W).
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approach are immediately obvious; for example, the

three systems were never in orbit simultaneously, their

orbit tracks and ranges of spatial coverage are not

identical, and they have widely differing SNR. Never-

theless, because all three instruments acquired large

volumes of data during similar periods of the calendar

year (although at a mere 50 h, LITE acquired substan-

tially less than the others) and because CALIOP and

GLAS both fully encompass the more limited latitudinal

range spanned by LITE, the data can be compiled and

compared as seasonal statistics. An examination of the

maximum cloud-top heights detected by each system

is revealing. Figure 10 shows the globally compiled

(608N–608S) probability density functions (PDFs) for

the highest cloud top detected in each profile for all

three space-based lidars. The similarities, especially be-

tween 2 and 14 km, are extremely strong. The differences

are likewise predictable and easily understood. Because

the LITE SNR is ;5 times higher than either GLAS

or CALIOP, LITE can be expected to detect a greater

frequency of high, faint cirrus. As seen in Fig. 10 between

16 and 18 km, this is indeed what happens (although

LITE’s targeted sampling strategy and much lower data

volume may also contribute somewhat to the disparity).

A second statistical approach to validating CALIOP

layer boundaries is to compare CALIOP retrievals to

the cloud and/or aerosol heights derived from other

space-based instruments. However, as is evident from

the distributions shown in Fig. 11, it is not at all clear that

CALIOP layer boundaries can be sensibly compared to

traditional passive sensor retrievals. Recent compari-

sons of CALIOP data to collocated cloud-top heights

derived from measurements made by the Moderate Res-

olution Imaging Spectroradiometer (MODIS; Platnick

et al. 2003) show that MODIS underestimates cloud-top

height by ;2.5 km (Holz et al. 2008). Comparisons to

cloud-top heights estimated by the International Satel-

lite Cloud Climatology Project (ISCCP; Rossow and

Shiffer 1999) show similar discrepancies (see Fig. 11).

Comparisons of this sort are confounded by the fact that

both active and passive sensors use the same terminol-

ogy to report fundamentally different quantities. Lidars

are sensitive to abrupt changes in particulate concen-

trations and are especially well suited to the detection of

small particles. Passive sensors, on the other hand, report

an infrared effective radiating height that, even for op-

tically dense clouds (t . 8), lies typically ;1.6 km below

the cloud tops detected by lidar (Minnis et al. 2008).

Differences in the active versus passive cloud-top com-

parisons also arise because of detection sensitivities.

For example, recent validation studies conclude that

MODIS is relatively insensitive to clouds with optical

depths less than 0.4 (Ackerman et al. 2008), whereas

CALIPSO is capable of detecting high, thin cirrus with

optical depths of 0.01 or less, even during daylight oper-

ations (McGill et al. 2007). Such detection sensitivity is-

sues are in no way confined solely to comparisons between

active and passive sensors. Even when simultaneously

FIG. 10. Globally compiled (608N–608S) distributions of upper-

most cloud-top height for CALIOP (green filled circles), GLAS

(blue open circles), and LITE (orange diamonds). The LITE mea-

surements were acquired over 50 h during September 1994. The

GLAS dataset was acquired between 25 Sep and 18 Nov 2003. The

CALIOP data are from 25 Sep through 18 Nov 2006. To ensure a

more representative comparison to the LITE data, the data used for

GLAS and CALIOP are restricted to latitudes between 608N and

608S. CALIOP and GLAS data were extracted from the publicly

distributed data products. The LITE distribution was compiled by

using a semiautomated, single-resolution forerunner to the fully

automated CALIOP detection scheme described in this paper.

FIG. 11. Globally compiled (608N–608S) distributions of upper-

most cloud-top height obtained from three different sources:

CALIOP (green filled circles), MODIS (orange diamonds), and

ISCCP (blue open circles). All data were acquired between 25 Sep

and 18 Nov 2006.
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viewing the same region of space, radars and lidars fre-

quently detect substantially different portions of the

cloud and/or aerosol layers therein (McGill et al. 2004;

Mace et al. 2008). In fact, the highly complementary na-

ture of the CALIPSO and Cloudsat profiling abilities is a

major contributor to the success of the A-Train obser-

vational strategy.

5. Conclusions and summary

In this work, we have presented an architectural over-

view and performance summary of the selective, iterated

boundary location (SIBYL) algorithm used to detect

cloud and aerosol layers in the CALIOP backscatter

signals. The SIBYL scheme embeds a generic profile

scanning engine within an iterated, multiresolution spa-

tial averaging scheme. Each iteration of the profile

scanning engine builds a range-varying detection thresh-

old that scales automatically according to the magnitudes

of the background noise and the expected molecular

backscatter signal in the profile being examined. During

execution of the scan, the threshold is further modified

to account for the estimated attenuation of each feature

encountered. By applying the multiresolution averaging

scheme, SIBYL reliably culls increasingly fainter fea-

tures from increasingly coarser spatial averages of the

same 80-km horizontal data segments.

SIBYL has been deliberately designed and con-

structed as a one-size-fits-all solution to the (pheno-

menally complex) problem of detecting features of

arbitrary backscatter intensity and arbitrary vertical and

horizontal extent, irrespective of layer type. The same

algorithm used to detect dense stratus clouds off the

coast of California during nighttime operations is also

used to detect subvisible cirrus in and around the in-

tertropical convergence zone during daylight operations

and Arctic haze and polar stratospheric clouds in all

lighting conditions. There is a price to be paid for this

kind of very general applicability: sometimes SIBYL

misses weaker layers that might otherwise be detected

by an algorithm more focused on identifying specific

feature types (e.g., Pitts et al. 2007). Furthermore, al-

though SIBYL is quite adept at detecting multiple

layers, the laser backscatter signal becomes totally at-

tenuated at particulate column optical depths of ;3, so

that there are occasions where CALIOP cannot mea-

sure the full extent of the vertical column. Despite these

few caveats, we find the implementation of SIBYL em-

ployed for the CALIOP measurements to be a robust,

highly effective layer detection scheme. Comparisons of

cloud and aerosol boundaries with near-simultaneous

measurements made by CPL show excellent agreement

for transparent layers. For totally attenuating features,

the SIBYL base altitudes are consistently lower than

those reported by CPL. This is expected, because the

larger contributions from multiple scattering allow the

CALIOP signal to penetrate deeper into optically thick

layers.

In addition to the evidence derived from one-to-one

comparisons with airborne validation measurements,

the fidelity of the SIBYL retrievals is also demonstrated

via statistical comparisons to datasets acquired by other

space-based lidars. The distribution of highest cloud-top

heights measured by CALIOP during the fall of 2006 is

essentially identical to the distribution measured by

GLAS during the fall of 2003. Both of these distributions

are in turn quite similar to the LITE distribution ac-

quired during September 1994, with differences result-

ing from LITE’s superior SNR appearing, as expected,

in the upper reaches of the troposphere. The results

obtained by SIBYL from the fall 2006 CALIOP mea-

surements are also compared to similar quantities de-

rived from MODIS and ISCCP. Here, we again we see

the expected, albeit stark, differences. Consistent with

differing retrieval targets and detection sensitivities and

with the results reported in recent studies, the SIBYL

cloud tops are notably higher than those reported by

passive sensors. Those readers seeking additional details

about the inner workings of SIBYL will find a complete

description of all facets of the algorithm and its pre-

launch implementation in Vaughan et al. (2005).
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