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[1] Optimal initial perturbation is an important issue related to the improvement of the
current seasonal climate prediction. In this study, we have applied the empirical singular
vector method to ensemble El Niño–Southern Oscillation (ENSO) prediction with the
Seoul National University coupled general circulation model. It is found that from the
empirical linear operator, the leading singular mode, which represents the fast growing
error mode in the tropical Pacific, shows El Niño–like perturbation in the present coupled
model. When the singular vector is used as an initial perturbation, the forecast skill of
ENSO is significantly improved. Further, it is demonstrated that the predictions with the
singular vector have a more reliable ensemble spread, suggesting a potential merit for a
probabilistic forecast.
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1. Introduction

[2] It is known that ensemble prediction can reduce a
prediction error that originates from an initial uncertainty
[Molteni and Palmer, 1993; Buizza et al., 1998]. Further,
the use of an optimal perturbation for an ensemble pre-
diction is an effective way to improve the forecast skill by
representing the uncertainty of the estimate for the initial
conditions. While several optimal perturbation methods
have been well suited for the medium‐range weather
forecast in the operational centers [Farrell, 1989; Mureau
et al., 1993; Palmer et al., 1994; Molteni et al., 1996;
Toth and Kalnay, 1993, 1997; Corazza et al., 2003], these
methods are still immature with respect to the seasonal
climate prediction. The ensemble seasonal prediction at
operational centers is still facing a difficulty: ensemble
perturbations have limited growth at early forecast lead
times with respect to the amplitude of mean error [Vialard
et al., 2003; Palmer et al., 2004; Saha et al., 2006]. This
indicates that there is room for improvement of the cur-
rent prediction skills in the seasonal‐to‐interannual time
scales.

[3] Several studies have attempted to develop an appro-
priate optimal perturbation method for seasonal prediction,
particularly El Niño–Southern Oscillation (ENSO) predic-
tion. A breeding method has been implemented in the
intermediate ENSO model and complex coupled general
circulation models (GCMs) for ENSO prediction [Cai et al.,
2003; Yang et al., 2006, 2008; Ham et al., 2009]. In par-
ticular, Yang et al. [2006] showed that the forecast skill of
the seasonal prediction is improved when the oceanic and
atmospheric perturbations are initialized with coupled bred
vectors. In the meantime, Kug et al. [2010] suggested
another way to generate optimal perturbations in the sea-
sonal prediction. They developed an empirical singular
vector (ESV) method, which extracts the leading singular
vector as a fast growing perturbation based on an empirical
linear operator. They showed that fast growing perturbation
is successfully captured without tangent linear operator,
which is the primary obstacle to apply the singular vector
methods to complex coupled GCMs. By using an interme-
diate coupled model, they showed that the forecast skill for
ENSO was significantly improved when the ESV was used
for optimal perturbation.
[4] A significant advantage of this method is that it is very

simple and can be easily applied to any type of numerical
model. However, thus far, this method has not been applied
to sophisticated coupled GCMs (CGCMs). It should be
noted that several studies already tried to extract optimal
perturbations using empirical linear operator, however, they
are focused on decadal variability over the Atlantic ocean,
and they did not show that the optimal perturbations is
beneficial to prediction problem [Tziperman et al., 2008;
Hawkins and Sutton, 2009]. In this study, we apply the ESV
method to the Seoul National University (SNU) CGCM.
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Finally, we show that the ESV method improve the forecast
skill of the CGCM.

2. Model and Methods

2.1. SNU Coupled GCM

[5] In this study, we used seasonal prediction data from
the SNU CGCM [Kug et al., 2008; Kim et al., 2008; Ham
et al., 2010]. The oceanic part of the coupled model is the
modular ocean model developed at the Geophysical Fluid
Dynamics Laboratory. The atmospheric part of the coupled
model is the SNU atmospheric general circulation model,
which is a global spectral model at T42 resolution, with 20
vertical sigma levels. The details on the SNU CGCM are
discussed by Kug et al. [2008]. To investigate the ENSO
simulation in SNU CGCM, Figure 1 shows the standard
deviation of monthly mean sea surface temperature (SST)
anomalies in the observations and model. It is shown that
the SST anomaly during ENSO is about twice that in the
observations. For example, the maximum SST anomaly in

SNU CGCM is over 2°C, while that in the observations is
about 1.2°C. In addition, the longitudinal maximum of the
SST anomaly is shifted westward by about 20° compared
to that observed. Note that a westward tilt for the SST
variability during ENSO is also reported in other CGCMs
[AchutaRao and Sperber, 2002; Davey et al., 2002; Latif
et al., 2001]. The seasonal forecast experiments have been
carried out using the SNU CGCM. In order to obtain the
initial conditions, the SNU CGCM is integrated for the time
period of January 1980 to December 2000 by nudging the
observed variables of both the ocean and the atmosphere. In
the case of the ocean, the ocean temperature and salinity
obtained from the Global Ocean Data Assimilation System
[Behringer, 2007] reanalysis are nudged with a 5 day
restoring time scale, and in the case of the atmosphere, the
zonal and meridional winds, temperature, and moisture
fields obtained from the ERA40 reanalysis are nudged with
a 6 h restoring time scale. Given the initial conditions, the 20
year hindcast are carried out with a 7 month lead time,
starting from 1 May in the period 1981–2000. Six ensemble
members, generated by a 1 day lag using lagged averaged
forecast method, are used for ensemble forecasts. The details
about the seasonal forecast experiments are given by Ham
and Kang [2011].

2.2. Empirical Singular Vector Method

[6] The ESV method used in this study follows basically
the same procedure as used by Kug et al. [2010]. It is based
on the concept of the singular vector method [Farrell, 1989;
Palmer et al., 1994; Molteni et al., 1996], but it derives an
empirical operator from a number of initial and final states,
then extract singular vector within the linear system, instead
of extracting singular vectors directly from a nonlinear
dynamical operator.
[7] Let us assume that nonlinear integration can be

approximately expressed by a simple linear operator (L) of
the evolution of the state vector from time n to time n + t as
follows:

Yn ¼ Xnþ� ¼ LXn þ " ð1Þ

where, Xn, Yn, and " is a state vector at time, n, n + t and
errors from the linear approximations. Then, the linear

Figure 1. The standard deviation of monthly mean sea sur-
face temperature (SST) (in °C) in (a) observations and (b) free
integration of SNU CGCM. Note that the integration period
for SNU CGCM is 40 years.

Figure 2. First leading singular mode of initial (a) perturbation of SST and (b) thermocline depth and
final (c) perturbation of SST and (d) thermocline depth.
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operator can be derived from state vectors at time n, and
n + t.

L ¼ YX T XXT
� ��1 ð2Þ

where X and Y are the historical state vectors of the
prediction model. The parameter, t, is the lead time for
model integration. In the case of a seasonal prediction, X
and Y can be regarded as the initial condition and the
prediction with lead time, t, respectively. In the con-
ventional singular vector method, the linear operator, L, is
calculated by linearizing the governing equation of the
prediction model. However, in the ESV method, the linear
operator is estimated empirically from the historical data.
[8] By solving for the singular values of the linear oper-

ator, L, we can calculate the singular vectors.

uiY ¼ siviX ð3Þ

where si, ui, and vi are the ith singular value and its corre-
sponding singular vectors, respectively. When the singular
value is greater than one, we regard that the corresponding
singular vector is a growing mode in the linear system.
Therefore, the singular vector, which has the maximum
singular value larger than one can be the optimal perturba-
tion in an ensemble seasonal prediction as far as the linear
assumption is valid for target phenomena.
[9] In order to apply the ESV method to the prediction of

the SNU CGCM, the linear operator is obtained in a reduced
space through an empirical orthogonal function (EOF)
analysis from the hindcast data of 1981–2000. For the initial
state vector, Xn in equation (1), the EOF analysis is applied
to the instantaneous heat content data of the tropical Pacific
basin (120°E–80°W, 15°S–15°N from the initial conditions.
For the prediction state, Y in equation (1), the EOF analysis

is also applied to the 6 month lead monthly mean SST data.
Note that the spatial pattern of ESV is not sensitive to the
selection of optimal time when optimal time is longer than 3
months (not shown). In this study, only the first five modes
are used for estimating the linear operator, but a majority of
our results are not sensitive to the number of EOF modes.
The five dominant EOF modes explain over 76% and 82%
of the total variance of the heat content and the SST,
respectively.
[10] The linear operator (L) is estimated based on the

principal components (PCs) of the EOF modes. From the
estimated linear operator, five singular modes are extracted.

Figure 3. First empirical orthogonal function mode of thermocline depth in October for (a) observations
and (b) free integration of SNU CGCM. Note that the integration period for SNU CGCM is 40 years.

Figure 4. Ratio of SST ensemble spread between initial
perturbation and monthly mean forecast over tropical Pacific
SST (170°W–90°W and 5°S–5°N) in control (CNTL)
(black) and ESV method (ESVM) (red).
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Among these modes, the mode that has the largest singular
value is selected as the optimal perturbation mode. The
largest singular value is 1.9 larger than one, indicating that
the mode will grow rapidly when it is used as the initial
perturbations.
[11] Because only thermocline depth anomaly is used for

ESV calculation, it is required to obtain the ESV patterns for
other variable to generate initial perturbation for all prog-
nostics variables in the model. To do this, the patterns for
the other variables are obtained using a linear regression.
That is, we construct the regressed patterns related to the
EOF modes of thermocline depth using their PCs. After the
ESV is obtained based on the PCs domain, the perturbations
for other variables are calculated by multiplying each ESV
magnitude for 5 EOF eigenvectors.
[12] After obtaining the spatial pattern of initial pertur-

bations for all variables, the magnitude of the perturbation is
rescaled to a certain magnitude. In this study, the magnitude
of initial thermocline depth perturbation is reduced about
10% of natural variability of thermocline depth anomalies.
The magnitudes of initial perturbation of other variables are
also reduced as much as the magnitude of initial thermocline
depth perturbation is reduced.
[13] Figure 2 shows the first leading singular mode. The

initial state of the thermocline shows a deepened thermo-
cline over the entire equatorial region with stronger signal in

the eastern Pacific and shoaling in the off‐equatorial region
of the Northern Hemisphere, although the detailed zonal
distributions are slightly different. These patterns are con-
siderably similar to the recharge pattern of the equatorial
heat content in the Recharge Oscillator [Jin, 1997], indi-
cating the development of El Niño. Note that the initial
perturbation for SST is small (approximately 0.1 K). Ac-
cording to this initial state, the singular mode shows a large
SST anomaly 6 months later over the eastern Pacific. This
feature is considerably similar to the singular mode of Xue et
al. [1997, Figure 3]. Note that the final SST and thermocline
depth anomalies tend to be considerably expanded toward
the western Pacific, which is a systematic problem in sim-
ulating ENSO in the SNU CGCM.
[14] This pattern is consistent with dominant EOF mode

in free integration of SNU CGCM. Figure 3 shows the first
EOF mode of thermocline depth anomaly in observations
and the free integration of SNU CGCM. Note that thermo-
cline depth anomaly in October is used to fairly compare
results with final ESV patterns. In observations, the positive
peak is shown over the far eastern Pacific, while that in the
climate model is located over 140°W. It means that the
westward shift of thermocline depth anomaly in final ESV
reflects the inherent characteristics of the model. However,
the location of positive maximum of final ESV is shifted
eastward about 20° than the EOF results with free integra-

Figure 5. Spatial pattern of correlation skill for September, October, and November (SON) SST in (a)
CNTL and (b) ESVM.
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tion output. This slight difference between dominant EOF
mode in free run and final ESV is from the fact that the final
ESV is extracted from the prediction results. Being different
from free integration, prediction results are still influenced
by the initial condition, which is constrained by the ob-
servations, therefore, the westward shift in the model would
be less of a problem in the prediction output.

3. Results

[15] Using the initial conditions with the optimal pertur-
bations, we carried out a 7 month lead prediction. We com-
pared two prediction sets from different initial perturbation
methods. One is control (CNTL) prediction, which is based
on the lagged method, the other is ESV method (ESVM)
prediction, based on ESV method. Prior to the comparison of
the forecast skills, we checked whether the ESV perturba-
tions grow rapidly as compared to the lagged perturbations.
Because we use the fast growing perturbation, the initial
perturbation will grow rapidly as the prediction starts, so that
the ensemble spread of the initial perturbation in the case of
the ESV would be larger than that of the other initial per-
turbations. In order to check the growth of the spread, we
defined an ensemble spread by area‐averaged variance of
SST perturbations over 170°W–90°W and 5°S–5°N. The
ensemble spread indicates an averaged magnitude of the SST
perturbations from the ensemble mean. By calculating the
ratio between the ensemble spread of the initial condition and
monthly mean forecast at each forecast lead time, we can
roughly estimate the growth rate for SST perturbation.

[16] As shown in Figure 4, the small initial ensemble
spread grows rapidly as the prediction begins in the cases of
both the prediction methods. However, the spread of the
ESVM is larger than that of the CNTL over all the month
lead times. The ratio of the growth rates for the two
prediction sets is the largest at the initial stage of pre-
diction (1 month lead); then, the ratio decreases gradually.
However, the growth rate of the ESVM is still significantly
larger until the 7 month lead time. At a 6 month lead
forecast, the spread of the ESVM is 2.5 times larger than
that of the CNTL. This indicates that the ESV perturba-
tions are growing perturbations, and their growth is faster
than the perturbations from the lagged method. From these
results, we can expect that the ENSO prediction will be
improved when the ESV perturbations are used as the
initial perturbations.
[17] In order to evaluate the role of the optimal initial

perturbation, the forecast skill is compared between the
CNTL and the ESVM predictions. This skill represents
the correlation skill of the six‐member ensemble mean.
Figures 5a and 5b show the spatial patterns of the correlation
skill for SST during September, October, and November.
Both the prediction sets exhibit predictable skill over the
tropical Pacific. In particular, the correlation skills over the
central Pacific exhibit correlation of more than 0.8 in both
the prediction sets. However, the highest correlation skill
(>0.8) is only confined in the central Pacific (170–130°W) in
the CNTL, while in the ESVM, an area higher than 0.8 is
expanded to the eastern Pacific (100°W), indicating that the
prediction skill is considerably improved over the eastern

Figure 6. (a) Correlation and (b) RMS errors of NINO3 SST in CNTL (black) and ESVM (red). Gray
lines denote 99% and 95% confidence levels.
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Pacific. Presumably, it is related to the fact that a large SST
perturbation of the final singular vector, shown in Figure 1b,
appears over the eastern Pacific. There is also a notable
improvement in the forecast skill over the off‐equatorial and
subtropical regions of the Northern hemisphere.
[18] Figures 6a and 6b show the correlation skill and the

root‐mean‐square (RMS) error of the NINO3 SST, respec-
tively. The ESVM prediction has a better forecast skill than
the CNTL prediction over all forecast lead times. In order to
confirm whether this improvement is significant, prediction
skills with eight ensemble members and all possible forecast
sets of the six ensemble members (a total of 28 cases) are
generated. Then, the 95% and 99% confidence levels are
defined from the standard deviation of each month by
assuming a Gaussian distribution. Based on the distribution,
a statistical confidence level for the correlation or RMS error
(RMSE) difference is calculated as shown in Figure 6. It is
clear that the forecast skill improvement of the ESVM
prediction is significant because the ESV prediction skill is

out of the range of the 99% confidence level (gray line). The
RMS errors also show consistent results that the ESV pre-
diction is significantly improved as compared to the CNTL
prediction. These results are basically consistent with the
results from Kug et al. [2010] obtained using an interme-
diate coupled model. These consistent results support the
view that the optimal initial perturbation with ESVs can
improve the prediction skill on a seasonal time scale.
[19] One can ask why the prediction skill recover after the

5 month lead time. Because ENSO behavior shows strong
seasonal dependency, the predictability of ENSO exhibits
strong seasonal dependency. Therefore, many models have
higher predictive skill during boreal winter, and lower skill
during boreal spring and summer. Therefore, forecast skill
of the climate model can be strongly modulated by season as
well as the forecast lead time. As forecast target time ap-
proaches to the season of ENSO mature phase (e.g., boreal
winter season), the ENSO prediction skill can be increased,
even though the lead time is longer. For example, the

Figure 7. (a) Time series of NINO3 index in observations (black), CNTL forecast (blue), and ESVM
forecast (red). The time series of NINO3 and RMSE during (b) El Niño (1982, 1987, 1991, 1994, and
1997), (c) La Niña (1983, 1984, 1988, 1998, and 1999), and (d) normal cases (other years) are also
shown. Note that the composite is performed based on the NINO3 index in subsequent December; there-
fore, the El Niño (La Niña) composite shows the development of El Niño (La Niña) events.
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forecast experiments starting from boreal winter (December,
January, and February) season, do not show the rebounds
(not shown).
[20] Then, how about the individual forecasts? To inves-

tigate the forecast results for specific forecasts, Figure 7
shows the time series of NINO3 index for all hindcast
period, and that of El Niño (1982, 1987, 1991, 1994, and
1997), La Niña (1983, 1984, 1988, 1998, and 1999), and
normal cases (other years) composite. In addition, RMSE
for the El Niño, La Niña, and normal cases are also shown.
Note that the composite is performed based on the NINO3
index in subsequent December, therefore, the El Niño (La
Niña) composite shows the development of El Niño (La
Niña) events. Some of the forecasts in ESVM like 1998
summer forecast are slightly worse than that in CNTL.
However, most of the forecast like 1981, 1987, 1989, 1997,
and 2000 summer cases show systematical improvement
with ESV perturbations. Similarly, the RMSE during El
Niño cases is smaller in ESVM than that in CNTL. It means
that the weaker ENSO in CNTL forecast is caused by the
initial uncertainty to some extents, and this initial uncer-
tainty is effectively reduced in ESVM forecast especially
during El Niño events. In addition, the RMSE during normal

cases is also smaller in ESVM than that in CNTL. It shows
that there is positive impact of ESVM in most of the forecast
cases, even though negative impact is observed in some
cases, and ESV introduced in this study successfully cap-
tures the true unstable mode in most hindcast years.
[21] Thus far, we have shown that the ESVM exhibits a

better deterministic (ensemble mean) forecast. In addition,
there is a possibility to improve the probability forecast
because the ESV perturbation improves the ensemble
spread. In general, the current seasonal prediction produces
a small spread as compared to the magnitude of the mean
forecast error, indicating that the ensemble spread is not
adequate to represent the prediction uncertainty [Vialard
et al., 2003; Palmer et al., 2004; Saha et al., 2006]. This
problem plays a role in degrading the forecast skill of a
probabilistic forecast in current seasonal prediction. Since the
ESV perturbation plays a role in increasing the ensemble
spread, as shown in Figure 4, the ESV prediction can provide
a better representation of the forecast uncertainty.
[22] In order to check whether the model spread represents

the uncertainty of the ensemble mean prediction appropri-
ately, we calculate the noise‐to‐error ratio. The error is
calculated from the error variance of the ensemble mean

Figure 8. Noise‐to‐error ratio for SON SST forecast in (a) CNTL, (b) ESVM, and (c) ESVM‐CNTL.
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SST. The noise is estimated from the ensemble spread, i.e.,
the variance of the SST perturbation which is deviated from
the ensemble mean.
[23] Figure 8 shows the noise‐to‐error ratio for the CNTL

and ESVM predictions, and the ratio difference between
ESVM and CNTL. If the ratio is considerably smaller than
one, the ensemble spread does not represent the uncertainty
of the prediction appropriately. In this case, the ensemble
spread underestimates the uncertainty of the forecast. As
shown in Figure 8a, the overall noise‐to‐error ratio in the
CNTL is smaller than one. In particular, the ratio is con-
siderably small in the equatorial region, indicating that the
ensemble spread is significantly small as compared to the
forecast error. This implies that the lagged method has a
serious problem with respect to the representation of the
initial uncertainty. The ESV prediction also exhibits a noise‐
to‐error ratio of less than one. However, the ratio in ESVM
is overall greater than that of the CNTL. In particular, this
ratio is considerably increased in the equatorial Pacific
(Figure 8c). This is slightly expected from Figure 4. The
underestimated spread of the CNTL can degrade the skill of
the probabilistic forecast as well as that of the deterministic
forecast. Therefore, the ESV prediction would produce a
better probabilistic forecast with a more reliable spread.

4. Summary and Discussion

[24] In this study, we applied the ESV method as an
optimal perturbation method to the ensemble ENSO pre-
diction of the SNU coupled GCM. By using this method, we
could extract a fast growing mode on the basis of an
empirical linear operator. It was shown that the ESVM had a
significantly higher skill as compared to the CNTL. In
addition, we found that the present optimal perturbation
method could be more advantageous with respect to a
probabilistic forecast because of its ability to provide a
reliable ensemble spread. Overall, the present results were
consistent with those of Kug et al. [2010] with an inter-
mediate coupled model, indicating the robust merits of the
ESV method with respect to seasonal prediction.
[25] This paper is following work of Kug et al. [2010],

and both introduce the same ESV process to improve the
seasonal prediction skill. However, there are several differ-
ences between them. First, this study confirms that the linear
assumption for calculating ESV is still valid and rigorous to
the coupled GCM. In intermittent model used by Kug et al.
[2010] is simpler than the coupled GCM, and oceanic part is
almost linear because the oceanic basic state is prescribed.
Therefore, the success in the intermediate models cannot
guarantee the success in the fully nonlinear CGCMs. By
showing the ESV is successfully applied to coupled GCM,
this study confirms this method is still powerful tool for the
prediction with complex GCM with nonlinear dynamics.
[26] The second advantage of this study is that this study

applied ESV method to real cases. Therefore, improvement
by using ESVM shows that extracting fast‐growing mode to
reduce the initial uncertainty is essential to improve the
seasonal prediction skills with model errors. In addition, it is
possible to investigate how much improvement is archived
for the specific forecasts as shown in Figure 7. This kind of
analysis is only possible in this study to perform hindcast
experiment for real cases. With these benefits, it is expected

that this method can improve the current seasonal prediction
skill of the other CGCMs.
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