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[1] When analyzing data from a cluster of spacecraft (such as Cluster or MMS) crossing a
site of magnetic reconnection, it is desirable to be able to determine the orientation of the
reconnection site. If the reconnection is quasi‐two dimensional, there are three key
directions, the direction of inhomogeneity (direction across the reconnection site), the
direction of the reconnecting component of the magnetic field, and the direction of rough
invariance (the “out of plane” direction). Using simulated spacecraft observations of an
MHD simulation of magnetic reconnection in the geomagnetic tail, we test a direction‐
finding method based on the gradient of the vector magnetic field and find that the
directions can be well determined. The results from this method, however, can be in error if
there are systematic calibration errors in the magnetic field measurements. We show that
the effect of these errors can be eliminated if an average gradient is subtracted from a time
series of gradient values before they are used for the analysis. We also test a method to
determine the velocity of the reconnecting structure relative to the spacecraft using the time
derivative and gradient of the magnetic field and show that this velocity can be well
determined. Calibration errors can be eliminated in this case also if an average time
derivative and gradient are subtracted from the time series of values before they are used for
the analysis.
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1. Introduction

[2] While there has been considerable research on meth-
ods to determine the direction across a one dimensional
discontinuity from spacecraft observations [Sonnerup et al.,
2006, and references therein], there has been less research
on methods to determine the orientation of two‐dimensional
structures. If a structure is approximately two dimensional,
there will be a direction in which the variation is signifi-
cantly less than that of the other directions. We call this the
“invariant” or “out of plane” direction, recognizing however
that in a real three‐dimensional system, this invariance is

only approximate. Sonnerup and Hasegawa [2005] devel-
oped a method based on Faraday’s law to determine the
orientation and motion of a two‐dimensional time invariant
structure. They determined an invariant direction and
moving frame velocity that would minimize the variance of
the out of plane component of the electric field in the frame
of reference moving with the structure. This method requires
a time series of electric and magnetic field observations, but
can be used with observations from a single spacecraft.
[3] Shi et al. [2005] developed a method to determine

three directions corresponding to maximum, intermediate,
and minimum values of the squared magnitude of the vector
magnetic field gradient. They called this technique “Mini-
mum Direction Derivative (or Difference),” or MDD, anal-
ysis. This method requires field observations from four
spacecraft in order to determine the gradient. A major
advantage of this method is that it can yield the directions at
each point in time using simultaneous magnetic field ob-
servations. Shen et al. [2003, 2007a, 2007b] used a similar
approach based on the gradient of the magnetic field
direction b ≡ B/B that yields the maximum, intermediate, and
minimum values of the squared curvature. Thus this tech-
nique tracks the field topology, rather than the gradient and
curvature properties of the entire magnetic field. [We find
better results (better separation in eigenvalues and steadier
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eigenvectors) using the Shi et al. method, which is not
surprising considering that the Shen et al. method does not
make use of the additional information related to the mag-
netic field amplitude.] Assuming time stationarity (d/dt = 0)
in the frame of the structure, Shi et al. [2006] used

dB
dt

¼ 0 ¼ @B
@t

þ �V strð Þ � rB !
@B
@t

¼ V str � rB;

ð1Þ

where d/dt (∂/∂t) is in the frame of the structure (spacecraft),
and −Vstr is the velocity of the structure frame relative to the
spacecraft frame to determine the velocity Vstr of a structure
relative to the spacecraft. They called this technique “Spa-
tiotemporal Difference” analysis, which they abbreviated as
STD.
[4] In this paper, we will consider quasi‐two dimensional

reconnection, as illustrated in Figure 1. By “quasi‐two
dimensional,” we mean that the system as a whole may be
three dimensional, but the reconnection structure within it is
approximately two dimensional; that is, the equilibrium
(large‐scale) gradients within the plane shown in Figure 1
are much larger than the gradients out of the plane. The
direction of largest gradient in Figure 1 is across the current
sheet, i.e., the Z direction (Ẑ) in Figure 1. The direction of
intermediate gradient is along the reconnecting magnetic
field, i.e., the X direction (X̂ ) in Figure 1. The direction of
minimum gradient is the third (out‐of‐plane) direction, i.e.,
the Y direction (Ŷ ). We will use an MHD simulation of
reconnection in the geomagnetic tail, performed by one of
us (J.B.), in order to test the Shi et al. [2005, 2006] methods
for determining the orientation and motion of the recon-
nection region. A set of four simulated spacecraft were
flown through the simulations, and the fields observed by
each spacecraft were recorded: the magnetic field B; the
electric field E; the density n; the pressure p; and the fluid
velocity V. The vector fields were then rotated (by J.B.) into
a Cartesian frame of reference (x, y, z) with arbitrarily
chosen orientation and motion. The first author (R.D.) then

analyzed the resulting data, with the objective of determin-
ing the orientation and motion of the reconnecting structure.
MHD‐based reconstruction of the configuration has also
been performed and is reported separately (W.‐L. Teh, et al.,
Resistive MHD reconstruction of two‐dimensional coherent
structures in space, submitted to Journal of Geophysical
Research, 2010). We found early on that the Sonnerup and
Hasegawa [2005] method cannot be used to determine the
reconnection geometry for this simulation. The reason is that
both the fluid velocity V and the magnetic field B lie
approximately in the X‐Z plane so that E ∼ −V × B is
dominantly in the Ŷ direction. (This is not precisely true
because the simulation is only quasi‐two‐dimensional.) The
Faraday’s law method determines the Ŷ direction and event
motion by finding that direction and velocity for which the
variance of the component of the electric field in that
direction is minimized. For our simulation, the electric field
components in the X‐Z plane and their variances are very
small. As a consequence, the method selects a direction other
than Ŷ (for which the magnitude of that component of the
electric field is small to begin with) as the minimum variance
direction. Because of this, we use the Shi et al. [2005, 2006]
method for all quantitative evaluation of the directions and
motion. The possibility remains that the Faraday’s law
method might work in the presence of a guide field, BY, or
for a non‐MHD simulation for which there may be signifi-
cant components of the electric field in the X‐Z plane.
[5] The initial analysis of the directions and event motion

was done solely by use of the data provided, i.e., without
knowledge of the true event orientation and motion in the
simulations. That is, the study was a blind test. The test
determined the directions of maximum, intermediate, and
minimum gradient, êmax, êint, and êmin, respectively, as well as
the event velocity in the (x, y, z) frame, and then these were
compared to the directions Ẑ , X̂ , and Ŷ and motion from the
simulations, finding excellent agreement. Later, we examined
the effect of random noise and calibration errors. It turned out
that calibration errors could be a significant problem. Because
of this, we developed a variation of the technique using the
gradient of the magnetic field in which the average gradient is
subtracted before the analysis. This further development was
done after the real directions were known. In other words, this
part of the analysis was not a blind test.
[6] In brief, we find that the method of Shi et al. [2005,

2006] is successful in determining the event orientation and
velocity. Though calibration errors can cause this method to
fail (particularly for finding the intermediate and minimum
gradient directions), the method can work very well if an
average gradient is subtracted before the analysis, as we will
show. In section 2, we describe the noise and calibration
errors; in section 3 we describe the method; in section 4 we
describe the MHD simulation; in section 5, we present our
results; and in section 6, we discuss the results.

2. Errors

[7] As described by Georgescu et al. [2006], Cluster
spacecraft magnetic field data is stored with a precision of
0.008 nT for low B values (≤64 nT), but that does not mean
that the magnetic field measurements are that accurate.
(Magnetic field data for the planned Magnetospheric Mul-
tiscale Mission [MMS] will be stored with a precision of

Figure 1. Sketch of reconnection geometry in the magneto-
tail. The X point is at the origin of the X–Z (SM) coordinate
system. At large ∣Z∣, the reconnecting magnetic field is ori-
ented in the X direction. Magnetic flux flows into the X point
from above and below with speed vin and out from the X
point to the right and left with speed vout. The width of the
diffusion region (rectangular box), d, is less than its length
L, corresponding to greater gradient in the Z direction.
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0.001 nT; estimates of noise and calibration errors should be
similar to those for Cluster.) Random noise with standard
deviation 0.01 nT is expected for each component of B. As
we will show, this noise is not a significant problem. The
calibration error, however, is larger, typically about 0.1 nT
for each component ofB. Not only is this value larger, but the
greatest problem is that this is a systematic error. Georgescu
et al. [2006] show that it is possible to reduce the errors for
components in the spin frame with special calibration by the
Electron Drift Instrument (EDI), perhaps to a value as low as
0.02 nT. In that case, the problem of the calibration error will
be less serious. In the plasma sheet, this is difficult because
the magnetic field is so small that EDI cannot be used. One
can, however, calibrate using fields measured in previous
and later time segments for which B is larger, and this should
make it possible to reduce the errors somewhat. There is
another possibility for improving the calibration with MMS,
for which the spacecraft separation will be much less than for
Cluster (at least initially). In the lobe, the measurements from
the different spacecraft should be almost identical, and the
relative (between spacecraft) calibration errors (of most
interest for this study) might be reduced significantly below
0.1 nT, perhaps as low as the noise error of 0.01 nT (Roy
Torbert, private communication, 2010). At any rate, here we
concentrate on the case of 0.1 nT calibration error for each
component of B. In the Discussion section, we’ll make brief
comments on the case of lower errors.
[8] There may also be errors associated with the calculation

of the gradients. Basically, the spacecraft configuration needs
to be roughly tetrahedral and the scale length for spatial
variation needs to be significantly larger than the spacecraft
separation in order for the gradients to be calculated accu-
rately. We will not examine the effect of these issues.

3. Methods

3.1. Gradient Techniques

[9] If there are four spacecraft, as is the case for the
Cluster and planned MMS missions, it is straightforward to
calculate the gradient of scalar quantities such as density or
pressure using the relative spacecraft positions. We have
found this technique useful for giving a rough idea of the
gradient directions but not very good for a quantitative
measure.
[10] More information can be found by using the gradient

of a vector quantity. Shi et al. [2005] describe the method
using the gradient of the vector magnetic field. First the
gradient of this field is calculated, and expressed as matrix
MrB, where Mik

rB = ∂iBk, and ∂i is the spatial partial
derivative in the ith direction. Then the symmetric matrix
MG ≡ MrB · (MrB)T is formed, where “T” indicates the
transpose of the matrix. The three eigenvalues, lG‐max, lG‐int,
and lG‐min, represent the maximum, intermediate, and
minimum values of the squared directional derivative (gra-
dient), with the eigenvectors êG‐max, êG‐int, and êG‐min indi-
cating the corresponding directions. These directions can be
obtained at each time (without averaging) for which the B
values are available. As Shi et al. [2005] explain, in
order for the structure to be roughly two‐dimensional,
lG‐min should be significantly less than the other two
eigenvalues. If lG‐max� lG‐int, lG‐min, the structure is quasi‐
one‐dimensional. If all the eigenvalues are comparable, the

structure is fully three‐dimensional, and the eigenvector
directions may not be meaningful.

3.2. Technique Using the Perturbed Gradient d

#

B

[11] Note that as described, the Shi et al. [2005] technique
yields the actual point by point gradients of B. But relative
inter‐spacecraft calibration errors (differences in Bmeasured
by different spacecraft due to different calibration), being
systematic, will lead to a systematic error in those gradients.
If there are significantly large relative calibration errors,
though we may be able to achieve at least a rough measure
of the maximum gradient direction using the unmodified Shi
et al. technique, the intermediate and minimum gradient
directions inferred from the technique are likely to be sig-
nificantly in error due to the spurious gradient of the cali-
bration errors.
[12] We have found a way to eliminate the effect of cal-

ibration errors altogether. We will subtract off an average
value of MrB (=rB) to get the perturbed magnetic field
gradient dMrB ≡ MrB − hMrBi0 (=drB). We then use this
perturbed value for the analysis in the same way as Shi et al.
[2005]. We will normally measure this average value within
an interval centered on the time at whichMrB has its largest
value (time of largest eigenvalue of MG, since the largest
eigenvalue of MG is the square of the amplitude of the
largest value of rB). We will show results using different
time intervals around the time of this maximum in order to
show that the final results are not too sensitively dependent
on the exact interval. Subtracting off the average value of
MrB eliminates the effect of the calibration errors, since
these errors lead to a constant gradient. We then average the
time‐dependent matrix dMG ≡ dMrB · (dMrB)T, where we
use h i to indicate an average, and where the “0” subscript
indicates that this is the average used in the definition of the
perturbed gradient, dMrB ≡ MrB − hMrBi0. The averaging
interval for hdMGi may be (and usually will be) different
than the averaging interval used for hMrBi0. It seems to be
best to average hMrBi0 near the center of the current sheet
where the gradient is large, whereas the minimum gradient
direction is sometimes best found away from the current
sheet. (See further discussion of this issue in section 7.)
Having averaged hdMGi, we can then use the eigenvectors
of hdMGi to get the gradient directions.
[13] Even if the interval for averaging hdMGi were the

same as the one used for averaging hMrBi0, we could still
get information from hdMGi because dMG is a nonlinear
function of dMrB. In that case,

h�MG
ij i ¼

X
k

�MrB
ik �MrB

� �T
kj

* +
ð2Þ

¼
X
k

h�MrB
ik �MrB

jk i ð3Þ

¼
X
k

MrB
ik � hMrB

ik i� �
MrB

jk � hMrB
jk i

� �D E
ð4Þ

¼
X
k

hMrB
ik MrB

jk i � hMrB
ik ihMrB

jk i
� �

; ð5Þ
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showing that hdMGi has the form of a mean squared devi-
ation of MrB. Therefore it is a measure of the variance in
rB.
[14] We can also modify (1) in order to eliminate the

effect of calibration errors. Using the average of rB and the
average of ∂B/∂t (in the spacecraft frame) over the same
time interval (note carefully that the time interval must be
the same as for rB), Vstr can be found from

�
@B
@t

� �
¼ V str � � rBð Þ; ð6Þ

where d (∂B/∂t) ≡ ∂B/∂t − h∂B/∂ti0, and d (rB) ≡ rB −
hrBi0.
[15] So, the unmodified Shi et al. [2005, 2006] method

uses the gradient of the entire magnetic field, rB, and the
modified Shi et al. method uses the perturbed gradient of the
magnetic field, drB.

4. MHD Simulation

[16] Figure 2 shows a snapshot of the MHD simulation
used for this study [Birn and Hesse, 2009]. For this first
attempt to determine the reconnection geometry from sim-
ulated spacecraft data, virtual (simulated) spacecraft were
flown across this snapshot with the trajectories shown in the
figure so that the only time dependence of the recorded data
was due to the motion of the spacecraft. (We discuss pos-
sible effects of explicit time dependence in section 7.)
Anomalous resistivity was used in the region of the X point.

The reconnection magnetic field (X component) was 20 nT
and the proton density was of order 0.08 cm−3 in the current
sheet, and 0.05 cm−3 in the upstream region. This simulation
had approximately zero guide field (Y component of B in the
midnight meridian plane). Figure 3 shows the fields mea-
sured by the virtual spacecraft.

5. Results

5.1. Scalar Gradients

[17] If our fluid simulation were exactly two dimensional
(2D) and there were no errors, we could determine the
minimum gradient direction as that direction for which the
component of every gradient, including those of scalar
quantities, is always zero. Because this simulation is 3D
(only quasi‐2D), this is not true. Furthermore, the varying
spatial structure of scalar quantities can also complicate the
apparent gradient directions. Because of these issues, we
have not found gradients of scalar quantities to be useful for
quantitatively determining the gradient directions. Never-
theless, they can at least be helpful for giving a general idea
of these directions. Figure 4 shows the directions of the
gradient of all available scalar fields, n, p, Vx, Vy, Vz, Bx,
By, Bz, Ex, Ey, and Ez, measured during t = −15 to 25 s
(near the current sheet crossing). To be included in the plot,
each data point needed to be at least 1/10 as large as the
largest gradient measured for each quantity. The gradient
directions (dots) are plotted using a sinusoidal projection
(sometimes used for maps of the Earth) for which the plotted
area is proportional to the solid angle. The vertical axis of

Figure 2. Snapshot of the MHD simulation used for this study. The red diagonal lines are the simulated
spacecraft trajectories. (left) The entire simulation, (middle) a blowup of the region around the X point,
and (right) a further expansion in which the spacecraft separation can be resolved (instantaneous position
indicated by the red circles filled with black). The simulation uses anomalous resistivity in the region
where the component of the electric field parallel to the magnetic field Ek (color scale shown at right)
is large.
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the plot is simply the polar angle �, but the horizontal axis is
90 + (� − 90) sin�, expressed in degrees. The upward
pointing triangle, downward pointing triangle, and circle
symbols in Figure 4 correspond to the exact Ẑ , X̂ , and Ŷ
directions (presumed maximum, intermediate, and minimum
gradient directions), respectively. Note that the upward
pointing triangle (corresponding to the maximum gradient
direction) is near the densest cluster of gradient directions,
and the circle symbol (corresponding to the minimum gra-
dient direction) is in the area that is most free of gradient
measurements.

5.2. Directions From rB Without Added Errors

[18] Figure 5a shows the eigenvalues from the Shi et al.
[2005] technique using rB for the entire time series of
data, while Figures 5b–5d shows direction cosines for the
eigenvector directions. (For instance, the black curve in
Figure 5b shows the cosine of the angle between êG‐max and
x̂.) Reliable eigenvector directions can be found only if there
is a significant separation between the eigenvalues. For
instance, between t = −300 s and −100 s, the minimum
gradient eigenvalue lG‐min (green curve in Figure 5a) is well
separated from the other eigenvalues, and the direction co-
sines for êG‐min (three curves in Figure 5d) have fairly steady
values. On the other hand, the eigenvalues for the maximum
and intermediate gradient, lG‐max and lG‐int, respectively,
are nearly the same; and during that time there are large
oscillations in the directions of êG‐max and êG‐int. Note that at
the period of the current sheet crossing from about t = −50 to
+50 s, the gradient in the magnetic field is large, indicated
by a large peak in the maximum gradient eigenvalue. This
period corresponds to the time that the virtual spacecraft are
in the magnetic island (Figure 2, right).
[19] Now we zero in on the time period from t = −15 to 25 s

(within the current sheet crossing), for which there is a fairly
good separation in all three eigenvalues, and for which all
the eigenvector directions are fairly steady. Figure 6 shows
the eigenvalues and eigenvector directions as a function of
time t (curves) for this smaller segment of time. (The deep
minimum in the minimum gradient eigenvalue (green curve)
indicates that that value is approaching zero. This happens
where the intermediate and minimum gradient components
reverse direction. In other words, the gradient near this
position has a single direction. The directions do not appear
to change dramatically in Figure 6 because the vectors have
been rotated to maintain continuity in sign.) In order to get
directions characteristic of the entire time interval, we also

Figure 3. Virtual spacecraft measurements of density n,
pressure p, and x, y, and z components (arbitrary frame of
reference) of the plasma velocity V, the magnetic field B,
and the electric field E from the MHD simulation versus
time t. The black, red, light green, and blue curves are for
the individual spacecraft 1, 2, 3, and 4, respectively.

Figure 4. Sinusoidal projection of the polar (�, angle
from ẑ) and azimuthal (�, angle in the x–y plane from
x̂ toward ŷ) angles in spherical coordinates. The curves
extending from � = 0° to 180° correspond from left to
right to � = 0°, 45°, 90°, 135°, and 180°. The upward
pointing triangle, downward pointing triangle, and circle
symbols correspond to the exact Ẑ , X̂ , and Ŷ directions
(presumed maximum, intermediate, and minimum gradient
directions), respectively.
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found the eigenvectors of the time average of the matrix.
The circle symbols in Figures 6b–6d are plotted at the
midpoint of the time interval and vertically at the values of
the direction cosines for these directions, showing that the
eigenvectors using hMGi have a direction characteristic of
the time series of the eigenvectors. After we did the analysis
of these directions, we found the angular difference between
the inferred directions êG‐max, êG‐int, and êG‐min, and the
corresponding directions from the simulation, Ẑ , X̂ , and Ŷ .
These are listed as Case 1 (first row) in Table 1. Also listed
in Table 1 (though not relevant to Case 1) are the
standard deviation of the random (time varying) noise
added to each component of the magnetic field, dBi‐Noise,
the number of points on each side of a data point used for a
boxcar average of the data Nsmoo, the systematic calibration
error (time invariant) added to each component of the
magnetic field, dBi‐Cal, and the time interval used for cal-
culating hMrBi0 subtracted from MrB before forming dMG

(relevant when we use drB instead of rB). One should
keep in mind here that the simulation is actually three‐

dimensional, so that êG‐max, êG‐int, and êG‐min may not
exactly correspond to Ẑ , X̂ , and Ŷ . Nevertheless, as can be
seen from Case 1 in Table 1, all the gradient directions
agree to within 1° with the directions from the simulation.
[20] In this case, slightly more accurate directions can be

found by taking the median of each component and then
normalizing each direction to have unit magnitude. Since
the maximum gradient direction is usually the most accu-
rate, we subtract off that part of êG‐min parallel to êG‐max,
renormalize êG‐min, and then form êG‐int from êG‐min × êG‐max.
The results are shown in Table 1 as Case 2. Here the gradient
directions agree to within 0.75° with the corresponding
directions from the simulation. Only for Case 2 are the
directions calculated in this way. For other cases, we cal-
culate the directions from the matrix hMGi.
[21] While all three eigenvalue directions were fairly

steady for t = −15 to 25s (Figure 6), the maximum eigen-
value direction is steady for a larger interval of time, at least
from −40 to 30 s. Case 3 shows that the “error” in the
maximum eigenvalue direction inferred using this time
interval is 0.26°, slightly worse than that for t = −15 to 25 s
(0.10°), but the results are almost exact in both cases. (Since
there is some variation in the “out‐of‐plane” direction, this

Figure 5. (a) Eigenvalues from the rB [Shi et al., 2005]
method with black, blue, and green color corresponding to
maximum, intermediate, and minimum gradient, respec-
tively, (b) maximum gradient direction êG‐max, (c) interme-
diate gradient direction êG‐int, and (d) minimum gradient
direction êG‐min, all versus time for the MHD simulation. The
gradient directions are specified by the direction cosines with
respect to the x (black), y (blue), and z (green) directions.

Figure 6. Same as Figure 5, but for t = −15 to 25 s. For
each gradient direction, circle symbols are plotted at the
midpoint of the time interval for the direction cosine with x̂,
ŷ, and ẑ using the matrix hMGi.
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level of angular difference may or may not be a real error.)
Case 4 shows the error in the minimum gradient direction
calculated using the interval t = −300 to −100 s during
which the minimum eigenvalue is well separated from the
intermediate eigenvalue (Figure 5a). The direction cosines
for the minimum gradient direction are not totally steady
during this time (Figure 5d), however, and the error in êG‐min

found using this time interval (8.3°) is larger than that using
the shorter interval t = −15 to 25 s (1°).

5.3. Directions From rB With Errors

[22] As mentioned in section 2, the magnetic field mea-
surements on Cluster and MMS are subject to two kinds of
errors. The first kind is random (time varying) noise, and for
low values of the magnetic field amplitude, this error is on
the order of 0.01 nT for each component. In Cases 5 and 6 in
Table 1, we add random errors with a standard deviation of
0.01 nT to each data point for each component. The dif-
ference between Case 5 and 6 is that for Case 6, we do a
running boxcar average of the magnetic field measurements
at each data point using Nsmoo = 10 data points on either side
(average of 21 surrounding values at each central point).
This results in more steady instantaneous values of the
directions (not shown). The results are almost the same in
either case, however, slightly worse than that for no noise

(Case 1), but still very good with errors less than or equal
to 1.8°. In general, we find that this level of random noise
(0.01 nT) is not a serious problem.
[23] While random noise is not a serious problem when

using rB, calibration errors at a level of 0.1 nT (section 2)
are a problem, at least for the case of 20 nT antiparallel
reconnecting field considered here. Figure 7 shows the same
information as was plotted in Figure 5, but with calibration
errors with a standard deviation of 0.1 nT added to each
component of the magnetic field before the analysis. Note
that the particular results in Figure 7 are dependent on the
random values of the error. If our final method depended
on the exact errors, we would examine a statistical
ensemble of cases with different errors in order to evaluate
the success of the method. We will find, however that it is
possible to eliminate these errors, so we will not do such a
study. The purpose of Figure 7 is to show that, with a
particular choice of errors, the results using rB are sig-
nificantly contaminated.
[24] A quick comparison of Figure 7 to Figure 5 shows a

significant difference. The gradient directions calculated
with the calibration errors are steadier over longer periods
of time. This is because of the constant gradient due to
the errors; the constant gradients heavily influence the
eigenvector directions calculated from rB using hMGi as

Table 1. Angular Difference ∠ Between Directions Inferred by the rB Method, êG‐max, êG‐int, and êG‐min, and the Corresponding
Directions From the Simulation, Ẑ , X̂ , and Ŷ , for the Cases Indicated

Case ta (s) dBi‐Noise
b (nT) Nsmoo

c dBi‐Cal
d (nT) tav

e (s) ∠ (êG‐max, Ẑ)
f (°) ∠ (êG‐int, X̂ )f (°) ∠(êG‐min, Ŷ )

f (°)

1 [−15,25] 0 0 0 – 0.10 1.0 1.0
2g [−15,25] 0 0 0 – 0.06 0.75 0.75
3 [−40,30] 0 0 0 – 0.26 – –
4 [−300, −100] 0 0 0 – – – 8.3
5 [−15,25] 0.01 0 0 – 0.13 1.6 1.6
6 [−15,25] 0.01 10 0 – 0.11 1.8 1.8
7 [−30,25] 0 0 0.1 – 4.6 63. 63.
8 [−170, −70] 0 0 0.1 – – – 75.
9 [100,300] 0 0 0.1 – – – 79.
10 [−30,25] 0 0 0.1 −9 ± 50 0.45 – –
11 [−30,25] 0 0 0.1 −9 ± 100 0.78 – –
12 [−30,25] 0 0 0.1 −9 ± 200 0.38 – –
13 [−30,25] 0 0 0.1 −9±300 0.85 – –
14 [−30,25] 0 0 0.1 −9 ± 400 1.2 – –
15 [−30,25] 0 0 0.1 −9 ± 500 1.5 – –
16 [350,700] 0 0 0.1 −9 ± 50 0.45 2.1 2.1
17 [350,700] 0 0 0.1 −9 ± 100 0.31 3.7 3.7
18 [350,700] 0 0 0.1 −9 ± 200 1.9 6.3 6.0
19 [350,700] 0 0 0.1 −9 ± 300 5.7 8.0 5.6
20 [350,700] 0 0 0.1 −9 ± 400 10. 12. 6.5
21 [350,700] 0 0 0.1 −9 ± 500 15. 16. 7.2
22 mixedh 0 0 0.1 −9 ± 500 1.5 7.1 6.9
23 mixedh 0.01 0 0.1 −9 ± 500 1.5,1.5,1.5i 6.9,7.2,7.7i 6.8,7.0,7.5i

24 mixedh 0.01 20 0.1 −9 ± 500 1.5,1.5,1.5i 5.8,6.3,7.0i 5.7,6.0,6.9i

25 mixedh 0.01 20 0.1 −9 ± 50 0.31,0.37,0.39i 0.77,1.4,1.9i 0.76,1.4,1.9i

26 [350,700] 0 0 0.1 [350,700] 14. 14. 7.3
27 [590,630] 0 0 0.1 [350,700] 3.2 22. 23.

aInclusive limits of time range (t) used.
bAmplitude of random Gaussian noise (time varying) added to each component of B before analysis.
cBoxcar average of input data is done using each data point plus Nsmoo data points on either side.
dAmplitude of random Gaussian error (time‐invariant calibration error) added to each component of B before analysis.
eIf this entry is not “−,” it indicates a time range over which rB is averaged; this average is subtracted from the instantaneous value of rB before the

analysis.
fAngle between the argument vectors in degrees.
gHere only, the directions are found by taking the median of each instantaneous component.
hUsing t = (−30, 25) for evaluation of êG‐max and t = (350,700) for evaluation of êG‐min, subtracting off the part of êG‐min parallel to êG‐max, and then

taking êG‐int = êG‐min × êG‐max.
iFirst quartile, median, and third quartile values for an ensemble of 21 trials using different random noise.
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discussed in section 2. For the data with calibration errors,
all three eigenvector directions are steady over a somewhat
larger period of time near t = 0, from −30 to 25 s, than was
used for Case 1 (−15 to 25 s). Case 7 in Table 1 shows the
errors in the angles. They are 4.6° for êG‐max, but 63° for êG‐int
and êG‐min. For Cases 8 and 9, we tried different intervals to
find the minimum gradient direction êG‐min, but the errors
are just as bad, 75° and 79°, respectively. Apparently cali-
bration errors at a level of 0.1 nT are not large enough to
completely destroy information about the maximum eigen-
vector direction (for which the associated gradient is largest),
but these errors do contaminate the gradients in the inter-
mediate and minimum eigenvector directions so that these
directions are no longer useful as predictors of X̂ and Ŷ .

5.4. Directions From drB

[25] As mentioned in section 3.2, it should be possible to
reduce the calibration errors through special calibration
using EDI (on Cluster or MMS). If, however, the errors are
as large as 0.1 nT, using rB will not be good enough. In
order to deal with this problem, we modified the Shi et al.
[2005] method by using drB (the perturbed gradient), as
was discussed in section 3.2. This method subtracts off the
average value of rB within a time interval centered about
the maximum gradient, and thereby totally eliminates any
time‐independent gradient, such as that created by the cal-

ibration errors. Roughly, this method calculates the gradient
directions using the mean squared deviation of MG (like in
minimum variance analysis; see discussion in section 3.2).
[26] Figure 8 shows the gradient eigenvalues and direc-

tions for dMG calculated from dMrB = MrB − hMrBi0,
with the h i0 averaging interval tav = −9 ± 100 s. As already
mentioned, the curves shown in this plot are totally inde-
pendent of any calibration errors, since average gradients
have been subtracted off from rB before the analysis.
[27] Cases 10 through 27 show results using drB. The

time interval used to determine the average value of rB to
be subtracted is shown in the column labeled tav. As men-
tioned in section 3.2, we average rB in a time interval
centered on the time at which rB has its largest value (time
of the largest eigenvalue of MG). The peak value of the
largest eigenvalue of MG occurs at about t = −9 s, as can be
seen from the black curve in Figure 5a.
[28] In Figure 8, the maximum gradient direction is fairly

steady in a middle range of times, t = −30 to 25 s, and also at
late times t > 50 s. (The direction is not greatly different
between these two time periods; there is a reversal in the
direction indicated by a change in sign of all the direction
cosines. Such a change is not relevant.) First we look at the
error in the maximum gradient direction êG‐max within the
central time interval t = −30 to 25 s. Cases 10 through 15 in
Table 1 show the difference in the angle between êG‐max and

Figure 7. Same as Figure 5, but now systematic calibration
errors (time invariant) have been added to each component
of the magnetic field before the analysis.

Figure 8. Same as Figure 5, but based on the perturbed
gradient method using dMG calculated from dMrB =MrB −
hMrBi0, with the h i0 averaging interval tav = −9 ± 100 s.
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Ẑ , ∠ (êG‐max, Ẑ), using drB with different time intervals
around the time of the largest gradient at t = −9 s to deter-
mine hMrBi0. The error varies from 0.45° for the time
interval −9 ± 50 s to 1.5° for the time interval −9 ± 500 s. So
while there is some dependence on the exact time interval,
the errors are small regardless which time interval is used.
[29] The maximum gradient direction can also be found at

late times (Figure 8a). The three directions are particularly
well defined at t = 350 to 700s. Cases 16 through 21 show
the errors in the three angles, êG‐max, êG‐int, and êG‐min, for
different choices of the time interval used to calculate
hMrBi0. The errors are smallest for the averaging interval
t = −9 ± 50 s, 0.45°, 2.1°, and 2.1°, respectively, for êG‐max,

êG‐int, and êG‐min, and the errors are largest for −9 ± 500 s,
15°, 16°, and 7.2°.
[30] Case 22 shows that even with a poor choice of the

averaging interval to determine hMrBi0 (−9 ± 500 s, for
which the errors in the angles are largest), better results can
be found by using the maximum gradient direction found at
the time of its largest value (t = −30 to 25 s) along with the
minimum gradient direction found at the time away from the
largest gradients (t = 350 to 700s). In this case, we sub-
tracted off the part of êG‐min that was parallel to êG‐max

(considering êG‐max to be best determined), and then after
renormalizing êG‐min found êG‐int = êG‐min × êG‐max. In this
case all errors were less than or equal to 7.1°. Cases 23 and
24 add random noise with dBi‐Noise = 0.01 nT (same noise
level as before). Here, in order to account for random dif-
ferences, we examine an ensemble of 21 trials. The errors in
the angles shown in the last three columns of Table 1 are the
first quartile, median, and last quartile values (6th, 11th, and
16th values out of 21 when arranged in order from smallest
to largest). The maximum gradient direction is very well
defined with a largest error of 1.5°. The median values for
the other angles are no larger than 7.2° (with a smaller
error = 1.5° for the normal direction). Case 25 shows the
results for a better choice of averaging interval (−9 ± 50 s),
for which the median values of the errors are all no greater
than 1.4°. These results suggest that a good choice for the
averaging time interval is the time encompassing the peak
in the largest eigenvalue, which is about −9 ± 50 as seen
from the black curve in Figure 5a.

6. Structure Velocity

[31] As mentioned in section 1, we can solve for Vstr at
each data point using (1), namely ∂B/∂t = Vstr ·rB. Figure 9
shows the time series of the velocity components of Vstr in
the arbitrary x‐y‐z frame versus time t for the time interval

Figure 9. Values of Vstr‐x (solid curve), Vstr‐y (dashed
curve), and Vstr‐z (dotted curve) versus time t solving for Vstr

from (1). The left pointing triangles at the right of the plot
are vertically centered on the median values of each com-
ponent; the horizontal lines are located vertically at the exact
values of the components.

Table 2. Percentage Difference D(Vstr, Vstr
rB) Between the Magnitude of the Actual Structure Velocity Vstr and That Inferred Using rB,

Vstr
rB, and the Angular Difference ∠ (êVstr, êVstr

rB ) Between êVstr and êVstr
rB for the Cases Indicated

Case ta (s) dBi‐Noise
b(nT) Nsmoo

c dBi‐Cal
d (nT) tav

e (s) D(Vstr, Vstr
rB)f (%) ∠ (êVstr, êVstr

rB )g (°)

26 [−400,400] 0 0 0 – 0.60 0.53
27 [−400,400] 0.01 0 0 – 7.9 8.5
28 [−400,400] 0.01 25 0 – 4.9 1.7
29 [−400,400] 0.01 50 0 – 1.5 0.14
30 [−400,400] 0.01 100 0 – 2.2 2.0
31 [−400,400] 0.01 200 0 – 0.91 1.0
32 [−400,400] 0.01 400 0 – 0.50 0.87
33 [−400,400] 0 0 0.1 – 68. 46.
34 [−400,400] 0 0 0.1 −9 ± 50 0.03 0.18
35 [−400,400] 0 0 0.1 −9 ± 100 0.02 0.14
36 [−400,400] 0 0 0.1 −9 ± 200 0.03 0.21
37 [−400,400] 0 0 0.1 −9 ± 300 0.18 0.12
38 [−400,400] 0 0 0.1 −9 ± 400 0.04 0.35
39 [−400,400] 0.01 100 0.1 −9 ± 50 0.75 1.8
40 [−400,400] 0.01 100 0.1 −9 ± 50 0.75,1.6,3.0h 1.8,2.1,3.5h

aInclusive limits of time range (t) used.
bAmplitude of random Gaussian noise (time varying) added to each component of B before analysis.
cBoxcar average of input data is done using each data point plus Nsmoo data points on either side.
dAmplitude of random Gaussian error (time invariant calibration error) added to each component of B before analysis.
eIf this entry is not “−,” it indicates a time range over which rB is averaged; this average is subtracted from the instantaneous value of rB before the

analysis.
fPercentage difference from Vstr to Vstr

rB.
gAngle between êVstr and êVstr

rB in degrees.
hFirst quartile, median, and third quartile values for an ensemble of 21 trials using different random noise.
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−400 to 400 s. Most of these instantaneous values are very
close to the exact values indicated by the horizontal lines.
There are, however, a number of spikes in the components.
These are caused by data points for which components of
rB become small, so that Vstr is ill defined (see section 5.3).
In order to get a typical value that we can compare to the
known exact values, we take the median value of each
component. (Using the median value rather than the mean
reduces the effect of the outlier points within the spikes.)
The left pointing triangles at Figure 9 (right) are plotted
vertically at the position of these median values. It is clear
that these values are in good agreement with the exact va-
lues indicated by the horizontal lines.
[32] To get a more quantitative measure of the agreement,

we list in Table 2 the percent difference from the exact
magnitude of the vector Vstr, Vstr, to the magnitude of the
vector Vstr

rB (combination of median component values)
determined using (1), Vstr

rB, and the angle ~O(êVstr, êVstr
rB )

between the exact Vstr and Vstr
rB. Case 26 shows the results

with no added errors (noise or calibration errors). The dif-
ference in the magnitudes is 0.60% and the difference in the
angles is 0.53°. Since the velocity is exactly known, these
are a measure of error. These small numbers, however
clearly indicate excellent agreement, as was also clear from
Figure 9. Even better agreement can be found using the
entire time interval for which the data was available. In
general, we find a better value by using a larger time
interval.
[33] Cases 27–32 show how the results are modified if

random (time varying) noise is added to each component of
the magnetic field with standard deviation dBi‐Noise = 0.01
nT. In Case 27, the noise is added with no modification to
the analysis. In that case the error in the inferred magnitude
is 7.9% and error in the inferred angle is 8.5°. Cases 28–32
show that the errors decrease markedly if the data is
smoothed using a boxcar average with the central data point
and Nsmoo data points on either side. Using smoothing over a
very large span (Nsmoo ≥ 200 for Cases 31 and 32), the error
in magnitude is less than or equal to 1% and the error in the
angle is less than or equal to 1°, which we consider to be
quite good accuracy.

[34] Cases 33–40 show how the results are modified if
systematic (time invariant) calibration errors are included
with a standard deviation of dBi‐Cal = 0.1 nT. For these
Cases, we use the default random number sequence of
Matlab to generate the calibration and noise errors. Case 33
shows the result using rB. The error in the magnitude of
VrB

str is now 68% and the error in the angle is 46°. These
large errors result from the fact that rB is systematically in
error (see Figure 10), leading to bad values for the inferred
VrB

str . The component of VrB
str in the maximum gradient

direction will not be greatly in error, but the components in
the intermediate and minimum gradient directions are
severely contaminated. These large errors can be immensely
reduced by using drB as was described in section 3.2.
Cases 34‐38 show results for which the average values of
rB and ∂B/∂t have been subtracted from rB and ∂B/∂t
before the analysis using (6). The difference in these cases is
the averaging time interval tav. The results are excellent
regardless of what averaging interval is used. All the errors
in the magnitude of VrB

str are less than or equal to 0.2%, and
all the errors in the angle are less than or equal to 0.35°.
Figure 11 shows the time‐dependent velocity components
for Case 35 with tav = −9 ± 100 s. The consistency of the
inferred structure velocity is quite similar to that of Case 26
with no calibration errors (Figure 9).
[35] Cases 39 shows the effect of using both random noise

and calibration errors. The error in the magnitude of Vstr
rB is

0.75%, and the error in the angle in 1.8°. Finally, Case 40
shows the results of an ensemble of 21 trials using different
calibration and noise errors. The three numbers listed for the
error in the magnitude and angle are the first quartile,
median and third quartile values. (See the explanation of
Table 1 in section 5.3.) The median value for the error in
magnitude is 1.6%, and the median value of the error in the
angle is 2.1°, still quite acceptable.

7. Discussion

[36] Our results suggest that if the calibration errors can be
ignored, the unmodified Shi et al. [2005] and Shi et al.
[2006] methods using rB can be used to calculate the di-
rections and velocities quite accurately (Table 1, Case 1;
Table 2, Case 26). The results for the directions do depend

Figure 10. Same as Figure 9, but for Case 33 using the
unmodified Shi et al. [2006] (rB) method with dBi‐Cal =
0.1 nT.

Figure 11. Same as Figure 9, but for Case 35 using the
perturbed rB method with dBi‐Cal = 0.1 nT and with the
averaging interval forrB and ∂B/∂t equal to tav = −9 ± 100 s.
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on the time interval used for analysis (t in Table 1). The best
results seem to occur when there is a good separation of the
eigenvalues of MG and when the eigenvector directions are
relatively stable. For Case 4 in Table 1 using the time interval
t = −300 to −100 s, there is a good separation for theminimum
gradient eigenvalue (low value of lG‐min in Figure 5a, green
curve), but the direction cosines for êG‐min show a fairly
large variation; and the error in the direction of êG‐min for
this case is significantly larger (8.3°) than that for case 1
(1.0°).
[37] Random noise errors in the magnetic field compo-

nents do not significantly affect the inferred directions
(Table 1, Cases 5 and 6). They do, however significantly
affect the accuracy of the inferred structure velocity (Table 1,
Case 27). This problem can be easily dealt with by smoothing
the data (Table 2, Cases 28–32). Calibration errors, which are
systematic (time invariant), present a more serious problem.
If the reconnecting magnetic field is larger than we have
assumed (20 nT upstream of the diffusion region), or if the
calibration errors can be reduced (see section 2), the results
using rB will be improved, but we find errors of 5 to 10°
(depending on the interval analyzed) for the intermediate and
minimum gradient directions using the unmodified method
even with calibration errors as low as 0.01 nT.
[38] To negate the effect of the calibration errors, we

modified the Shi et al. [2005] and Shi et al. [2006] methods
to use drB (the perturbed gradient; see section 3.2). Basi-
cally, the average gradient over some time period is sub-
tracted from the instantaneous gradient, and the resulting
perturbed gradient is used in the analysis. As shown in
section 3.2, this method uses a quantity roughly equal to the
mean squared deviation of the matrix MG ≡ MrB · (MrB)T

used by Shi et al. [2005]. Unfortunately, the results for the
directions are somewhat sensitive to the choice of the
averaging interval tav used for the matrixMrB (=rB). Table
1 shows that analysis interval t = 350 to 700s along with the
averaging interval tav = −9 ± 500 s (Case 21 in Table 1) can
lead to fairly large errors (∼15°) in the directions. In this
case, however, the eigenvector directions were not com-
pletely steady over the interval t = 350 to 700s (not shown).
For the smaller averaging interval tav = −9 ± 100 s, these
eigenvector directions were steady (Figures 7b–7d). We find
the best results for the averaging interval including just the
central peak in the largest eigenvalue (lG‐max), and this is
what we recommend to be used for this kind of analysis.
This interval is about tav = −9 ± 50 s in Figures 5 and 7.
Once an averaging interval is chosen, time intervals can be
chosen for which an eigenvalue is separated from the other
values and for which the eigenvector direction is roughly
constant. For the MHD simulation analyzed here, this pre-
scription yields good results for the gradient directions.
[39] If we used the same averaging interval (h·i0) as is

used for determining the directions (h·i), our analysis would
determine the true variance of the magnetic field gradient
(section 3.2). In some sense, this would be more elegant,
and would remove the apparent arbitrary choice of averag-
ing interval. There are two reasons why we don’t do this.
First of all, intervals for data analysis (determining the di-
rections) need to be chosen for which there is a good sep-
aration of the eigenvalues and for which the eigenvector
directions are relatively stable. Unfortunately, the stability
of the directions varies depending on the choice of averag-

ing interval. So we cannot know in advance what are good
intervals for data analysis (determining the directions) until
the averaging interval is chosen. Secondly, we find that we
get good results using the central region (current sheet
crossing) for the averaging interval. Case 26 in Table 1
shows the results for the directions if, with a calibration
error of 0.1 nT, we use the same interval t = 350 to 700s for
the averaging and data analysis. The errors in the directions
are 14° for the maximum and intermediate gradient direc-
tions, and 7.3° for the minimum gradient direction. In this
case, there is significant variation in the eigenvector direc-
tions over the entire time interval. If we use t = 350 to 700s
for the averaging interval, and t = 590 to 630s (over which
the eigenvector directions are stable) for determining the
directions (Case 27 and Table 1), we find a lower error for
the maximum gradient direction, 3.2°, but a larger error,
∼22°, for the intermediate and minimum gradient directions.
Clearly, we found better results using the central time
interval for the averaging (Case 16 in Table 1).
[40] Why is this? We needed the interval t = 350 to 700s

to get the intermediate and minimum gradient directions
(Case 16). Clearly, these components of the gradient were
important within this interval. It seems that using that same
time interval for the averaging removes too much informa-
tion about these gradients. In other words, a strict variance
(resulting from use of the same time interval) is not good
enough to determine the intermediate and minimum gradient
directions if the calibration errors are as large as we have
used here (0.1 nT). Further tests of the method should be
done to see if our prescription for choosing the averaging
interval will work in general. The results for the structure
velocity are not as sensitive to the averaging interval (Table 2,
Cases 10–15).
[41] Further tests should also be done with other kinds of

simulations, e.g., hybrid and full particle, for different
reconnection configurations (i.e., the magnetopause), and
with time‐dependent data. As a first step in testing methods
for determining the reconnection orientation and velocities,
we used a time‐independent snapshot of the simulation. For
the actual simulation run for this study and illustrated in
Figure 1, the time interval of the entire simulation was only
80s, showing that the assumption of stationary that we used
would not be valid. This might indicate that shorter time
intervals would need to be used for the analysis (for instance,
a subset of the time interval used for Figure 6). Certainly it
would indicate that the results for directions and velocity
might not be as steady as we found in this paper (e.g., the
almost constant velocity in Figure 9). On the other hand, a
real reconnection region might be driven with a greater
supply of incoming flux such that the reconnection is steady
for a longer period of time than in this simulation. Or the
structure velocity relative to the spacecraft might be greater.
At any rate, time dependence is likely to affect the results.
[42] Our results suggest that use of drB can allow the

gradient directions and velocities to be determined even if the
calibration errors are large. Comparison of the results using
both rB and drB should also be useful in determining
whether or not calibration errors are a serious problem.
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