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[1] We describe Earth’s mass flux from April 2003 through November 2008 by deriving a
time series of mascons on a global 2° × 2° equal‐area grid at 10 day intervals. We estimate
the mass flux directly from K band range rate (KBRR) data provided by the Gravity
Recovery and Climate Experiment (GRACE) mission. Using regularized least squares,
we take into account the underlying process dynamics through continuous space and
time‐correlated constraints. In addition, we place the mascon approach in the context
of other filtering techniques, showing its equivalence to anisotropic, nonsymmetric
filtering, least squares collocation, and Kalman smoothing. We produce mascon time
series from KBRR data that have and have not been corrected (forward modeled) for
hydrological processes and find that the former produce superior results in oceanic areas
by minimizing signal leakage from strong sources on land. By exploiting the structure
of the spatiotemporal constraints, we are able to use a much more efficient (in storage and
computation) inversion algorithm based upon the conjugate gradient method. This allows
us to apply continuous rather than piecewise continuous time‐correlated constraints,
which we show via global maps and comparisons with ocean‐bottom pressure gauges, to
produce time series with reduced random variance and full systematic signal. Finally, we
present a preferred global model, a hybrid whose oceanic portions are derived using
forward modeling of hydrology but whose land portions are not, and thus represent a pure
GRACE‐derived signal.

Citation: Sabaka, T. J., D. D. Rowlands, S. B. Luthcke, and J.‐P. Boy (2010), Improving global mass flux solutions from
Gravity Recovery and Climate Experiment (GRACE) through forward modeling and continuous time correlation, J. Geophys.
Res., 115, B11403, doi:10.1029/2010JB007533.

1. Introduction

[2] The Gravity Recovery and Climate Experiment
(GRACE) mission [Tapley et al., 2004] has vastly improved
knowledge of the Earth’s time‐variable gravity field. Using
data solely from the GRACE mission, it is possible to make
unconstrained estimates of the Earth’s gravity field repre-
sented as Stokes coefficients at 30 day intervals [Tapley
et al., 2004]. Although the Stokes coefficients described
by Tapley et al. [2004] are estimated directly from GRACE
tracking data without any constraints or a priori information,
they are almost always smoothed or averaged (filtered)
before use in geophysical analysis [see Velicogna and Wahr,
2006; Wouters et al., 2008].
[3] Stokes coefficients from GRACE are estimated in a

least squares solution by minimizing the difference between
actual tracking observations and predictions that are com-
puted based on the estimated coefficients. The effect of

filtering is to increase the mismatch between actual obser-
vations and those predicted by the solution. Some filters do
not take into account the covariance of the estimated Stokes
coefficients and therefore cannot take into account any deg-
radation in fit caused by the filtering (Gaussian smoothing is
an example). Klees et al. [2008] argue that filtering of the
GRACE Stokes coefficients is accomplished optimally by
also taking into account the full covariance of the estimated
Stokes coefficients. Certainly, when one has access to the
full covariance of the solution as well as the estimated
Stokes coefficients, it is possible to reconstruct the normal
equations of the solution and thereby take into account the
fit of the filtered solution.
[4] The widest possible variety of smoothing techniques is

available given access to the original normal equations of
the solution. Of course, it is not necessary to take the cov-
ariances into account, but access to the original normal
equations opens up possibilities. For example, Rowlands
et al. [2010] demonstrate that the normal equations of
GRACE‐based solutions can be augmented with constraint
equations that yield outcomes that are as free of striping as
those produced by Gaussian smoothing with much less loss
of signal at high degrees.
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[5] It is interesting to note that global mascon solutions can
be constructed starting from estimated Stokes coefficients
and their covariances through a series of linear operators. In
fact, the global mascon solutions that are presented in this
paper are formed in just this way starting from the standard
solutions (including the covariances) for Stokes coefficients
that are routinely made at NASA’s Goddard Space Flight
Center (GSFC) [Luthcke et al., 2006a]. As a result, these
solutions belong to the class of solutions that are prepared by
optimal filters as described by Kusche [2007] Klees et al.
[2008]. It should also be noted that these global mascon
solutions, like those shown by Rowlands et al. [2010], are
filtered anisotropically through the use of regional constraint
equations. In section 2 a mathematical development is given
that places the approach that we use for our mascon solutions
in the context of other filtering techniques commonly used
by GRACE researchers such as anisotropic, nonsymmetric
(ANS) filters, least squares collocation (LSC), and Kalman
filtering/smoothing. A useful decomposition of the space/
time constraint matrix is also given in section 2. This
decomposition is exploited in section 3 where an efficient
inversion scheme is developed. This allows us to estimate
millions of time correlated parameters in a single inversion.
[6] In addition to placing our approach in the context of

other GRACE filtering methods, a goal of this paper is to
present status of global mascon solutions at GSFC, espe-
cially in light of two improvements to the procedure that
produced the global mascon solutions presented by
Rowlands et al. [2010]. The first improvement, the inclusion
of the Global Land Data Assimilation System (GLDAS)
hydrology model [Rodell et al., 2004] in the a priori gravity
model used in the GRACE tracking data reduction, is the
subject of section 4. We demonstrate that the forward
modeling of large hydrology signals over land areas has a
significant effect on the ocean areas of the resulting solution.
We present evidence that when signal from land hydrology
is not included in the a priori gravity model, the resulting
time series has spurious signal at the annual cycle over
ocean areas. Luthcke et al. [2008] used forward modeling of
hydrology in regional mascon solutions for Alaska. As far as
we know, the time series presented in this paper are the first
global, GRACE‐based time series to use hydrology as a
forward model in the Level 1B processing of KBRR data.
[7] In section 5 we discuss the second improvement, the

use of continuous time correlation constraint equations for
all of the parameters in a multiyear solution. Due to the
computational burden involved with making time correlated
solutions, our previous global mascon solutions use only
piecewise time correlation. In the inversion scheme devel-
oped in section 3 the computational burden grows approx-
imately linearly with the number of time periods in the time
series in this study. The use of this inversion scheme allows
us to extend the time correlation between months. We
demonstrate that this results in a time series of mass flux that
has an improved signal‐to‐noise ratio compared to our
previous time series and agrees more closely with inde-
pendent observations such as those given by ocean‐bottom
pressure sensors.
[8] Finally, in section 6 we present a strategy for pro-

ducing a preferred global solution, a hybrid in which the
oceans exhibit minimal leakage from land signal while the

land is mostly determined by GRACE and is not obfuscated
by forward modeling.

2. Mascons in the Context of Filtering Techniques
for GRACE

[9] The mascon approach to model time‐variable gravity
is a time‐space technique in which time is discretized into a
series of nonoverlapping, finite intervals. Within these,
gravity is represented by a linear combination of signals that
would be generated by loading localized parcels of water (in
centimeter equivalent water height) on the mean‐Earth
sphere [Chao et al., 1987]. However, many groups doing
mass flux research operate within the spectral domain by
using the Stokes coefficients provided by the GRACE
project [Tapley et al., 2004]. Furthermore, these groups
often apply smoothing filters ex post facto to time series of
GRACE Stokes coefficients provided to them at some
sampling rate [see Velicogna and Wahr, 2006; Wouters
et al., 2008]. Although Rowlands et al. [2010] present a
geophysical comparison between Stokes coefficients derived
from a typical post‐processing technique versus the mascon
technique, we wish here to place the comparison in a more
mathematical framework in terms of operations on the
Stokes coefficients, specifically in the context of the optimal
ANS filters of Kusche [2007] and Klees et al. [2008]. Fur-
thermore, temporal as well as spatial correlation between
mascons have always been taken into account in GSFC
regional mascon solutions and a large portion of this paper is
devoted to showing how temporal correlation can be
accomplished in global mascon solutions. Because of this we
wish to place this technique in the context of linear dynam-
ical systems theory and compare it with the Kalman filtering
approach of Kurtenbach et al. [2009].

2.1. Anisotropic, Nonsymmetric Filters and Least
Squares Collocation

[10] The GSFC mascon technique employs regularized
least squares estimation to derive time series of equivalent
water heights from GRACE KBRR residuals and can be
transformed into filtering operations on time series of Stokes
coefficients. Because it uses information about signal and
noise covariance structure, it is an example of an “optimal”
filter, and because the matrix which operates on Stokes
coefficients is a function of both degree and order (aniso-
tropic) and is nonsymmetric makes it an example of the most
general form of these filters known as ANS [Klees et al.,
2008]. Thus, the ANS filter is a good point of comparison
for all linear filters that operate on Stokes coefficients in
space and time, even if they are not “optimal.”
[11] Klees et al. [2008] define the input and output Stokes

coefficient vectors, ĉ and ~c, respectively, of the ANS filter,
F, in terms of the fundamental formula for LSC with noise
[Moritz, 1980] given by

~c ¼ Fĉ ¼ P�1 N�1 þ P�1
� ��1

ĉ; ð1Þ

where P−1 and N−1 are the signal and noise covariance
matrices of the Stokes coefficients, respectively. Our task is
then to cast the Stokes coefficients derived from the mascon
approach into this form and we do this by introducing a
matrix L that maps a set of mascon multipliers into a set of
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Stokes coefficients describing the gravity perturbation
through the well‐known formula given by Rowlands et al.
[2010].
[12] For a given 10 day period, we map 10,396 mascon

multipliers, m, into the 3720 Stokes coefficients, c, of a
degree/order (d/o) 60 spherical harmonic expansion (without
monopole term) such that

c ¼ Lm: ð2Þ
Here we are using the same mascon grid as in the work of
Rowlands et al. [2010] where each parcel has a surface area
equal to that of a 2° × 2° tesserae centered at the equator and
every parcel spans a constant 2° latitude interval. This will
be referred to simply as a “2° mascon grid” or a “q° mascon
grid” in general. Now, assuming L is full rank, then let

LT ¼ QR ð3Þ

be the QR decompositon of LT (the superscript “T”
indicates the transpose), where Q has 3720 orthonormal
columns and R is an upper‐triangular matrix with nonzero
diagonals [Golub and Van Loan, 1989]. We then define two
related matrices

Lþ ¼ Q RT
� ��1 ð4Þ

and L?, where the 6676 columns of the latter are the
orthonormal complement to the columns of Q, which pro-
vide a complete basis in which any mascon solution may be
expressed as

m ¼ Lþ L?ð Þ
�

�

0@ 1A: ð5Þ

Substituting equation (5) into equation (2) and using the
properties of L, L+, and L? (that is, LL+ = I and LL? = 0)
shows that

� ¼ c; ð6Þ

and so we see that L+ provides a basis for mascons that
corresponds directly with d/o 60 Stokes coefficients while
L? provides a basis for mascons that produce no gravity
signature, i.e., a null‐space that is not constrained directly by
the GRACE KBRR data in our solution. We therefore
relabel z as c? and rewrite equation (5) as

m ¼ Lþ L?ð Þ
c

c?

0@ 1A: ð7Þ

[13] For a given 10 day period, let the GRACE KBRR
residuals, r, be defined as the difference between the KBRR
measurements, d, and a prediction, a(xc), which is a function
of the current state of some general set of parameters, xc.
These parameters can entail forward models, orbital arc
parameters, geopotential parameters, etc. In section 4 we
will explore the effects of changing the hydrology forward
model in xc on the mascon solution for this period, ~m, taken
as the unique minimizer of the quadratic cost function

J mð Þ ¼ r� ALmð ÞTfW r� ALmð Þ þ �mTPmm; ð8Þ

where the first term is a measure of the weighted misfit to
the KBRR residuals by the mascons and the second term is a
measure of mascon complexity. Specifically, A is the
Jacobian of the KBRR residuals with respect to the Stokes
coefficients at the current state,fW is the data weight matrix
which accounts for both measurement noise and the effects
of orbital arc parameters (as will be shown later), Pm is a
regularization matrix, and l is a damping parameter that
controls the level of regularization on the mascon solution.
The solution is then given by

~m ¼ LTNLþ �Pm

� ��1
LTATfWr; ð9Þ

where N = ATfWA. However, if N is invertible, then we can
construct an unconstrained solution for Stokes coefficients
during this period by minimizing J(m) with equation (2)
substituted into equation (8) and with l = 0 such that

ĉ ¼ N�1ATfWr ð10Þ

and substitute ATfWr = Nĉ into equation (9) to obtain

~m ¼ LTNLþ �Pm

� ��1
LTNĉ: ð11Þ

Now, using equation (7) and the fact that

L

LT
?

0@ 1A ¼ Lþ L?ð Þ�1
; ð12Þ

which follows from the properties prefacing equation (6)
and the fact that L? is an orthonormal basis orthogonal to
Q, we transform equation (11) as follows:

~c

~c?

0@ 1A ¼
L

LT
?

0@ 1A LTNLþ �Pm

� ��1
LTNĉ; ð13Þ

~c

~c?

0@ 1A ¼
L

LT
?

0@ 1AP�1
m LT �N�1 þ LP�1

m LT
� ��1

ĉ; ð14Þ

where we have assumed that Pm is invertible. Through
simple covariance propagation we see that

P�1 ¼ LP�1
m LT ð15Þ

is the signal auto‐covariance matrix for c and that

C? ¼ LT
?P

�1
m LT ð16Þ

is the signal cross‐covariance matrix between c? and c.
[14] The expression for ~c in equation (14) is now in the

form of the ANS filter of equation (1) and represents a
classic “filter” operation in the parlance of LSC while the
associated expression for ~c? represents a classic “filter/
prediction” operation. Here “filtering” is a mapping between
two members of the same space, i.e., d/o 60 Stokes coeffi-
cients, which optimally mitigates the effects of noise, while
strict “prediction” is a mapping or extrapolation from one
space to another that is based upon properties of the signals.
The expression for ~c? in equation (14) can always be
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rewritten in terms of a strict “prediction” from a “filtered” ~c
as [Moritz, 1980]

~c? ¼ C?P~c; ð17Þ

and so the “filter/prediction” operation should now be
apparent. Note that if ~c and ~c? were not correlated, i.e.,
C? = 0, then nothing about the state of ~c? could be “pre-
dicted” from the GRACE‐derived ~c since this lies in a null‐
space that is not seen by GRACE in our model.
[15] The ĉ and N−1 of the GSFC ANS filter are derived

directly from tracking data, the details of which are given by
Luthcke et al. [2006a], and thus, N−1 is not only a full noise
covariance matrix, but one that is consistent with the
unconstrained Stokes coefficients ĉ. The characteristics of
the Stokes signal covariance matrix P−1 are manifested in
the mascon regularization matrix Pm of equation (11), on
which we now focus, but it will be seen to reflect a non-
stationary, anisotropic signal process based upon geoloca-
table physical properties.

2.2. Regularization of the Mascon Solution

[16] An estimation of Stokes coefficients can be readily
derived directly from the GRACE KBRR residuals as
shown in equation (10). However, both the residuals and the
model are prone to error. Although this is somewhat miti-
gated by the use of the data weight matrixfW, it is only in a
relative sense, and overfitting of some portions of r may be
unavoidable. We address this by introducing regularization
to the solution, i.e., the second term in J(m) in equation (8),
which has the effect of drawing the solution away from a
state that overfits r toward a justified a priori state.
Rowlands et al. [2010] essentially employ a Tikhonov first‐
order regularization [Brooks et al., 1999] in time and space
in solving for their mascon time series. The associated a
priori state is thus a constant mascon state whose level is
controlled by additional independent constraints. In this
study, as in the study by Rowlands et al. [2010], this level is
chosen to be zero.
2.2.1. Spatial Regularization
[17] For a given 10 day period, Rowlands et al. [2010]

require that all distinct mascon differences be close to zero
in a statistical sense through the use of weights which are
assigned to each pair such that if both mascons reside in the
same designated region, then the value is a function of
distance between their centers. However, if the two mascons
reside in different regions, then the weight is zero, and the
constraint vanishes. This can be shown in matrix notation by
introducing a constraint matrix, D, whose form is a discrete
first‐difference operator in the space domain such that if the
kth row of D constrains the ith and jth mascons, then

Dki ¼ 1; Dkj ¼ �1; Dkq ¼ 0 for all q 6¼ i; j: ð18Þ

For a set of N mascons, there are N(N − 1)/2 pair‐wise
combinations or rows in D. The constraint equations are
then written as

0 ¼ Dmþ e; ð19Þ

where e is assumed to be a Gaussian distributed random
error with mean 0 and covariance matrix W−1, which is
denoted as e ∼ N (0, W−1).

[18] Specifically, let W be a diagonal matrix whose kth
diagonal is chosen from a Laplacian distribution with center
at zero and scale parameter D such that

Wkk ¼
exp 1� dij

D

� �
;Ri ¼ Rj

0 ;Ri 6¼ Rj

8><>: ; ð20Þ

where dij is the distance between mascon centers and Ri and
Rj are the region designations for the ith and jth mascons,
respectively. These regions are chosen to reflect the varying
properties of mass flux within and between geographic
boundaries. This type of regional signal covariance was
applied to mascon analysis in the study of mass flux in
Alaskan glaciers by Luthcke et al. [2008] and was also used
in the recent study of Wu et al. [2009].
[19] It turns out that even with these constraints, the

indicated inversion in equation (11) does not exist. This is
because the constant vector 1 is in the null‐spaces of both L
and D. This means that a uniform layer of water of constant
height over the sphere will not produce any observable
gravity signal in the GRACE KBRR measurements; that is,
this mascon distribution resides in the span of the columns
of L?. It should be clear that the quantity Dm will remain
unchanged if a constant vector is added to m. We therefore
add an additional constraint minimizing signal magnitude in
the direction of 1 with a weight of w1, which allows us to
write the total set of constraint equations as

0

0

0@ 1A ¼
D

1T

0@ 1Amþ
e

e

0@ 1A; ð21Þ

where e ∼N (0, w1
−1). For brevity, we rewrite the augmented

system of equation (21) as

0 ¼ Dmþ e ð22Þ

and introduce the diagonal matrix W whose upper‐left
portion is W and whose lower‐right diagonal is w1. Given
this, the associated mascon regularization matrix is given by

Pm ¼ D
T
WD: ð23Þ

The inverse of Pm exists and may be interpreted as a mascon
signal covariance matrix in the context of LSC. As such, it
represents a nonstationary, anisotropic signal process by
virtue of the regional weighting just mentioned.
2.2.2. Spatiotemporal Regularization
[20] The discussion has so far been restricted to a single

10 day analysis period, but it can be easily extended to
multiple periods. Therefore, all future references to
equations (10) and (11) will assume the spatiotemporal
versions, unless otherwise indicated. If the parameters are
arranged in vectors such that mascon multipliers for a par-
ticular period are contiguous and the periods are in time
order, then the data normal matrix N becomes block diag-
onal, with each block differing in correspondence to a dif-
ferent period, and L, L+, and L? become block diagonal,
with each block identical for each period.
[21] The transition to multiple periods is more profound

for the regularization matrix Pm for then it becomes a
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function not only of space, but also of time. However, this
additional temporal aspect is explained by simply broaden-
ing the definition of the constraint matrix D to now include
constraint pairings across different times rather than just
space. The total number of constraints can be computed now
where N is the set of all mascons across time and space. The
corresponding weight between the ith and jth mascons is
now a function of both distance between mascon centers and
time difference between mascon periods and is taken from a
joint Laplacian distribution in space and time. The modifi-
cation to W is

Wkk ¼
exp 2� dij

D
� tij

T

� �
;Ri ¼ Rj

0 ;Ri 6¼ Rj

8><>: ; ð24Þ

where tij is the positive time difference between mascons
and T is a scale parameter. Note that time correlation is
accounted for only within regions and that one could impose
an additional rule analogous to the regional definitions, but
in time. It should also be noted that the parameters D and T
are referred to as the “correlation length” and “correlation
time” by, for instance, Rowlands et al. [2010], but for the
interested reader it will be seen in Appendix B that it may be
more appropriate to call these the “characteristic length” and
“characteristic time” of the a priori variance of pairwise
mascon differences in space and time, respectively.
[22] The spatiotemporal first‐difference operator admits a

formal null‐space that represents a uniform water layer over
the sphere which is constant through time. We, however,
simply replicate the constraint on the constant vector
direction 1 at each time period, which means that time‐
varying series of uniform water layers over the sphere are
dampened. Clearly, the formal null‐space is in the range of
these constraints, but they also add additional regularization
to the solution. The result is an invertible Pm having an
interesting structure based upon Kronecker products. This
structure is central to two topics explored in this paper, (1) the
relationship of our solution strategy to that of dynamical
systems, discussed in section 2.3, and (2) the design of an
efficient inversion scheme, discussed in section 3.
[23] The Kronecker product of two matrices, A and B, is

defined to be [Toutenburg, 1982]

A� B ¼

a11B � � � a1nB

..

. . .
. ..

.

am1B � � � amnB

0BBBB@
1CCCCA; ð25Þ

where A = (aij) is an m × n matrix. Properties of the
Kronecker product may be found in the work of Laub
[2005]. Using this definition, it can be shown that the
mascon regularization matrix Pm is expressible as the sum of
two terms Pf and Pu. The first term is due to the spatio-
temporal first‐difference operator and is given by

Pf ¼ diag zð Þ � diag sð Þ � Z� S; ð26Þ

where the diag(·) operator makes a diagonal matrix with
diagonal entries taken from a vector argument. If we denote
the number of time intervals as K and the number of mas-

cons within any given interval as N, then the K × K matrix Z
and the N × N matrix S are defined in the context of W as

Zij ¼ exp 1� tij
T

� �
; ð27Þ

Si j ¼
exp 1� di j

D

� �
;Ri ¼ Rj

0 ;Ri 6¼ Rj

8><>: ; ð28Þ

and z = Z1 and s = S1 are vectors of row sums of the Z and
S matrices, respectively. The second term is due to the
damping of time‐varying uniform water layers

Pu ¼ I� 11T: ð29Þ

Here I is the K × K identity matrix and 1 is a length N vector
of ones.

2.3. Linear Dynamical Systems and Kalman Filtering

[24] Recall from equation (10) that one could assemble a
set of Stokes coefficients independently at each of the K
time intervals from only the GRACE KBRR data existing in
that interval. However, an approach like this would neglect
the time correlation between the coefficients in each interval
imparted by the temporal dynamics of the mass flux pro-
cesses in the system. In addition, these data are nonlinear
functions of the underlying gravity state (that is, the Stokes
coefficients), but we assume the linear‐tangent approxima-
tion is sufficient and express rather the KBRR residuals as
linear functions of differential adjustments to the Stokes
coefficients, i.e., ĉ. The solution for ~m in equation (11) is
then an attempt to solve this linear dynamic inverse problem
by a general least squares estimation of the entire spatio-
temporal system in which the dynamics are accounted for
through the Pm matrix.
[25] The classic Kalman filter/smoother can also be used

to address this problem by considering the following pair of
equations:

mk ¼ Gk�1mk�1 þ uk�1

yk ¼ Hkmk þ vk

8<: : ð30Þ

The first equation involves a prediction of the mascon state
mk at interval k from the state at the previous interval through
a linear transition function Gk−1 under the assumption that
the dynamics of the system can be represented by a first‐
order Markov process with uk−1 ∼ N (0, Uk−1). Here we
have ignored the additional control term. The second
equation relates measurements yk in interval k to the mascon
state through a linear model matrix Hk with vk ∼ N (0, Vk).
Both the filter and the smoother find the minimum mean
square error estimate of mk, but the filter uses only past
information through the kth interval in its estimate while the
smoother uses information across all K intervals; though
computationally twice as expensive, the smoother gives
preferred estimates of mk.
[26] Recently, Kurtenbach et al. [2009] applied Kalman

filtering to GRACE Level 1B data, with annual and semi-
annual parts removed, in order to obtain a gravity field time
series of Stokes coefficients at daily intervals over 2 years.
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They assume stationary isotropic process noise in time and
space and are guided by a hydrology model, with annual and
semi‐annual parts removed, in arriving at an exponential
covariance function which is approximated by a first‐order
Markov process. We will now show that the solution of
equation (11) provides a time series of global mascon sets
derived from Kalman smoothing under a variable‐order
Markov process assumption; that is, mk is related to mj

through transition function Gk−1,j, j = 1, …, k − 1 such that
the first part of equation (30) is rewritten as

mk ¼
Xk�1

j¼1

Gk�1; jm j þ u k�1: ð31Þ

This higher‐order capability allows for more complicated
dynamics to be considered. Although we also use expo-
nential covariances, which are appropriate for first‐order
Markov processes, we can readily modify the Z matrix of
equation (27) to reflect higher‐order processes mentioned by
Gelb [1974].
[27] An nth order Markov process is usually introduced

into the Kalman framework by expanding the state‐space up
to n‐fold at each interval and adding hard equality con-
straints, thus transforming the problem to a larger, equiva-
lent first‐order process [Zhang et al., 2005]. However, the
general smoother reflecting equation (31) can be expressed
simply as the batch least squares solution to the following
over‐determined set of observation equations

y
a

� �
¼ H

G

� �
mþ v

u

� �
; ð32Þ

where v ∼ N (0, V) and u ∼ N (0, U) are assumed
uncorrelated, and

y ¼
y1
..
.

yK

0B@
1CA; H ¼

H1 � � � 0

..

. . .
. ..

.

0 � � � HK

0B@
1CA;

a ¼
�m0

0
..
.

0

0BB@
1CCA; m ¼

m1

..

.

mK

0B@
1CA;

G ¼
�I 0 � � � 0
G11 �I � � � 0
..
. ..

. . .
. ..

.

GK�1;1 GK�1;2 � � � �I

0BBB@
1CCCA;

u ¼
u0
u1
..
.

uK�1

0BBB@
1CCCA; v ¼

v1
..
.

vK

0B@
1CA;

U ¼
U0 0 � � � 0
0 U1 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � UK�1

0BBB@
1CCCA;

V ¼
V1 � � � 0
..
. . .

. ..
.

0 � � � VK

0B@
1CA:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð33Þ

The m0 vector is an a priori seed state that initiates the
dynamic process. The mascon studies presented here and by
Rowlands et al. [2010] do not use a seed, and so this con-
dition is assigned infinite variance, i.e., U0

−1 = 0.
[28] We now make a simple identification between

quantities in equations (10) and (11) with those in equations
(32) and (33) in order to place our mascon technique in the
context of general Kalman smoothing. First, let B be the
lower‐triangular Cholesky factor of a matrix eZ defined in
terms of the Z matrix of equation (27) such that

eZ ¼ diag zð Þ � Z ¼ BTB: ð34Þ

Since eZ has a null‐space of dimension one, then B11 = 0 and
Bjj > 0, j = 2, …, K, and since 1 spans this null‐space, then
the row‐sums of B vanish. This is related to the LU version
of the Cholesky decomposition for a semi‐definite matrix
discussed, for instance, by Higham [1990]. This leads to

yk ¼
rk
0
0

0@ 1A; Hk ¼
AkL
D
1T

0@ 1A;

Gk�1; j ¼ � Bk j

Bk k

� �
I; Uk�1 ¼ B2

k kS
� ��1

;

Vk ¼
�fWþ

k 0 0
0 zkWð Þ�1 0
0T 0T w�1

1

0@ 1A:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð35Þ

The GRACE KBRR residuals for interval k and the Jacobian
of these with respect to the Stokes coefficients are denoted
by rk and Ak, respectively. The L matrix applies here to a
single time interval, the W matrix is now the one defined in
equation (20), and w1

−1 = 1 throughout this study.
[29] ThefWk

+ matrix is the generalized inverse [Toutenburg,
1982] of the data weight matrix fWk for interval k. As
mentioned earlier, this accounts not only for measurement
noise but also for the effects of the orbital arc parameters.
Each GRACE KBRR measurement has a theoretical preci-
sion of 10−6 m/s [Rowlands et al., 2010] and so the a priori
measurement variance is taken as a = 10−12 (m/s)2. If eAk is
the Jacobian of rk with respect to the arc parameters, bk, in
interval k, then the GRACE contribution to the kth block
diagonal of the normal equations may be written as

1

�

eAT

k
eAk

eAT

kAk

AT
k
eAk AT

kAk

 !
bk
mk

� �
¼ 1

�

eAT

k rk
AT

k rk

 !
: ð36Þ

We may eliminate bk from the state‐space by performing
elementary row operations on this system leaving the
equivalent partitioned portion corresponding to mk given by

AT
k
fWkA km k ¼ AT

k
fWkrk ; ð37Þ

where

fWk ¼ 1

�
I� eAk

eAT

k
eAk

� ��1eAT

k

� 	
: ð38Þ

Thus, the effects of bk may be mapped into the data weight
matrix. Note, however, that the matrix inside the brackets is
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a projection matrix and is rank deficient. It gives zero weight
to the directions spanned by the columns of eAk. This cor-
responds to infinite variances in the associated data covari-
ance matrix and prompts the use of the generalized inversion
operator “+” in the expression for Vk in equation (35).
[30] The choice of fundamental spatial and temporal

resolutions (2° mascon grid at a 10 day interval) are made
based on spatiotemporal coherency structure in the KBRR
residuals and the choices for T and D result from the
regional mascon investigations of Luthcke et al. [2008]. It
was found that choosing T and D close to the separation time
and distance between adjacent mascons in time and space,
respectively, which is to say T = 10 days and D = 200 km,
provides a good compromise between misfit and signal
structure (annual and trend) for a range of l. These results
were extrapolated to the global case by Rowlands et al.
[2010] and we also adopt this value for D throughout, but
do use T values of 10 and 20 days. In the course of our study
we compare solutions using only intramonthly time corre-
lation, as in the work of Rowlands et al. [2010], where we
use their value of l = 2 × 10−4, with those using continuous
time correlation, where l = 1 × 10 −4. The relative decrease
in l offsets the additional constraints applied in the con-
tinuous case. A discussion of the dynamical properties and
implications of the temporal and spatial constraints used in
GSFC mascons solutions is presented in Appendices A
and B.

2.4. Summary

[31] The GSFC mascon approach exhibits several advan-
tages for modeling global mass flux. First, the spatial
localization of the mascons allows for plausible signal
covariance matrices to be constructed based upon geoloca-
table physical properties, particularly through the use of
independent regions [Rowlands et al., 2010]. Any regional
constraints applied in a spectral approach would require a
covariance propagation, as in equation (15), from a locali-
zation like mascons regardless. Although the weighting used
in this study is isotropic in space and time within a given
region, this is certainly not required. Second, many research
groups are provided with a time series of Stokes coefficients
whose derivation is outside of their control. Furthermore,
they do not typically have access to the noise covariance
matrices corresponding to these series [Kusche, 2007; Klees
et al., 2008]. Since we derive our mascon, and subsequently
our Stokes coefficient, time series directly from tracking
data, we have not only a full noise covariance matrix, but
one that is consistent with the coefficients. This is an
important point since the use of a distorted noise covariance
matrix will result in a suboptimal filter F [Kusche, 2007].
Note that these latter advantages apply not only to spectral
approaches, but to other space‐domain approaches in which
a third party provides only a time series and no quantifica-
tion of its error characteristics.
[32] However, Kusche [2007] also points out that the

inverse of the data normal matrix N−1 is not necessarily the
actual noise covariance matrix reflected in the data due to
unknown GRACE background model (tides, atmospheric
pressure) errors. It is precisely this point that has motivated
us to further investigate the removal of more complete
background models (what we call forward modeling) such

as hydrology in section 4, which is the largest signal
remaining in the data analyzed by Rowlands et al. [2010].
[33] Finally, the mascon technique, including regulariza-

tion, may be classified in terms of a Kalman smoother
applied to a variable‐order Markov process. This provides a
general framework in which to address the global mass flux
problem, and we shall see in section 3 how this can be made
computationally feasible.

3. Inversion Scheme

[34] It should be clear that whether we solve for a time
series of mascons ~m in equation (11) or Stokes coefficients ~c
in equation (14) we will need to invert matrices which are
dense and whose size grows quadratically with the number
of time intervals of interest. Even at a modest resolution
level of one month, this will result in several tens of inter-
vals and render direct inversions of these matrices imprac-
tical. We are therefore motivated to look for an alternative
inversion method, and we will see that the special structure
of the Pm matrix makes iterative methods very attractive for
our needs.
[35] During the period between April 2003 and November

2008 we analyzed 197 intervals of 10 day duration having
acceptable GRACE KBRR measurements using a 2° mascon
grid, amounting to 2,048,012 mascon parameters. We also
estimate a daily set of three parameters (other nuisance
parameters such as accelerometer biases are estimated in
earlier steps of the processing) over the 1660 days included
in this study, giving 2,052,992 total parameters. These
parameters, as described by Rowlands et al. [2002], are
essentially calibrations used for orbital arc refinement and
are handled in the inversion scheme by the usual partitioned
solution approach in which their Schur‐complement matrix
[Demmel, 1997] is produced, the mascons adjustment
solutions are made, then backsubstitution is applied for daily
parameter adjustments. Because the footprint of the Schur
complement does not extend beyond that of LTNL, the daily
parameters do not impact the design of the inversion scheme
and will not be discussed further.
[36] While the inversion indicated in equation (11)

involves a dense matrix of the stated dimensions, inspec-
tion of equations (26) and (29) shows that only the second
term, −Z � S, in Pf extends beyond the block‐diagonal
footprint of LTNL. Although the inverse of this term,
−Z−1 � S−1, and the inverse of the remaining block‐diagonal
term are easily computable, the inverse of their sum is not.
This suggests the use of an iterative inversion method that
invokes the matrix only through matrix‐vector multiplies. In
particular, this involves the multiplication of Z � S with
various vector quantities x whose size and ordering corre-
spond to the mascon solution vector m. This is greatly
facilitated by the following property of Kronecker products
[Lev‐Ari, 2005]

Z� Sð Þx ¼ Z� Sð Þvec Xð Þ ¼ vec SXZð Þ; ð39Þ

where the vec(·) operator vectorizes a matrix by columns and
X is an N × Kmatrix such that Xij is a quantity corresponding
to the ith mascon parameter in the jth time interval (recall that
K is the number of time intervals and N is the number of
mascons within any given interval). The operation count for
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the expression on the left is of order O(N2K2), while that on
the right isO(NK(N + K)). For N� K, the speedup is a factor
of O(K); for our case this is about 197. As for storage, the
explicit Z � S requires O(N2 K2) words while individually,
Z and S together require O(N2 + K2) words. For N � K, the
savings is a factor ofO(K2); for our case this is about 39,000.
[37] We have chosen the Preconditioned Conjugate Gra-

dient (PCG) method for our iterative scheme because of its
simplicity, minimal storage requirements, and good con-
vergence properties, details of which are given by Demmel
[1997] and Golub and Van Loan [1989]. The precondi-
tioned version is chosen since the convergence rate is higher
for system matrices with lower condition numbers or fewer
extreme eigenvalues [Demmel, 1997]. Because information
is so concentrated in the N × N block‐diagonal portions of
our system matrix in equation (11), it is natural to employ
this as a preconditioner, which is known as block‐Jacobi
preconditioning. This effectively means that in addition to
matrix‐vector multiplications, we must also explicitly invert
this preconditioner matrix at each iteration, but this can be
expedited by initially computing and storing the associated
Cholesky factors of each block.
[38] Given that N� K, this results in an inversion scheme

whose storage requirements and operation count per itera-
tion grow linearly to first order with the number of time
intervals. This is much more favorable than the storage
requirements and operation count of the Cholesky decom-
position used by Rowlands et al. [2010] that grow quadrati-
cally and cubically, respectively, with the number of time
intervals. In fact, it would require an iteration count of order
O(NK2) for the PCG method to match the operation count in
the Cholesky method. We find, however, that to meet the
termination criterion

k �m j k2
k m j k2 � 0:1%; ð40Þ

where k·k2 is the Euclidean norm and m j and dm j are the
PCG solution and update vectors at the jth iteration,
respectively, it typically requires about 20 iterations. A
parallelized algorithm arrives at the solution in approxi-
mately 3 h of wall‐clock time using 16 processors on the
Linux cluster “Discover” of the NASA Center for Compu-
tational Sciences (NCCS) located at GSFC.

4. Forward Modeling of Hydrology

[39] There are various advantages to using models of
time‐variable gravity signal as part of the a priori force
model (as a forward model) when processing GRACE Level
1B tracking data. Many GRACE‐derived time series are
based on monthly solutions, the ones in this paper are based
on 10 day solutions, and Kurtenbach et al. [2009] have even
produced a time series based on daily solutions. However,
even daily solutions cannot capture short period (subdaily)
variations in the gravity field caused by atmospheric effects.
In order to prevent aliasing, it is necessary to employ for-
ward models of any effect containing periods too short to be
captured by the estimation period.
[40] The forward models of the global mascon solutions

presented by Rowlands et al. [2010] were selected on the
basis of the frequency content of the sources. The forward

models of that previous study are used again in this study.
Gravity variations from the atmosphere are modeled to d/o
90 at 3 h intervals derived from European Centre for
Medium‐Range Weather Forecasts (ECMWF) operational
pressure grids. Ocean tides are modeled with the GOT4.7
tide model [Ray, 1999; Ray and Ponte, 2003]. The non-
barotropic response of the ocean to atmospheric pressure
loading (derived from 6 hourly ECMWF atmospheric
pressure and winds), is modeled to d/o 90 using MOG2D
[Carrere and Lyard, 2003].
[41] Apart from frequency content of the signal, there

can be other considerations for including sources of time‐
variable gravity in the forward model. Gravity estimation
from satellite tracking data analysis is a nonlinear process,
often requiring multiple iterations. It is always helpful to
start the estimation process as close to the “truth” as is pos-
sible. Also, although the differential nature of the GRACE
KBRR observations makes them ideal for isolating local
features of the Earth’s gravity field, there are limitations.
Rowlands et al. [2010] show that the effect of 20 cm of
water standing over a 4° × 4° block at the equator is still
seen in KBRR data 800 km past the edge of the block. This
can result in spatial aliasing (otherwise known as leakage) in
estimated gravity fields. GPS data do not isolate gravity
signal as well as KBRR data, so, when GRACE gravity
solutions include GPS data (as often the case, although not
for the solutions described in this paper), the leakage problem
can be even more severe. All of this argues for exploring the
suitability of various sources of time variable gravity signal
for forward modeling.
[42] The time‐variable gravity signal generated by hydrol-

ogy is one of the largest components of change detected by
GRACE [Chen et al., 2005] and in some large areas, such as
the Amazon basin, the annual amplitude of the hydrological
signal, as given by the GLDAS hydrology model, reaches
over 16 cm of equivalent water. Even so, none of the GRACE
Mission Releases (01–04) of Level 2 monthly gravity fields
have used hydrology information as part of their forward
modeling [Flechtner, 2007]. It was presumed that no cur-
rently available hydrology model had sufficient accuracy and
resolution for use as a forward model. In this section we will
show that there is ample evidence that using the GLDAS/
Noah hydrology model [Rodell et al., 2004] in the a priori
gravity model during processing of GRACE Level 1B
tracking data has a beneficial effect on the resulting time
series of mass flux.
[43] Before demonstrating the effect of using the hydrol-

ogy forward model, some aspects of its implementation
should be discussed. The hydrology model provides infor-
mation about additional or surplus mass in 0.25° × 0.25°
cells over land areas at 3 h intervals. The sum of mass over
these cells in any time interval need not be zero, although
the Earth is obviously a closed system. The average period
of a trajectory computed using a snapshot of mass flux cells
is a function of the cells of mass that are overflown during
the interval of the snapshot. In order to compute the average
period correctly and have a global model suitable for orbit
computations, we need to ensure that the sum of mass
change over the entire Earth surface is zero. To this end we
place the total surplus or deficit of mass change over land
areas into the oceans. At each interval each ocean cell is
assigned the same “hydrology” value as every other ocean
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cell and the sum over all of the ocean cells is equal in
absolute value and opposite in sign to the sum over all of the
land areas covered by the original hydrology model. In
addition, as described by Luthcke et al. [2008], we have set
the hydrology model to zero for the major mountain glacier
areas and the Greenland and Antarctica ice sheets using a
0.25° mask. At each 3 h interval we create Stokes coeffi-
cients to d/o 90 from this global model of mass flux. These
Stokes coefficients are then combined with other 3 hourly
Stokes coefficients that correspond to atmosphere and ocean
models. At every epoch of satellite force model computation
the Earth’s gravity field is represented by the sum of the
Stokes coefficients from the mean gravity field and the
3 hourly gravity field.
[44] The first piece of evidence supporting the use of

GLDAS hydrology as a forward model comes from the
processing of Level 1B KBRR data during the creation of
the normal equations for our gravity solutions. Residuals
(the difference between actual observations and theoretical
observations that are computed based on models) are a key
component of any set of normal equations. The theoretical
KBRR observations used for forming the residuals of our
gravity normal‐equations were computed using various
models (including forward models of time‐variable gravity)
in daily solutions for parameters describing orbit initial state
and accelerometer biases. The estimation of these para-
meters is based on minimizing the root mean square (RMS)
of the KBRR residuals. The RMS of residuals from these
solutions is a measure of many things, including the fidelity
of forward models. For this investigation we have made
multiple time series of mascons based on various solution
strategies and for each time series we keep track of the RMS
of the KBRR residuals used to form the normal equations.

Among all of our time series of mascons we have two series
that differ only in the forward modeling used during the
daily generation of the KBRR residuals. One series, V06,
uses the GLDAS hydrology model in the a priori gravity
information and the other, V05, uses no hydrology model.
Figure 1 shows the difference in the daily RMS of KBRR
residuals used in the normal equations of these two time
series. For the overwhelming majority of days the fit of the
series using GLDAS hydrology is significantly better. For
the relatively few time periods (always about midyear)
where the GLDAS‐based series has degraded fit, the deg-
radation is minor. Apparently, the time‐variable gravity
signal contained in the GLDAS model is consistent with the
KBRR observations.
[45] Figure 2 shows the standard deviation of the 197

estimated mascon values in each of 10396 cells in the 2° grid
for the two time series. Looking at land areas (our global
hydrology forward model has spatial variation only over
land areas), it is clear that in general, the estimated mascon
parameters of the GLDAS‐based series are smaller in
absolute value. In other words, the a priori values of the
GLDAS‐based mascon series are closer to the adjusted
values over land (where mass signal used to generate a priori
gravity was modeled) than their counterparts that did not use
GLDAS as a forward model. There is no difference in the
constraint information used in the solutions of the two time
series, so the difference in the size of the adjustments in the
two time series over land areas is a reflection of the dis-
tances between the a priori parameter values and the values
detected by GRACE. In other words, the GLDAS hydrology
model agrees fairly well with mass estimates derived from
GRACE observations. This provides more evidence that the

Figure 1. Difference in daily RMS of KBRR residuals used in the V05 (no hydrology forward modeled)
and V06 (with hydrology forward modeled) normal equations, thus reflecting the effect of GLDAS
hydrology. The blue line represents data that is smoothed using a 15 day moving average. A positive
value indicates that the RMS of residuals of V05 is higher than that of V06.

SABAKA ET AL.: IMPROVING GRACE MASS FLUX SOLUTIONS B11403B11403

9 of 20



GLDAS hydrology can be used advantageously as a forward
model.
[46] We note that although our global hydrology forward

model has only temporal mass signal and no spatial signal
over oceans, the two time series differ significantly (in
magnitude and spatial distribution) over ocean areas (as can
be seen by Figure 2). As is the case over land areas, over
oceans the GLDAS‐based mascons have smaller adjust-
ments. In each ocean cell of the two time series we have
estimated the annual signal (a phase and amplitude parameter
at the annual frequency). Figure 3 shows the annual ampli-
tude of each ocean cell of each of the two time series and the
annual amplitude in the same cells for the GLORYS1V1
(GLobal Ocean ReanalYses and Simulations project) ocean
model [Drevillon et al., 2009]. The atmospheric and high‐
frequency oceanic forward models, that is, ECMWF and
MOG2D, have been restored in the two GRACE solutions
over the oceans in order to compare with the ocean circula-
tion model [Chambers, 2006]. It is clear from these three
plots that between the two mascon time series, the GLDAS‐
based time series (V06) has far less annual signal in the
oceans. It is also clear that the annual amplitudes of the
GLDAS‐based mascon series agree much more closely with
the ocean model. Furthermore, in the time series that did not
use GLDAS hydrology (V05) several of the ocean areas with
large annual amplitude are adjacent to land areas with large
hydrological signal (for example, the Amazon basin).
[47] The use of GLDAS hydrology as a forward model

has a significant effect on the time series of GRACE
observed ocean surface mass. In Figure 4 we plot the time
series of GRACE observed surface mass over the interior
oceans, defined as 500 km from coast and between ± 66°
latitude. The time series were computed using a calibrated
spatial averaging kernel applied to the global mascon solu-
tions represented as a time series of spherical harmonic
coefficients to d/o 90 [Swenson and Wahr, 2002]. Virtually
identical time series are obtained if a simple averaging of the
interior ocean mascons is performed at each epoch. It is
important to note that the time series do not represent ocean
mass. They are the time series derived directly from the
GRACE solutions and do not have the ocean model restored

as well as the geocenter contribution. The annual signal in
the time series that was estimated using a hydrology forward
model, i.e., V06, has an amplitude that is 2 mm larger than
that of V05. It is also a time series with less apparent noise.
These differences in signal and noise are worth noting for
researchers interested in ocean mass computations.

5. Continuous Time Correlation

[48] The GSFC regional mascon solutions have always
exploited continuous time correlation, as can be seen in the
work of Rowlands et al. [2005] and Luthcke et al. [2006b,
2008]. Recently, Kurtenbach et al. [2009] clearly quantified
the improvements in global GRACE gravity solutions
gained by exploiting continuous time correlation through
Kalman filtering and in this paper we have demonstrated
that our filter has a close relationship to this. The advantages
of Kalman filtering likely apply to our implementation of
continuous time correlation and vice versa, and in this sec-
tion we present evidence similar to that of Kurtenbach et al.
[2009] that this continuous scheme improves our solutions.
We compare our newest global mascon solutions to those of
Rowlands et al. [2010], where only correlations within
individual months, i.e., intramonthly (IM), are considered,
and show that extending time correlation across the entire
time series, i.e., continuous (C), improves the signal‐to‐
noise ratio over land areas (without loss of signal) and
provides an improved solution over the oceans.
[49] We are comparing time series of mass flux from two

solutions, both of which employ time correlation con-
straints. Our earlier solution (which is an extended time
series of the yearlong time series presented by Rowlands
et al. [2010]) uses time correlation constraints that are a
proper subset of those used in our latest solution. Therefore,
it is interesting to compare the signal and the noise in each
solution. It is important to check whether the additional
constraints of the second solution have decreased noise at
the expense of decreasing signal.
[50] In order to compare the signal and noise character-

istics of each solution, we examine the time series of mass
change in each of the 10396 cells in the 2° grid. In the time

Figure 2. Standard deviation expressed in centimeters of equivalent water height for the V05 (no hydrol-
ogy forward modeled) and V06 (with hydrology forward modeled) GRACE mascon solutions using T =
20 days and D = 200 km. White areas indicate values above the cutoff of 15.8 cm.
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series of each solution there are 197 estimates of mass, one
for each 10 day interval. For each of the 10396 separate time
series we estimate four parameters: two linear parameters,
and two parameters (a phase and amplitude) for the annual
period. The rate and amplitude parameters are intended as a
proxy for signal. As a proxy for noise in each cell we
compute the RMS discrepancy between our four parameter
function and the 197 mass estimates (we call this the “Fit”).
Of course, the annual signal in each cell varies from year to
year and we are estimating only an average annual signal, so
the “Fit” is most likely an overestimate of the noise. For
each cell we also compute the largest difference between
adjacent 10 day period mass estimates (we call this the
“Jump”). For each of the solutions we used the version of
our processing that does not forward model hydrology
(V05). In this way we can examine the largest signals.
Table 1 gives the RMS statistics computed over various land
cells for the two signal indicators and the two noise
indicators. The four signal and noise indicators are given
over three sets of land regions: all 2969 land cells, an area
of 261 land cells close to the Amazon, and the 43 land
cells corresponding to Greenland. The Greenland and
Amazon regional subsets are chosen for display because
they are known to have large signals.
[51] It is clearly demonstrated in Table 1 that the addi-

tional constraints employed for continuous time correlation
do not result in loss of signal, but do reduce noise. Green-
land is the area where the continuous time correlation
appears to reduce noise the most. This is likely due to the

relationship between time and space constraints. As men-
tioned in section 1 (more details are given by Rowlands
et al. [2010]), each cell in our grid belongs to 1 of 25
regions within (but not between) which spatial constraints
are used. The 261 Amazon cells of Table 1 belong to the
greater South American region of our solution that has a
total of 362 cells all tied together by spatial constraints. The
43 Greenland cells belong to two separate regions (interior
highlands and coastal lowlands). Greenland is an area in
which the characteristics of mass change vary quickly from
cell to cell. To avoid losing this spatial variation, we cannot
tie as many cells together as we do in the Amazon. The
Greenland region of our solution is by nature noisier without
the aid of additional temporal constraints. In other words,
time correlation is more important in regions of high spatial
variability.
[52] We present two more pieces of evidence that addi-

tional time constraints improve our solutions over ocean
areas. The first piece of evidence is given by the standard
deviation of the mass flux of the two solutions shown in
Figure 5; one is a continuous time correlation case and the
second uses intramonthly correlation only (as in the work of
Rowlands et al. [2010]). The time series produced using
only intramonthly correlation has many more longitudinal
streaks, averaging about 4–5 cm, than the continuous case,
and shows much more leakage in the Caribbean Sea area.
These longitudinal streaks and leakage are almost certainly
not signal.

Figure 3. Annual amplitude over the oceans expressed in centimeters of equivalent water height for the
V05 (no hydrology forward modeled) and V06 (with hydrology forward modeled) GRACE mascon solu-
tions using T = 20 days andD = 200 km with the ECMWF andMOG2D signals restored and GLORYS1V1
modeled ocean‐bottom pressure.
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[53] As a final indication of the improvement gained
through continuous time correlation, we compare two
mascon derived time series having different time correlation
constraints with ocean‐bottom pressure (OBP) records at
14 locations that are depicted in Figure 6. In order to make a
comparison with a mascon time series, the OBP records are
prepared to correspond to mascon values. Tides are removed
from the individual OBP records (tides are modeled in our
Level 1 GRACE processing) and then averages are formed
over 10 day periods corresponding to the mascon intervals.

The tide‐free 10 day average OBP values are then compared
against a mascon value extracted from the 10 day period and
2° cell corresponding the OBP value. No smoothing or
averaging of mascon values is done. However, as in the
comparison with the ocean model, the ECMWF and
MOG2D contributions are restored to the mascon values.
[54] For each of the three time series (two mascon and one

OBP) we also formed the time series composed of first
differences. The agreement (or lack of agreement) at long
wavelength will be better represented by comparisons

Figure 4. The time series of GRACE observed surface mass over the interior oceans, defined as 500 km
from coast and between ± 66° latitude, for the V05 (no hydrology forward modeled) and V06 (with
hydrology forward modeled) solutions. The blue dots represent the actual 10 day values, and the red curve
represents a 1‐D Gaussian smoothing of the 10 day values.

Table 1. Signal and Noise Statistics Over Land for V05 (No Hydrology Forward Modeled) Continuous (C) and Intramonthly (IM) Time
Correlation Solutions

Region Number of Cells

Trend (cm/yr) Ann Amp (cm) Jump (cm) Fit (cm)

C IM C IM C IM C IM

All land 2969 1.87 1.86 7.92 7.82 12.39 14.61 4.16 4.58
Amazon 261 1.04 0.89 17.86 17.14 13.74 16.33 4.95 5.24
Greenland 43 9.85 9.70 5.95 5.93 16.98 34.47 6.87 8.96
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between the original time series. The agreement at short
wavelength will be better represented by comparisons of the
first differences. Our mascon time series are posted every
10 days and so we are especially interested in the short
wavelength agreement. Also, any possible drifts in the OBP
sensors are less likely to affect the comparisons of first
differences.
[55] Table 2 gives comparisons between OBP records

(prepared as described above) and two solutions. The
comparisons are in the form of correlations between each
solution time series and the OBP time series as well as
correlations between the first‐differences. The two solutions
compared against OBP records (V06‐C and V06‐IM) have
hydrology forward modeled and differ only in the number of
time correlation constraint equations used. The V06‐C series

uses continuous time correlation constraints and the V06‐IM
series, like the 2° mascon solution described in the work of
Rowlands et al. [2010], has only intramonthly time corre-
lation constraints. In general (at 12 out of the 14 sites), the
V06‐C time series has higher correlations than the V06‐IM
series that uses time constraints only within months. The
comparison of the first differences of the series further
vindicates the use of continuous time correlation. The
first‐difference correlations are generally higher than the
undifferenced correlations (for both series) and the V06‐C
first‐difference correlations are always higher than those of
the V06‐IM series. Figure 7 shows the OBP sensor time
series along with the two GRACE time series with different
time correlation strategies at six sites. The means of the time

Figure 6. Locations of the 14 ocean‐bottom pressure gauges examined in this study.

Figure 5. Standard deviation over the oceans expressed in centimeters of equivalent water height for the
V06 (with hydrology forward modeled) (left) continuous and (right) intramonthly time‐correlated
GRACE mascon solutions using T = 20 days and D = 200 km.
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series are artificially separated so that it easier to see how the
features of each time series compare.

6. Global Solution Strategy

[56] We wish to present a solution that is determined
mainly from GRACE observations. In this paper we estab-

lish that there are advantages to using GLDAS hydrology as
a forward model, however, it does conflict somewhat with
our goal of deriving a solution for mass flux primarily from
the GRACE observations. Over land we use the GLDAS
hydrology model at a very high spatial resolution (0.25°)
and temporal resolution (3 h) and in many locations the

Figure 7. The 10 day averaged OBP time series of six selected gauges and the two corresponding V06
(with hydrology forward modeled) time series (continuous and intramonthly correlated). The intra-
monthly correlated solution shows significantly larger high‐frequency variations than the continuous cor-
relation solution and the OBP records. The continuous series (blue) has been shifted up by 10 cm, and the
intramonthly series (red) has been shifted down 10 cm to aid the comparison.

Table 2. Correlations Among Time Series and Among Their First Differences From 14 Ocean‐Bottom Pressure Gauges
and the V06 (With Hydrology Forward Modeled) Continuous (C) and Intramonthly (IM) Time Correlation Solutions

Gauge Number of Samples Span (years)

Time Series First Differences

C IM C IM

AMS 56 2003.26–2004.99 0.52 0.35 0.57 0.47
ANT11 78 2003.26–2007.32 0.52 0.53 0.45 0.41
ANT13 48 2006.82–2008.13 0.73 0.61 0.72 0.67
ANT5 110 2005.07–2008.10 0.32 0.25 0.29 0.24
ANT537 53 2006.65–2008.10 0.37 0.35 0.44 0.37
ANT9 110 2005.10–2008.13 0.32 0.17 0.61 0.55
F2 71 2004.68–2006.62 0.47 0.35 0.72 0.54
F6 101 2003.73–2006.62 0.56 0.48 0.77 0.65
F8 100 2003.73–2006.62 0.53 0.44 0.73 0.60
IO1 38 2004.10–2005.13 0.51 0.53 0.60 0.58
IO2 37 2004.10–2005.10 0.53 0.46 0.75 0.70
d125 34 2003.26–2004.37 0.18 0.00 −0.05 −0.20
d157 33 2003.26–2004.35 0.56 0.38 0.64 0.47
d171 33 2003.26–2004.35 0.52 0.38 0.42 0.27
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hydrology forward model is a larger component of the mass
signal than the residual signal recovered by GRACE. Over
land this makes it almost impossible to present a determi-
nation of mass flux as observed purely by GRACE. Over
oceans (as explained in section 4) our implementation of the
hydrology model is at very low spatial resolution. The main
advantage of a global hydrology forward model to oceans
areas is the prevention of signal leakage from land areas and
any spatial variation in the final determination of mass flux
over oceans (the estimated mascons added to the hydrology
model) arises solely from the mascons parameters. We avoid
the disadvantages over land areas and preserve the advan-
tages over the oceans by forming a hybrid model from two
solutions. The ocean areas are extracted from a global
solution in which GLDAS hydrology is used as a forward
model (V06) and the land areas are extracted from a solution
in which hydrology is not modeled (V05). Our preferred
hybrid solution is mainly determined by GRACE over the
oceans (is not dominated by the implementation of the
hydrology model over ocean areas) and is completely
determined by GRACE over land. It should be noted that the
land V05 portion of the solution uses a value of T = 10 days
while the ocean V06 portion uses a value of T = 20 days.
These were chosen to accommodate the different signal‐to‐
noise ratio characteristics of each portion.
[57] For example, the RMS annual amplitude over land

for the V05 continuously time‐correlated solution is 7.92 cm

while the fit about the trend and annual signal is about
4.16 cm (see Table 1). In the same solution, the RMS annual
amplitude over the oceans is 2.18 cm while the fit about the
trend and annual signal is 3.0 cm. When the V05 solution is
repeated with T = 20 days (instead of 10 days), the RMS
annual amplitude decreases by only 2 mm (10%) while the
fit about the signal drops by 1 cm (33%) and the signal
becomes as large as the noise.
[58] The fact that our preferred global solution is really

two regional solutions sewn together in no way prevents us
from constructing the corresponding Stokes coefficients. In
Figure 8 we plot the d/o 15 coefficients of several time
series: (1) our preferred mascon solution, (2) a time series of
GSFC monthly estimates of Stokes coefficients similar to
those described in the work of Luthcke et al. [2006a], and
(3) the GLDAS hydrology model. The d/o 15 resonance for
GRACE is known to be a problem in time series in which
standard Stokes coefficients are estimated in separate
uncoupled solutions for each time period [Swenson and
Wahr, 2006]. Figure 8 shows that our preferred solution is
very well behaved at d/o 15.
[59] Finally, in Figure 9 we present the standard deviation

of the mass flux from the series corresponding to our pre-
ferred solution. Figure 9 is plotted directly (without any post
solution smoothing) from the Stokes coefficients (given to
d/o 120) of our preferred solution. There is very little

Figure 8. Time series of C15
15 and S15

15 Stokes coefficients from our preferred mascon solution at a 10 day
sampling interval (green), from a series of Stokes coefficients estimated independently at monthly inter-
vals (red), and the GLDAS series at a 10 day sampling interval (black).
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streaking and areas of known geophysical signal are clearly
isolated.

7. Conclusions

[60] A mascon parameterization of time‐variable gravity
combined with reasonable physical constraints provides a
powerful tool for analyzing mass flux processes seen by
GRACE KBRR measurements. We have placed this
approach in the context of other filtering techniques and
have shown that it is as versatile as any of the other methods
currently in use. Indeed, it can be interpreted as an ANS
filter in which consistent pairs of Stokes coefficient states
and full covariance matrices are combined with physically
motivated and targeted constraints, which is straight forward
due to the localized space/time nature of the mascons. We
have interpreted the time constraints in terms of linear
dynamical systems and have shown that these allow for a
broad range of behavior with respect to correlation times.
These arguments clearly translate into analogous proper-
ties in our spatial constraints as well. Exploitation of the
Kronecker product structure of these constraints into spatial
and temporal factors allows for a very efficient solution
algorithm (in both storage and computation) to be realized
based upon the PCG method.
[61] While the GRACE KBRR measurements can sense

the center of a gravity source, the gravity signal can be
spread over a wide area resulting in leakage. We have
shown that the removal of dominant, known sources, par-
ticularly hydrology, greatly reduces this contamination. This
forward modeling, as we call it, provides vast improvement
over areas, for instance, north and south of the Amazon
basin. In addition, removal of these periodic (seasonal)
signals justifies the use of the monotonically nonincreasing
autocorrelation functions we are implicitly assuming in our
temporal constraint structure. Forward modeling also leads

to KBRR residuals that more closely conform to zero‐mean
Gaussian distributions, which is an assumption of least
squares.
[62] The process dynamics underlying the time‐variable

gravity signals are almost surely correlated through time and
we can now build this continuous correlation into our esti-
mators. We have shown that this generally results in solu-
tions with reduced random variance, but not reduced power
of systematic signals when compared to solutions incorpo-
rating only piecewise time correlation.
[63] This has culminated into a strategy for producing a

preferred global solution, a hybrid, in which forward mod-
eling of hydrology removes leakage in the ocean basins
portion of the model and a relative decrease in T allows for
higher autocorrelations at greater lags as would be expected
when not removing the hydrological signals in the land
portion of the model. The result is a model with minimal
contamination over the oceans that is purely GRACE
derived over land.

Appendix A: Dynamical Properties
and Interpretation

[64] The dynamics of the filter are completely determined
by the eZ matrix of equation (34) and may be interpreted as
the response through time to an impulse m0 introduced at
time t1 = 0 in the presence of stochastic forcings u by solving
for m in the bottom portion of equation (32) such that

m ¼ �G
�1

u� að Þ: ðA1Þ

Observe that since our G = −eG � I, where eG is a K × K
lower‐triangular matrix, and B1 = 0, then by the multipli-
cation of Kronecker products we have

eG� I
� �

1�m0ð Þ ¼ e1 �m0 ¼ �a; ðA2Þ

Figure 9. Standard deviation expressed in centimeters of equivalent water height for the preferred hybrid
GRACE solution in which forward modeling of hydrology was used over the oceans where T = 20 days,
but not over land where T = 10 days. A value of D = 200 km was used over all regions.
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where e1 is a unit vector whose first element is one and
otherwise zero. This is an important general property of our
filter since it means that the impulse m0 will persist through
time and will not decay away; an infinite‐memory filter.
Contrast this with a Kalman filter in which eG is lower
bidiagonal with eGkk = 1 for k = 1, …, K and eGk,k−1 = −b for
k = 2, …, K with 0 < b < 1. Clearly the row‐sums for rows
k = 2, …, K do not vanish and the result is a presence of
m0 that decays away with time in the kth interval by the
factor bk−1; a limited memory filter. Kurtenbach et al.
[2009] also use the Kalman filter, but impose the infinite‐
memory property shared by our filter by choosing b = 1.
[65] The inversion of Kronecker products leads to −G−1 =eG−1 � I, and so eG−1 actually determines the interplay

between m0 and u. A description of its precise behavior as a
function of T and tij over nonuniform intervals is beyond the
scope of this paper. However, we can provide this for uni-
form intervals, which is the situation for most cases. Let
Dt be the constant duration of the uniform intervals and let
x = exp(1) and r = exp(−Dt/T). It then follows from
equations (27) and (34) that

eZij ¼
�

�

1� �

� �
2� �i�1 � �K�ið Þ ; i ¼ j

��� i�jj j ; i 6¼ j

8><>: ; ðA3Þ

eGi j ¼

1 ; i ¼ j

0 ; i < j

� 1� �

1� � i�1

� �
�i�j�1 ; i > j

8>>>>><>>>>>:
; ðA4Þ

eG�1
i j ¼

1 ; i ¼ j

0 ; i < j

1� �

1� � j
; i > j

8>>>>><>>>>>:
: ðA5Þ

[66] For a fixed Dt we can look at two extreme cases:
(1) for very long T such that limT→∞ r = 1; denoted the “T∞”
case, and (2) for very short T such that limT→0 r = 0;
denoted the “T0” case. The results are

eG�1
ij ¼

1; i ¼ j

0; i < j

1

j
; i > j

9>>>>>=>>>>>;
T1

0 ; i < j

1 ; i � j

9=; T0

8>>>>>>>>>>>><>>>>>>>>>>>>:
: ðA6Þ

It turns out that eG−1 for the “T0” case is identical to that of
the Kalman filter used by Kurtenbach et al. [2009] and

represents a classic “random walk” starting fromm0 at t1 = 0
with the kth step being uk.
[67] Because uk is random we cannot know in advance the

value of mk for k = 1, …, K, but we can determine its
probabilistic position and uncertainty of this position by
using U. As can be seen from equation (35), with the
exception of the force u0 on the initial impulse, our filter
readily provides this information. If we assume an inde-
pendent identical spatial distribution, then it has the form
uk ∼ N (0, sk

2 I) for k = 1, …, K − 1, where sk−1
2 = l−1 Bkk

−2

and l is a general scaling factor (actually the damping factor
in equation (35)). Our filter does not provide u0, but we can
assume a similar form of u0 ∼ N (0, s0

2 I). It then follows
immediately from the linearity of equation (A1) that

E mk½ � ¼ m0; ðA7Þ

C mk ;mk 0

 � ¼ Xk

j¼1

	2
j�1
eG�1
k j
eG�1
k 0 j

" #
I ¼ ckk 0 I; ðA8Þ

where E[·] and C[·, ·] are the expectation and covariance
operators, respectively. Because eGk,1

−1 = 1, the s0
2 value

serves as a constant offset to the ckk′ values provided by
the filter. If we let 	k

2 = ckk, then this leads to the following
general variance/covariance expressions for k = 1, …, K − 1
and j = k + 2, …, K, seeded with 	1

2 = s0
2:

	2
k ¼

��1

��

1� �

1� � k

� �
1þ �

1� � K�k�1

1� �kþ1

� �� 	�1

; ðA9Þ

	2
kþ1 ¼ 	2

k þ 	2
k þ

1� �

1� �k

� �2

� 1

" #
	2
k�1

( )
; ðA10Þ

ckþ1; j ¼ 	2
kþ1 þ

1� �

1� �kþ1
� 1

� �
	2
k : ðA11Þ

The recursive relationships are a result of the sub‐diagonal
portion of each column of eG−1 being constant.
[68] For the end‐member cases the expressions in

equations (A9)–(A11) reduce to

	2
k ¼ ��1

�K

k þ 1

k

� �
	2
kþ1 ¼ 	2

0 þ 	2
1

ckþ1; j ¼ 	2
0 þ

1

2
	2
1

9>>>>>>=>>>>>>;
T1

	2
k ¼ ��1

��

	2
kþ1 ¼ 	2

0 þ k	2
1

ckþ1; j ¼ 	2
0 þ k	2

1

9>>>>>=>>>>>;
T0

: ðA12Þ

Note that to keep the variances finite in the “T0” case, we
must choose l proportional to r−1. The results are inter-
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esting in that the level‐s curves of the probability distri-
bution function of position range from the classic

ffiffiffi
k

p
functionality with step k for the “T0” or “random walk” case
(if we choose s0

2 = s1
2) to a constant function with step k for

the “T∞” case. We shall see that for infinitely long series
(K → ∞), the “T∞” case becomes a “white noise” process
about m0. Clearly, this range is asymptotically obtainable
in our scheme by proper choices of T.
[69] These properties can be illustrated by showing

examples of time series of a single mascon governed by a
linear dynamical system reflecting the covariance structure
of the temporal constraints used in GSFC mascon solutions.
Three cases are explored, the two end‐member cases and an
intermediate case similar to one considered in this paper in
which T = 20 days and Dt = 10 days. We assume a perfectly
known (s0

2 = 0 cm2) impulse of m0 = 10 cm is introduced at
t1 = 0 days and draw from a single set of independently
distributed uk ∼ N (0, 1) for k = 1, …, K − 1, which are then
scaled to the appropriate sk

2 level for each case. We choose l
such that sk

2 = 0.01 cm2 for the “T0” case and then scale the
other cases such that all mean variances over the time‐span
of interest are equivalent. We run the systems for K =
1000 steps. Figure A1 shows the three time series where the
“T∞” and “T0” cases are indicated in blue and red, respec-
tively, and the intermediate case is in green. The “+” sym-
bols show mk while the smooth curves define the 1‐s
probability zone where mk is likely to be located. The black
horizontal line indicates m0. The continuum from the “ran-
dom walk” to the “white noise” process with increasing T
can be clearly seen. However, what might not be so obvious

is the autocorrelation of the time series, especially as a
function of duration of the series, which is one of the most
familiar properties used in designing filters.

Appendix B: Autocorrelation

[70] The autocovariance gL of a discrete time series of
length K for a single mascon m at lag L is given by [Davis,
1973]


L ¼ 1

K � L� 1

XK�L

j¼1

mj � �b
L

� �
mjþL � �e

L

� �
; ðB1Þ

where mj and mj+L are the mascon values at discrete times tj
and tj+L, respectively, and mL

b and mL
e are the mean values

computed from the series subsets {m1,…, mK−L} and {mL+1,
…, mK}, respectively. The expected value of gL over an
ensemble of such time series for this particular mascon can
be directly related to the covariance matrix in equation (A8)
for a single mascon, denoted Cm, through simple propaga-
tion as

E 
L½ � ¼ 1

K � L� 1
Tr JLK

b
LCmK

e
L


 �
; ðB2Þ

where Tr[·] is the trace operator, JL is a matrix whose Lth
subdiagonals are all ones and otherwise zero, and

Kb
L ¼ KL 0

0 0

� �
; Ke

L ¼ 0 0
0 KL

� �
: ðB3Þ

Figure A1. Example of time series of a single mascon governed by a linear dynamical system reflecting
the covariance structure of the temporal constraints used in GSFC mascon solutions. A perfectly known
(s0

2 = 0 cm2) initial impulse of m0 = 10 cm is introduced at t1 = 0 days and evolves through time in the
presence of a stochastic force uk−1 at step k for K = 1000 steps. Three cases are shown: (1) an extreme case
in which T is much longer than the interval duration Dt (blue), (2) an extreme case in which T is much
shorter than the interval duration (red), and (3) an intermediate case in which T = 20 days and D t =
10 days (green). The plus symbols show mk, while the smooth curves define the 1 − s probability zone,
where mk is likely to be located. The black horizontal line indicates m0. The variances in case (2) are set to
sk
2 = 0.01 cm2, for k = 1, …, K − 1, and the variances for the other two cases are scaled such that all mean

variances over the time span of interest are equivalent.
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HereKL = I − 1
K�L11

T is a (K − L) × (K − L) projection matrix
which removes the mean from a length‐(K − L) vector. The
associated variances for the two series subsets gL

b and gL
e are

given by


bL ¼ 1

K � L� 1

XK�L

j¼1

mj � �b
L

� �2
; ðB4Þ


eL ¼ 1

K � L� 1

XK
j¼Lþ1

mj � �e
L

� �2
; ðB5Þ

and their expected values over an ensemble of such time
series are

E 
bL

 � ¼ 1

K � L� 1
Tr Kb

LCmK
b
L


 �
; ðB6Þ

E 
eL

 � ¼ 1

K � L� 1
Tr Ke

LCmK
e
L


 �
: ðB7Þ

The autocorrelation RL over the ensemble at lag L is then
given by

RL ¼ E 
L½ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 
bL½ �E 
eL½ �

q
: ðB8Þ

[71] Approximations to equations (B1), (B4), and (B5)
can be made when K � L such that mL

b and mL
e can be

replaced by the mean value over the entire series and gL
b

and gL
e can be replaced by the variance over the entire

series g0 [see Wilks, 2006]. In this situation, equation (B8)
can be evaluated, after extensive algebra, for the end‐
member cases such that

RL ¼

1 ; L ¼ 0

� 1

K

1� LK�1

1� Lþ 1ð ÞK�1
; L > 0

9>=>; T1

1� 5LK�1 þ 6L2 � 1ð ÞK�2 þ L 1� 2L2ð ÞK�3

1� LK�1 � Lþ 1ð ÞK�2
T0

8>>>>>>>>>><>>>>>>>>>>:
:

ðB9Þ

For an infinitely long series, i.e., K → ∞, and a finite lag L′
these approach RL′ = dL′ for the “T∞” and RL′ = 1 for the “T0”
cases, where dL′ is the Kronecker delta.
[72] We can now make a connection with the classic

definition of “correlation time” Tc in the context of infinite
first‐order Markov chains in which RL = exp(−LDt/Tc)
[Gelb, 1974], and so RL = e−1 at time LDt = Tc. The “ran-
dom walk” and “white noise” cases occur when Tc → ∞ and
Tc → 0, respectively, but this is in contrast to the T → 0 and
T → ∞ respective conditions needed for the same. Since
Rowlands et al. [2010] define the a priori variance of mj+L

− mj as e	L2 = l−1x−1r−L, then we see that T = e	L2/(e	L2)t,
where (·)t is the derivative operator with respect to t = LDt,
and so it may be more appropriate to call T the “character-
istic time” of e	L2 rather than a “correlation time.” Because
the structure of the spatial constraints is similar to that of the
temporal constraints used in GSFC mascon solutions, a
similar argument applies to the terminology used in
describing D.
[73] Figure B1 shows the autocorrelation functions that

correspond to the three cases in Figure A1, except here the

Figure B1. The autocorrelation functions RL as a function of lag L corresponding to the three cases
shown in Figure A1, except here the intermediate case uses T = 200 days. The colored plus symbols
are computed with E[gL], E[gL

b], and E[gL
e] from an ensemble average of equations (B1), (B4), and (B5),

respectively, using 3000 sample time series, while the black curves are computed with E[gL], E[gL
b], and E

[gL
e] directly from equations (B2), (B6), and (B7), respectively.
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intermediate case uses T = 200 days in order to accentuate
the variation of RL with T. In fact, the RL of the intermediate
case in Figure A1 would fall very close to the “T0” curve.
Because RL is a monotonically nonincreasing function of L,
we can determine Tc as the time at which RL = e−1, although
some correlation time definitions use RL = 0. For the case of
Dt = 10 days, T = 20 days, and K = 197, it takes approxi-
mately Tc = 400 days for RL to decrease to a value of e

−1 and
Tc = 970 days for RL to vanish.
[74] Ultimately, only the upper‐right (K − L) × (K − L)

portion ofCm is operated on in equation (B2). The structure of
Cm revealed in equation (A11) shows that post‐multiplication
byKL

e makes E[gL], and therefore RL, vanish when L ≥ Kþ1
2


 �
for all values of T, where the ⌊·⌋ operator indicates “the largest
integer not greater than” the argument. This is indeed evident
in Figure B1.

[75] Acknowledgments. Support for this work was provided by
NASA through the GRACE Science team. We gratefully acknowledge
the quality of GRACE Level 1B products produced by our colleagues at
the Jet Propulsion Laboratory. We also thank the NCCS at GSFC for com-
putational resources. Jean‐Paul Boy is currently visiting NASA Goddard
Space Flight Center, with a Marie Curie International Outgoing Fellowship
(PIOF‐GA‐2008‐221753). We would like to thank three anonymous
reviewers and the Associate Editor for their useful insights and suggestions.

References
Brooks, D. H., G. F. Ahmad, R. S. MacLeod, and G. M. Maratos (1999),
Inverse electrocardiography by simultaneous imposition of multiple con-
straints, IEEE Trans. Biol. Eng., 46, 3–18, doi:10.1109/10.736746.

Carrere, L., and F. Lyard (2003), Modeling the barotropic response of the
global ocean to atmospheric wind and pressure forcing—Comparisons
with observations, Geophys. Res. Lett., 30(6), 1275, doi:10.1029/
2002GL016473.

Chambers, D. P. (2006), Observing seasonal steric sea level variations with
GRACE and satellite altimetry, J. Geophys. Res., 111, C03010,
doi:10.1029/2005JC002914.

Chao, B. F., W. P. O’Conner, A. T. C. Chang, D. K. Hall, and J. L. Foster
(1987), Snow load effects on the Earth’s rotation and gravitational field
1979–1985, J. Geophys. Res., 92(B9), 9415–9422, doi:10.1029/
JB092iB09p09415.

Chen, J. L., M. Rodell, C. R. Wilson, and J. S. Famiglietti (2005), Low
degree spherical harmonic influences on Gravity Recovery and Climate
Experiment (GRACE) water storage estimates, Geophys. Res. Lett., 32,
L14405, doi:10.1029/2005GL022964.

Davis, J. C. (1973), Statistics and Data Analysis in Geology, John Wiley,
New York.

Demmel, J. W. (1997), Applied Numerical Linear Algebra, SIAM,
Philadelphia, Pa.

Drevillon, M., L. Parent, N. Ferry, E. Greiner, and B. Barnier (2009),
Global ocean reanalysis simulations at Mercator Océan GLORYS1:
The Argo years 2002–2008, Eos Trans. AGU, 90(52), Fall Meet. Suppl.,
Abstract OS22A–04.

Flechtner, F. (2007), Gravity recovery and climate experiment; AOD1B
product description document for Product Releases 01 to 04, GRACE
Rev 3.1, 327–750.

Gelb, A. (1974), Applied Optimal Estimation, MIT Press, Cambridge,
Mass.

Golub, G. H., and C. F. Van Loan (1989), Matrix Computations, 2nd ed.,
Johns Hopkins Univ. Press, Baltimore, Md.

Higham, N. (1990), Analysis of the Cholesky decomposition of a semide-
finite matrix, in Reliable Numerical Computation, edited by M. G. Cox
and S. J. Hammarling, pp. 161–185, Oxford Univ. Press, Oxford, U. K.

Klees, R., E. A. Revtova, B. C. Gunter, P. Ditmar, E. Oudman, H. C.
Winsemius, and H. H. G. Savenije (2008), The design of an optimal filter
for monthly GRACE gravity models, Geophys. J. Int., 175, 417–432,
doi:10.1111/j.1365-246X.2008.03922.x.

Kurtenbach, E., T. Mayer‐Gürr, and A. Eicker (2009), Deriving daily snap-
shots of the Earth’s gravity field from GRACE L1B data using Kalman
filtering, Geophys. Res. Lett., 36, L17102, doi:10.1029/2009GL039564.

Kusche, J. (2007), Approximate decorrelation and nonisotropic smoothing
of time‐variable GRACE‐type gravity field models, J. Geod., 81,
733–749, doi:10.1007/s00190-007-0143-3.

Laub, A. J. (2005), Matrix Analysis for Scientists and Engineers, SIAM,
Philadelphia, Pa.

Lev‐Ari, H. (2005), Efficient solution of linear matrix equations with appli-
cation to multistatic antenna array processing, Commun. Inf. Syst., 5,
123–130.

Luthcke, S. B., D. D. Rowlands, F. G. Lemoine, S. M. Klosko, D. S. Chinn,
and J. J. McCarthy (2006a), Monthly spherical harmonic gravity field
solutions determined from GRACE inter‐satellite range‐rate data alone,
Geophys. Res. Lett., 33, L02402, doi:10.1029/2005GL024846.

Luthcke, S. B., H. J. Zwally, W. Abdalati, D. D. Rowlands, R. D. Ray,
R. S. Nerem, F. G. Lemoine, J. J. McCarthy, and D. S. Chinn (2006b),
Recent Greenland ice mass loss by drainage system from satellite gravity
observations, Science, 314, 1286, doi:10.1126/science.1130776.

Luthcke, S. B., A. A. Arendt, D. D. Rowlands, J. J. McCarthy, and C. F.
Larsen (2008), Recent glacier mass changes in the Gulf of Alaska region
from GRACE mascon solutions, J. Glaciol., 54, 767–777, doi:10.3189/
002214308787779933.

Moritz, H. (1980), Advanced Physical Geodesy, Abacus, Kent, U. K.
Ray, R. D. (1999), A global ocean tide model from TOPEX/POSEIDON
altimetry: GOT99.2, Tech. Rep. 1999–209478, NASA Goddard Space
Flight Cent., Greenbelt, Md.

Ray, R. D., and R. M. Ponte (2003), Barometric tides from ECMWF oper-
ational analyses, Ann. Geophys., 21, 1897–1910, doi:10.5194/angeo-21-
1897-2003.

Rodell, M., et al. (2004), The Global Land Data Assimilation System, Bull.
Am. Meteorol. Soc., 85(3), 381–394, doi:10.1175/BAMS-85-3-381.

Rowlands, D. D., R. D. Ray, D. S. Chinn, and F. G. Lemoine (2002),
Short‐arc analysis of intersatellite tracking data in a gravity mapping mis-
sion, J. Geod., 76, 307–316, doi:10.1007/s00190-002-0255-8.

Rowlands, D. D., S. B. Luthcke, S. M. Klosko, F. G. Lemoine, D. S. Chinn,
J. J. McCarthy, C. M. Cox, and O. B. Anderson (2005), Resolving mass
flux at high spatial and temporal resolution using GRACE intersatellite
measurements, Geophys. Res. Lett. , 32, L04310, doi:10.1029/
2004GL021908.

Rowlands, D. D., S. B. Luthcke, J. J. McCarthy, S. M. Klosko, D. S. Chinn,
F. G. Lemoine, J.‐P. Boy, and T. J. Sabaka (2010), Global mass flux
solutions from GRACE: A comparison of parameter estimation strate-
gies: Mass concentrations versus Stokes coefficients, J. Geophys. Res.,
115, B01403, doi:10.1029/2009JB006546.

Swenson, S., and J. Wahr (2002), Methods for inferring regional surface‐
mass anomalies from Gravity Recovery and Climate Experiment
(GRACE) measurements of time‐variable gravity, J. Geophys. Res.,
107(B9), 2193, doi:10.1029/2001JB000576.

Swenson, S., and J. Wahr (2006), Postprocessing removal of correlated
errors in GRACE data, Geophys. Res. Lett., 33, L08402, doi:10.1029/
2005GL025285.

Tapley, B. D., S. V. Bettadpur, M. Watkins, and C. Reighber (2004), The
Gravity Recovery and Climate Experiment mission overview and early
results, Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920.

Toutenburg, H. (1982), Prior Information in Linear Models, John Wiley,
New York.

Velicogna, I., and J. Wahr (2006), Acceleration of Greenland ice mass loss
in spring 2004, Nature, 443, 329–331, doi:10.1038/nature05168.

Wilks, D. S. (2006), Statistical Methods in the Atmospheric Sciences, 2nd
ed., Academic, New York.

Wouters, B., D. Chambers, and E. J. O. Schrama (2008), GRACE observes
small‐scale mass loss in Greenland, Geophys. Res. Lett., 35, L20501,
doi:10.1029/2008GL034816.

Wu, X., R. G. Blom, E. R. Ivins, F. A. Oyafuso, and M. Zhong (2009),
Improved inverse and probabilistic methods for geophysical applications
of GRACE gravity data, Geophys. J. Int., 177, 865–877, doi:10.1111/
j.1365-246X.2009.04141.x.

Zhang, Y., A. Ghodrati, and D. H. Brooks (2005), An analytical compari-
son of three spatiotemporal regularization methods for dynamic linear
inverse problems in a common statistical framework, Inverse Problems,
21, 357–382, doi:10.1088/0266-5611/21/1/022.

J.‐P. Boy, S. B. Luthcke, D. D. Rowlands, and T. J. Sabaka, Planetary
Geodynamics Laboratory, Code 698, NASA Goddard Space Flight
Center, Greenbelt, MD 20771, USA. (Terence.J.Sabaka@nasa.gov)

SABAKA ET AL.: IMPROVING GRACE MASS FLUX SOLUTIONS B11403B11403

20 of 20



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


