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ABSTRACT

Aims. We consider impulsively generated oscillations in a 2D model of a curved solar coronal arcade loop that consists of up to 5

strands of dense plasma.

Methods. First we do a simulation for a loop which consists of two curved strands. We evaluate by means of numerical simulations
the influence of the distance between the strands and their number on wave period, attenuation time, and amplitudes of standing kink

waves.

Results. The results of the numerical simulations reveal that only strands which are very close to each other (distance comparable to
the strand width) considerably change the collective behavior of kink oscillations. More distant strands also exhibit weak coupling of
the oscillations. However, their behavior can essentially be explained in terms of separate oscillating loops. We compare the numerical
results with recent TRACE observational findings, and find qualitative agreement.
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1. Introduction

Magnetic loops are the main building blocks of solar corona, that
are able to sustain various kinds of waves and oscillations. The
waves may play an important role in the heating of the loops,
as was first suggested by Ionson (1978), and also can be used
as a diagnostic tool of the loop parameters (e.g., Nakariakov &
Ofman 2001).

Wave modes relevant for coronal loops were studied analyt-
ically few decades ago by Edwin & Roberts (1982) and Roberts
et al. (1984) who in their seminal papers adopted slab and
cylindrical geometries of a straight magnetic structure. Recently
these geometries were generalized to curved magnetic field
topologies (e.g., Brady & Arber 2005; Del Zanna et al. 2005;
Murawski et al. 2005a,b; Brady et al. 2006; Didz et al. 2006;
Verwichte et al. 2006a—c; Selwa et al. 2005, 2006a,b). Among
different modes a particular interest was focused on fast mag-
netosonic standing kink waves (e.g., Nakariakov & Verwichte
2005), which were recently simulated numerically, among oth-
ers, by Brady & Arber (2005), Brady et al. (2006), and Selwa
et al. (2006a). As far as polarization is concerned there are
two known modes of standing kink waves: transverse oscilla-
tions which occur in a plane perpendicular to the loop plane
and vertical oscillations which are transverse oscillations in the
plane of the loop (Nakariakov & Verwichte 2005; Didz et al.
20006). First direct observations of kink waves in coronal loops
in Extreme Ultraviolet emission lines (EUV) by the TRACE
satellite (Handy et al. 1998) were reported by Aschwanden
et al. (1999), Nakariakov et al. (1999), Schrijver et al. (2002),
Aschwanden et al. (2002), and Verwichte et al. (2004). The first
observational evidence of vertical oscillations of solar coronal
loops was provided by Wang & Solanki (2004) who noted the
periodic, decaying expansion and contraction of an active-region
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loop that was recorded by TRACE. They reported an initial ve-
locity of the loop of ~130 kms™' and a displacement amplitude
of the loop summit of 7900 km. The loop expanded and shrank
with an oscillation period of ~3.9 min. These oscillations were
quickly damped with a decay time of 11.9 min. The loop length
was estimated as 300—400 Mm.

These observational findings were confirmed by the results
of recent numerical studies (Brady & Arber 2005; Murawski
et al. 2005a,b; Selwa et al. 2005; Brady et al. 2006; Diiz
et al. 2006; Verwichte et al. 2006a—c) in which the monolithic
loop model was adopted. However recently, Aschwanden (2005)
concluded from the TRACE data that the loop observed by
EIT/SOHO (Schmelz et al. 2003) is highly structured as it
consists of at least 10 strands of width less than 2 Mm each
(Aschwanden & Nightingale 2005).

Early work on waves in complex loop structures was done by
Murawski (1993) who by means of numerical simulations con-
sidered a simple structure of two-parallel slabs. He showed that
an energy leakage from these slabs, associated with the propaga-
tion of sausage and kink fast magnetosonic waves, is responsible
for a cross-talk, or coupling between the slabs.

Recently, Ofman (2005) investigated the oscillation of multi-
threaded loops by solving resistive 3D MHD equations to model
straight cylindrical multi-stranded loop. Ofman (2005) found
that the coupling between closely spaced strands affects the
damping rate of the oscillations, which becomes more strongly
dependent on the value of the Lundquist number, compared to
the monolithic loop. However, in the present study we neglect
the effect of resistivity and concentrate on the ideal damping of
fast mode oscillations in multi-stranded curved loop arcade.

In this paper we refer to the observationally determined sig-
natures of the vertical oscillations (Wang & Solanki 2004). We
realize our goal by taking into account a simple two-dimensional
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geometry of a coronal loop arcade in which loop oscillations are
excited by initially launched localized pulses. In the present pa-
per we extend the models developed by Brady & Arber (2005);
Del Zanna et al. (2005); Murawski et al. (2005a,b); Brady
et al. (2006); Diaz et al. (2006); Verwichte et al. (2006a—c), and
Selwa et al. (2005, 2006a,b) to a loop that consists of up to five
strands.

This paper is organized as follows: the next section presents
the details of the numerical models. Section 3 contains numeri-
cally obtained results. This paper is concluded by a summary of
the main results.

2. Numerical models

We perform numerical simulations in a two-dimensional mag-
netically structured atmosphere. We neglect gravity and non-
ideal effects. As a consequence, we use the ideal magnetohy-
drodynamic (MHD) equations to describe the coronal plasma:

do _

Q@_V +o(V-V)V = -Vp + l(V><B)><B, ()
ot u

OB

& = VX (VxB), 3)
66—?+V‘(E+PT)V_M =0. “4)

Here o is mass density, V is flow velocity, p is gas pressure, B
is magnetic field (Vv - B = 0) and u is the magnetic permeability.
The symbol pt denotes the total pressure which represents a sum
of p and magnetic pressure B>/(2u), viz.

BZ
pr=p+5- (5)
u
Plasma energy density E can be expressed as a sum of kinetic,
internal, and magnetic energy densities:

V2 2
= Q— + —p + B_

2 y—-1 2u
Here v is the adiabatic index which for the ideal plasma is equal
to 5/3. We assume that plasma quantities are independent of the
spatial coordinate y and set V, = B, = 0. As a consequence of

this assumption the Alfvén wave is removed from the system,
leaving only the fast and slow magnetosonic waves.

E (6)

2.1. Initial configuration

In this section we present a model of a curved coronal loop that
consists of up to five strands. All equilibrium quantities are de-
noted by subscript e. We adopt and modify the model which was
originally described by Oliver et al. (1993) and recently used
by Murawski et al. (2005b) and Selwa et al. (2005, 2006a,b). A
modification of this model is based on the introduction of smooth
strands. As a result, a curved arcade loop consists of separate
strands of condensed plasma.

We assume that at the equilibrium there is no pressure gradi-
ent, Vp. = 0. As a consequence the force balance condition is:

(VX B:) X B, =0. @)
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This condition can be satisfied by the current-free magnetic field
VxB.=0. (®)

Equation (8) is solved with the use of the magnetic potential A,
viz.

B. = V X (Ap). )

Here 7 is a unit vector along the y-direction and a magnetic po-
tential is given as
A(x,7) = BoAg cos (x/Ag)e /s, (10)

As a consequence, the equilibrium magnetic field components
are

By cos (x/Ag)e /"8,
— By sin (x/Ag)e /s,

Bex
B,

(1)
12)

Here By is the magnetic field at the reference level z = 0 and the
magnetic scale height is
_ 2L

Ap=—,
n

13)

where L is the horizontal half-width of the arcade, chosen as L =
100 Mm. We assume now that at the equilibrium mass density
is constant, . = const. For the above choice of the magnetic
field the Alfvén speed Vae = |B.|/+uo. decays exponentially
with height z but the decay rate is small. Constant background
pressure, p. = BB(Z)/(ZN) = const., and constant mass density,
©. = const., implies that background temperature T, ~ p./0. =
const. Here 8 = p./(B%/2u) is the plasma beta which for the
chosen set of equilibrium parameters is equal to 0.012 at z = 0.
Strands are modeled by the following mass density profile:

& A— A A-A
o(x,2) = &Z'erf(—k 1)—erf( ")
2 e o o

where Ay = A(Lf — ax-1,0) < Ay = A(Ls — ay, 0), erf is erf
function and o denotes a sharpness of strands edges. We choose
and hold fixed oo = v0.05 (A), Ly = 0.7 L, a = 0.0125 L, while
an, n > 2 are allowed to vary. For such choice of parameters
lengths of the inner strands are not fixed and they vary with d
which denotes the distance between two neighbor strands, eval-
uated at their summits. These strands are denser than the ambi-
ent corona, o; = 110, where o, is mass density in the ambient
medium while o; is mass density within the strands, which are
not of ideal circular shape. In a case of two strands the aver-
age radius and length of the outer strand are equal to ~70 Mm
and ~190 Mm, respectively (Fig. 1). As a consequence of the
constant background pressure and mass density enhancements,
these strands correspond to regions of cold, condensed plasma.
It is noteworthy that the Alfvén speed within the strands is

Voi/oe = V11 times smaller than in the ambient medium. As a
result, these strands are cavities for fast magnetoacoustic waves.

, (14)

2.1.1. Perturbations

As we are interested in impulsively excited waves we launch an
initial pulse in gas pressure, i.e.

5)

—(x2+zz)/w2} )

p(x.z1=0)= pe{l +Ape

Here w is the initial pulse width. In the simulations we choose
the relative pulse amplitude Ay = 15 and width w = 0.35L.



M. Gruszecki et al.: Impulsive waves 9

0.8

0.6

0.4

z/L

0.2

0.0
-1.0

-0.5

0.0
z/L

Fig. 1. Equilibrium mass density profiles representing two strands of a
coronal loop.

3. Numerical results

Numerical results are obtained with the use of the code EMILY
(Jones et al. 1997). This code solves the initial-value problem for
the time-dependent non-ideal magnetohydrodynamic equations,
using an explicit-implicit algorithm. The algorithm is a finite-
volume scheme that implements an approximate Riemann solver
for the hyperbolic fluxes. As a result, the implemented numerical
scheme is second-order accurate in space and time.

We set two-dimensional Eulerian box (-L,L) x (0,2L)
which is covered by 600 x 800 numerical cells. This grid is suf-
ficient to resolve the required spatial scales that are not much
affected by numerical diffusion. We set open boundary condi-
tions at the left, right and top of the simulation region. We apply
line-tying boundary condition at the remaining boundary. This
condition is sustained by setting all velocity components to zero
V =0, while for the remaining plasma quantities zero-gradient
boundary conditions are established. As a result of an implemen-
tation of the line-tying boundary condition magnetic field lines
are frozen to their initial locations at the boundaries. Such choice
of the boundary conditions results in a wave signal leaving freely
the simulation region where the open boundary conditions are
implemented while a wave signal is reflected from the boundary
where the line-tying boundary condition is implemented.

As in the simulations we used a code which is based on the
method of characteristics, ideally, no reflection occurs from open
boundaries. However, in practice, there is some small amount of
reflecting signal. We have verified by moving the top boundary
farther away that the boundary set at z = 2 L is sufficiently far
away from the loop’s apex that no numerical artifacts were in-
fluencing the results of this study.

3.1. A double-stranded loop

In this section we present and discuss numerical results on
oscillations of a double-stranded curved loop. It is notewor-
thy that both strands have widths that can be resolved with
TRACE in terms of density inhomogeneity over the cross-
section (Aschwanden 2005).

In our parametric study we vary the distance between the two
strands, d, and look for the influence on wave characteristics.
This distance is varied within the interval 0—15 Mm, inferred
from the EIT observations which reveal that the mean loop width
is 19 + 7 Mm (Schmelz et al. 2003).

Both strands start to oscillate when fast magnetoacous-
tic waves, triggered by the initial pulse, reach their summits.

0.55

0.45
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1000

Fig. 2. Time-signatures of the mass density (colour scale; arbitrary
units), collected at the strands summits. A distance between the sum-
mits of two strands is d = 4 Mm. Spatial coordinate z and time ¢ are
measured in units of L and in seconds, respectively.
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Fig. 3. Relative wave amplitude AA for the outer (triangles) and inner
(squares) strands vs. the distance between the summits of two strands d.
AA and d are measured in units of the corresponding apex height and
in Mm, respectively.

Figure 2 displays time-signatures of the mass density, evaluated
by collecting the signal at the strands apices. It is discernible
that strands oscillate. But these oscillations decay with attenua-
tion time 7. The strands do not return to their initial positions,
displaying offsets. Similar offsets were observed and explained
by Selwa et al. (2005, 2006a) in their numerically obtained data
for a monolithic loop.

Figure 3 shows relative wave amplitude AA vs. d for the
outer (triangles) and inner (squares) strands. Relative wave am-
plitude is normalized by the height of the corresponding apex.
For example in Fig. 2 AA is evaluated at + ~ 200 s when the
outer strand is shifted outwards to A(z ~ 200 s) ~ 54.05 Mm.
As the apex heightis & ~ 49.09 Mm (h = A(t = 0 s)) we obtain
AA = [A(t = 200s)— A(t = 0s)]/h = 0.101. For d € (5;15) Mm
we observe that AA for the outer strand decreases with d, while
AA increases with d for the inner strand. For a larger value of d,
the lower strand acquires more energy as it is closer to the initial
pulse and its relative oscillation amplitude attains a higher level.
Simultaneously, the amplitude of the outer strand’s oscillations
decreases, as more energy of the initial pulse was trapped by the
lower strand. As a consequence of a smaller value of AA outer
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Fig. 4. Wave period P (fop panel) and the ratio of the attenuation time to
the wave period, 7/P, (bottom panel), evaluated in the outer strand vs.
a distance between the summits of two strands, d.

strand is stretched less, its length is smaller, and the period of
vertical oscillations decreases with d (Fig. 4, top panel).

We conclude from Fig. 3 that for the range of d € (3;5) Mm
AA evaluated for the inner and outer strands exhibit opposite
trends, but the period P trend is the same in both cases (Fig. 4,
top panel). The only explanation of such scenario results from
the fact that the strands lying within the range of the double
width of the strand exhibit a cross-talk (Murawski 1993), while
for d > 5 Mm the strands act essentially like separate parts of a
two-stranded loop. Indeed, Fig. 5 shows cross-sections of mass
density profiles for the outer and inner strands, shown at three
different times. At r+ = 0 we see an initial configuration which
corresponds to the strands which are separated by d = 4 Mm. At
t = 30 s waves which originate from the initial pulse hits the in-
ner strand and as a result this strand is compressed. At ¢ = 60 s it
is clear that waves reach the outer strand and cause an increase of
its mass density. Simultaneously the inner strand becomes rari-
fied. At ¢ = 90 s it is discernible that the strands partially overlap
and start to oscillate essentially as one wide loop.

We conclude that the magnitudes of AA for the inner and
outer strands get closer as the strands are located closer to each
other (Fig. 3). For d = 3 Mm both strands have very similar
lengths and they are located essentially at similar distances from
the initial pulse. As a consequence, AA attains the same value for
the outer and inner strands. For d € (0; 3) Mm after ¢ ~ 200 s the
strands partially overlap each other and they oscillate essentially
as a single entity.
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0.50

z/L

Fig. 5. Cross sections of mass density profiles for outer and inner strands
along x/L = 0 and z/L € (0.4;0.6): at t = 0 (solid line), = 30 s (dotted
line) and r = 90 s (dashed line). A distance between two strands is
d =4 Mm.

We evaluate the wave period P and the ratio of the attenua-
tion time 7 to wave period P, 7/P, for the outer strand. Values
of P and 7 are obtained by fitting time-signatures of simulated
vertical location of the loop’s apex vs. time to an attenuated time
signature (Selwa et al. 2005).

Brady & Arber (2005), Brady et al. (2006), Didz et al.
(2006), Verwichte et al. (2006a—c) and Selwa et al. (2006a,b)
showed that energy leakage can be the mechanism that is re-
sponsible for the attenuation of vertical kink oscillations. From
Fig. 2 we conclude that for a multi-stranded loop such a mech-
anism is indeed efficient as it leads to rapidly decaying waves.
We note that 7/P declines with d, attaining a value of 0.39 for
d = 0 Mm and 0.26 for d = 13 Mm (Fig. 4). As a consequence,
we infer that the distance between the strands plays a significant
role in wave attenuation.

It is worth mentioning the case of d = 0. For this distance
both strands cover each other and there is one strand but with the
mass density doubled. From Fig. 4 it is clear that values of P and
7/P for such twice denser strand are highest. As a consequence,
a denser loop traps more energy and it oscillates with a higher
period. These results are in an agreement with Smith et al. (1997)
who showed that energy leakage is smaller for a denser loop. The
fact that 7/ P grows with the density ratio was confirmed recently
by Verwichte et al. (2006a), Didz et al. (2006), and Selwa et al.
(2006Db).

3.2. A multi-stranded loop

In this section we present numerical results on oscillations of
the multi-stranded loop that consists of up to five strands. These
strands are separated by d = 4 Mm and d = 10 Mm. In our para-
metric study we vary the number of strands #n, and look for its
influence on wave characteristics. We start with the dependance
of AA on n. Figure 6 shows that AA grows (declines) with n for
d = 4 Mm (d = 10 Mm). This peculiar behavior results from
a coherent interaction between the strands for d = 4 Mm and
essentially a lack of interaction for d = 10 Mm. As AA becomes
larger for a larger value of n (Fig. 6, top panel), the offset attains
a higher value and the loop becomes longer. As a consequence of
that, such longer loop exhibits longer period oscillation. Indeed,
Fig. 7 (top panel) shows that P varies from 410 s for n = 1 up
to 530 s for n = 5. Due to the increase of P with n, 7/P declines
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Fig. 6. Relative wave amplitude AA for the outer strand vs. the num-
ber of strands in the simulation region n for d = 4 Mm (fop panel)
and d = 10 Mm (bottom panel). AA is measured in a units of the corre-
sponding loop strand apex’s height.

with n for n > 2 (Fig. 7, bottom panel). We can conclude that the
number of strands as well as the distance between them play, an
important role in the process of wave evolution.

4. Summary and conclusions

The numerical simulations we performed provide insight on ver-
tical oscillations of multi-stranded coronal loops. The results we
obtained in this paper can be summarized as follows: an external
pulse that is launched centrally below a loop excites a vertical
kink-like mode, which bears many of the properties of the verti-
cal oscillation observed by Wang & Solanki (2004). We find that
the wave characteristics of the numerically simulated oscillation
depend significantly on a number of strands n, and a distance
between them, d. In particular in the case of double-stranded
loop the wave period P and the attenuation time 7 decline with
d. In the case of the loop that consists of n strands separated by
d = 4 Mm, P of the most outer strand grows with n while 7/P
essentially declines with n.

We conclude that the vertical oscillations of coronal loops
observed by TRACE (Wang & Solanki 2004) could be excited
by propagating fast magnetosonic pulse from the flaring re-
gion below the loop. The period of the observed oscillations
is determined by the geometry of the loops, as well as by the
magnetic and the density structure of the loops. Based on the re-
sults of Brady & Arber (2005), Brady et al. (2006), Verwichte
et al. (2006a—c), Selwa et al. (2006a,b) and Diaz et al. (2006) we
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can conclude that the ideal damping of oscillations is due to the
leakage of the fast waves from the multi-stranded loop arcade
structure, while the damping time is determined by the number
of strands and their mutual distance that affect the leakage rate.

In the present study we neglected gravity (Erdélyi & Verth
2006), twisted magnetic field (Erdélyi & Carter 2006), resistive
effects, and Alfvén waves, which may play a role in the damp-
ing of multithreaded loops (e.g., Ofman & Aschwanden 2002;
Ofman 2005). Also, the coupling between the fast magnetosonic
waves and Alfvén waves which takes place in a sheared arcade
(Arregui et al. 2004) was neglected in this 2D study. The 3D
study of curved dense loop oscillations in an idealized model
of an active region is currently under way by McLaughlin and
Ofman (2006). Thus, resonant absorption is not modeled in this
study.
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