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[1] The structure of forests, the three‐dimensional arrangement of individual trees,
has a profound effect on how ecosystems function and cycle carbon, water, and nutrients.
The increased need to understand local to global dynamics of ecosystems, a prerequisite
to understand the coupling of the biosphere to other components of Earth systems, has
created a demand for extensive ecosystem structure data. Repeated satellite observations of
vegetation patterns in two dimensions have made significant contributions to our
understanding of the state and dynamics of the global biosphere. Recent advances in
remote sensing technology allow us to view the biosphere in three dimensions and provide
us with refined measurements of horizontal, as well as vertical, structure of forests.
This paper provides an introductory review of the importance of the three‐dimensional
characterization of terrestrial ecosystem structure of forests and woodlands and its
potential measurement from space. We discuss the relevance of these measurements for
reducing the uncertainties of terrestrial carbon cycle and the response of ecosystems to
future climate. By relating the 3‐D structure to forest biomass, carbon content, disturbance
characteristics, and habitat diversity, we examine the requirements for future satellite
sensors in terms of precision and spatial and temporal resolutions. In particular, we focus
this review on measurements from lidar and radar sensors that provide vertical and
horizontal characterization of vegetation and are currently recommended for next
generation of NASA’s Earth observing and European Earth Explorer systems.
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1. Introduction

[2] That there is a causal relation between the form of
biological systems and their function permeates biology at
all scales and has done so over the history of biology as a
science. Form influences function; function influences form:
the three‐dimensional geometry of proteins determines their
function as enzymes; the function of being parasitic selects
for worms with the strikingly unusual proportions of internal
organ sizes; the morphology of a predator’s tooth indicates
how it feeds, flight constrains the shape of a birds wing; …
In this paradigm, form and function are so interactive that
knowing both is necessary for understanding.
[3] We consider the influence of form (in this case the

“structure” of forests, the physical arrangement of the trees
in three dimensions) on the functioning of forests at annual
time scales and over larger spatial resolutions. The classic
work on this topic is Watt’s [1947] paper. Pattern and pro-

cess is the form‐and‐function construct at ecological space
and time scales. Our discussions here focus on spatial scales
from trees, to the gap openings and closures within a forest
stand, and then extend to landscape heterogeneities. On the
temporal scale, the annual or subannual variations are con-
sidered because several important ecosystem processes
(energy, water, carbon cycling) emerge at these scales. In
this context, we examine how new data obtained from the
deployment of active lidar and radar remote sensing satellite
systems can improve our understanding of forest structure.
Such an improved understanding at a global scale is
essential to the planet’s biotic diversity and to the func-
tioning of essential global cycles connecting the atmosphere,
ocean and biosphere.

1.1. Shape, Size, and Mass of Trees

[4] The structure of a forest can be thought of a conse-
quence of the statistical distribution of the sizes of trees over
an area. Typically, tree size is quantified as a diameter
(measured at “breast height” of 4.5 feet or 1.3 m and denoted
as DBH) and its canopy or stem height (measured at the top of
the canopy or below the first branch). The breast‐height level
is partially a matter of conveniently taking diameter mea-
surements in the field while standing but it also serves to
avoid the complexity that most trees swell near the ground as
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the tree trunk transitions into the structural root system. The
problem of how to measure tree diameters can be problematic
for two of many examples: tropical trees that have deeply
fluted or buttressed trunks; trees with multiple trunks. Tree
heights are also difficult to measure in the field because of the
complexity of measurement techniques and the difficulty of
seeing the top of the canopy in dense forests [West, 2009].
[5] In general, trees are constrained in their geometry and

display striking regularities in their structure. These regu-
larities allow tree diameter to be transformed into other
variables of interest. There are two prevalent explanations
for these regularities. One involves the mechanical strength
required to support standing wood structures; the other, the
constraints of transporting water up a tall structure com-
posed of hollow tubes. Trees essentially respond to both of
these constraints by developing a complex, but regular
architecture that can be characterized, in either case, by the
use of statistically calibrated equations known as allometric
equations. Tree diameter also can be related to other attri-
butes, such as total tree mass, the area of a tree’s foliage, etc.
by allometric equations [McMahon and Bonner, 1983; Ter‐
Mikaelian and Korzukhin, 1997; West et al., 1999, 1997;
West and Brown, 2005; Chave et al., 2005]. In general, most
trees do not grow symmetrically over their life spans. Small
trees have a disproportionally larger amount of leaves and
less woody tissue than large trees [Hallé and Oldemann,
1975; Hallé et al., 1978].
[6] Structural models based on mechanical strength for

wood were initially derived from the engineering problem of
building light ship’s masts of a given strength [Greenhill,
1881; McMahon, 1973]. The basic equation for a mast
shaped like a tall cone is

l ¼ 0:851 E=�½ �1=3d2=3

where l is the height of a mast at the point of buckling under
its own weight, E is the modulus of elasticity of the wood;
r is the density of the wood; d is the diameter of the mast
at its base.
[7] When these equations are applied to trees one finds

that the diameter of record‐holding large trees is about a
factor of 4 greater than that predicted by their buckling point
[McMahon and Kronauer, 1976]. Models related to the
hydraulic constraints on tree architecture, often referred to as
“pipe models,” are based on a simple function of the form
[Shinozaki et al., 1964; West et al., 1999]

d1 ¼ ad z
2

where d1 and d2 are dimensions of the tree (diameter, bio-
mass, leaf area, etc.) and a and z are scalar parameters. There
is considerable evidence that the hydraulic constraints on tree
structure scale‐up to the stand level in the existence of rel-
atively consistent relations between the area of sapwood on a
forest stand and the leaf area of the stand [Waring and
Running, 1997]. These measurements are somewhat con-
founded by the statistical estimation of sapwood and leaf area
as a function of tree diameters on a site. Nonetheless, the
relationships hold for many species over different landscapes
and are consistent with the underlying assumptions in the
pipe model [Shinozaki et al., 1964]. The same hydraulic
constraints on tree architecture imply that increased tree

height results in less efficient transport of water per unit
sapwood area [McDowell et al., 2001]. This theory proposes
that the decline of forest productivity with age is a conse-
quence of the loss of hydraulic conductance with increased
tree height [Ryan and Yoder, 1997]. The limits to tree height
have been a subject of numerous studies with the conclu-
sion that trees grow tall only when resources (water, light,
nutrients) are abundant [Niklas and Spatz, 2004; Niklas,
1994; Koch et al., 2004].
[8] In general, one can find an allometric relationship

between tree height and sapwood area that scales isometri-
cally, on average, with the tree trunk cross section [Niklas
and Spatz, 2004]. This relationship varies as a conse-
quence of morphological and ecophysiological species‐
specific responses to different habitats and hydraulic con-
straints [Fulton, 1999; Koch et al., 2004]. However, it will
ultimately converge on an approximately 2/3 scaling rule as
the size of the tree increases [McMahon, 1973]. Similarly,
hydraulic models also imply that there is a scaling rela-
tionship between plant diameter and biomass, but they can
vary across species due to differences in biomass parti-
tioning patterns and ecological responses to different envi-
ronmental conditions [Niklas, 1994].
[9] The empirical relationship between biomass and tree

diameters is difficult to obtain logistically, particularly for
remote locations and tropical forests. Most calibrations are
sparse with respect to data on larger diameter trees. Since the
equations are fitted from log‐transformed data, this means
that the error bars associated with the larger diameter trees
are very large [Chave et al., 2005; Chambers et al., 2001]. In
mature natural forests, a large percentage of the total mass is
associated with the largest trees, so this is potentially a sig-
nificant source of error. There are also errors associated with
the log transformation of the tree diameters in regression
statistics that generate estimation bias [Beauchamp and
Olson, 1973; Sprugel, 1983].

1.2. Structure of Forests

[10] Given a sample of tree diameters and appropriate
allometric functions, one can estimate the biomass of a
forest as the summation of the biomass of the trees com-
prising the forest. There are some important scale‐related
implications in this simple procedure. Averaging the forest
biomass reduces the variation seen in the biomass estimates
of individual trees. There is evidence that for many forests
an aggregation of about 1 ha provides a significant amount
of variability reduction [Weishampel et al., 1992, 1994;
Shugart et al., 2000; Hurtt et al., 2010]. At smaller spatial
scales variability in forest biomass is large, suggesting that
there are significant forest features that are seen at one
spatial scale and not others [Chave et al., 2003] (Figure 1).
While averaging results from small size plots reduces the
variance due to error in the tree‐biomass‐estimation proce-
dure, it also masks biomass variability resulting from spatial
structural variability [Weishampel et al., 1992, 1994]. This
variability arises from tree‐to‐tree competitive interactions
that often occur at the scale of a large canopy tree.
[11] When only one tree species is present, the competi-

tion becomes extremely important when the forest stand
reaches a “self‐exclusion” or thinning stage. A self‐thinning
may reduce the number of stems in an area by about 90% in
50 years [Tadaki et al., 1977]. There is an upper limit to the
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number of stems within an area as a function of average
biomass of individual trees [White, 1981]. This relationship
is often presented in a log‐log plot that has a nearly constant
slope of −3/2. There is a decrease in tree numbers with
increasing average size of the trees [Waring and Running,
1997]. Debris from tree mortality can have a significant
influence on soil organic matter by increasing the nutrients
and impacting the regeneration [Landsberg and Waring,
1997].
[12] To understand the significance of structure on forest

biomass, two cases are discussed: (1) the even‐aged stands
with one species of tree and (2) forest biomass in complex
stands with mixed‐age structure and multiple species.
1.2.1. Even‐Aged, Monospecies Forest Stands
[13] Even‐aged forest stands are the product of more than

200 years of forestry practice spread over Europe, particu-
larly Northern Europe, after forests had been substantially
cleared over Medieval times [Williams, 2003]. From about
1800, forestry practice transitioned from earlier exploitive
extraction of material to a more “trees as a crop” agricultural
management of forest tracts. Eventually, a forest modeling
concept called the “yield table” approach developed and
became the signature of modern forestry. Nowadays, some of
the historical forest data sets used in yield tables have grown
to very long records [Pretzsch, 2009]. Piecing together of
yield tables from stands on similar sites but of different ages
(what ecologists would term “space for time” substitution)
has extended some yield table records to 200+ years of
predictions.

[14] The organization of yield tables is based on the
assumption that on a given kind of site (same soils, same
rainfall, etc.) trees in monospecies and even‐aged stands
grow to the same height at a given age, regardless of density
of trees. For trees of the same heights, at low densities one
would expect trees with large diameters and crowns; at an
equivalent high‐density location the trees would have
smaller diameters and crowns. In a yield table, forest stand
data are arranged by the height of the trees at a given
location at a reference age which is usually the typical age of
tree harvest. The tree height at this standard age is called a
“site index” and is used to signify the overall quality of a
location for growing trees. Using yield tables, one can assess
the volume of wood in managed stands of equivalent heights
on different sites. Two significant observations arise from
consideration of yield tables.
[15] 1. One can obtain an empirically based indication of

the capability of height measurements to predict forest
biomass by multiplying the forest wood volume with the
wood density. In Figure 2, the variation of tree volume
ranges over 125 m3 ha−1 (or ±12.5% of the average volume
of 500 m3 ha−1 over the range of different site index stands
when the dominant canopy height is 30 m. This 30 m height
would occur at a later age for sites with low site index stands
and vice versa.
[16] 2. The rate of mortality of trees in stands undergo-

ing natural thinning is highest in stands with the highest
site indices. Faster growing trees suppress their competitors
at a higher rate than slower growing trees on low site
index locations.

Figure 1. Aboveground biomass distribution in subplots within a 50 ha permanent plot in tropical wet
forests of Barro Colorado Island, Panama (R. Condit, 1995; data downloaded from https://ctfs.arnarb.
harvard.edu/webatlas/). The distribution is skewed and unsymmetric at 0.1 ha, representing the gap
dynamics, and almost symmetric and normal at 1.0 ha, representing forest structure at equilibrium.
By increasing the size of subplots to 250 m and 500 m, the values of biomass show less variability.
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[17] The trade‐off between rapid tree growth versus high
mortality on good sites is the basis of the development of
thinning strategies for managed stands and for schemes to
plant forest plantations at particular spacing of trees. Despite
the elevated mortality, sites with high site indices are more
productive than low site index locations.
[18] Single‐species, even‐aged stands also occur as natu-

ral forests. For the vast boreal forest, one finds extensive
forest recovering from wildfires that are dominated by single
species and of the same age. For most of the northern and
midlatitude forests, average height of forest stands is con-
sidered an indicator of site quality and growth potential and
is usually derived from the forest age height relationship
[Kimmins, 1987; Kira, 2001]. However, height alone does
not provide the aboveground biomass of natural forests with
the required precision for carbon management. In a recent
study of northern and midlatitude forests (Figure 3), it was
found that average height can be used as a proxy for large‐
scale biomass variations and is a critical factor for control-
ling the magnitude of regional biomass density [Fang et al.,
2006]. Data from individual forest plots indicate that aver-
age height can explain approximately 60% of biomass
variation on the regional scales [Fang et al., 2006] (see
Figure 3).

1.2.2. Mixed‐Aged, Multispecies Forest Stands
[19] While height is a central feature in forestry yield

tables for single species and even‐aged forests, the predictive
power of height can become weaker in mature or old‐growth
forests. There, dominant trees often do not show any appre-
ciable height growth and height may even decline in senescing
but still dominant canopy trees. However, diameters continue
to increase, adding to the biomass of trees. In boreal forests,
maximum biomass can approach 400 Mgha−1 although
average biomass may be only 40 Mgha−1 [Botkin and
Simpson, 1990]. Similarly in temperate and topical forests,
the average biomass may be 200 Mgha−1 and 330 Mgha−1,
respectively [Brown et al., 1991], but the maximum biomass
may reach 2500 Mgha−1 in Pacific Northwest of U.S. or
690 Mgha−1 in tropical Asia. The relative contributions of
diameter and height in determining the forest biomass have
been evaluated with recent allometric equations developed
for tropical forests [Chave et al., 2005].
[20] Disturbance and recovery of forest ecosystems are

essential to the understanding of the temporal dynamics of
the biomass development in mature forests and its role in the
global carbon cycle [see Houghton et al., 2009].Watt [1947]
developed a classic concept that the structure of a mature
forest (at the scale of several hectares) is a heterogeneous
mixture of patches in different phases or stages of recovery

Figure 2. Sections of stand yield tables for Switzerland. Plot of stand age (x axis) versus wood volume
(y axis). The families of curves represent forests with different site indices (an index of site quality that is
the expected height of the dominant trees in even‐aged stands of spruce (Picea abies) at an age of
50 years). Note that this data set covers 120 years of measurement and is based on survey plots covering
over 100 years of measurements. Some of these plots were initially developed and regularly resurveyed
starting as early as 1888. Other plots have been added and resurveyed over this passage of time [Köhl
et al., 1995]. The volume of wood in a forest increases with age and slows in its rate of increase over
time. Sites with higher site indices have more wood volume at any given time. The red circles on each of
the site index based curves indicate the age when canopy dominant trees in stands of each size class reach a
30 m height. The solid red lines project the age points for stands with the highest and lowest site indices to
the associated volume of wood in each stand. The range in wood volumes is about 125 m3 ha−1 or ±12.5%.
Modified from Erragstafeln: Fichte. Eidgenössische Anstalt für das forstliche Versuchswesen, Birmensdorf
ZH [see Köhl et al., 1995].
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from disturbance and gap‐phase replacement. The mature
forest should have patches with all stages of gap‐phase
dynamics and the areal proportions of each should reflect
different gap replacement stages. This has significant im-
plications for the apparent dynamics of forests when viewed
at different spatial resolution. The biomass dynamics for a
single‐canopy‐sized piece of a forest (Figure 4a) is quasi‐
cyclical in the form of a sawtoothed curve [Shugart, 1998].
The spaces between the “teeth” in the sawtooth curve are
determined by how long a particular tree lives and how much
time is required for a new tree to grow to dominate a canopy
gap. At a landscape scale, the overall biomass dynamic
(Figure 4b) is determined by summing the dynamics of the
parts of the mosaic (summation of several sawtooth curves).
If there has been a synchronizing event, such as a clear
cutting, one would expect the mosaic biomass curve to fol-
low four stages of development: In the first stage of
regrowth, the curve rises uniformly because all patches of
forests are simultaneously covered with growing trees (I in
Figure 4b). At the second stage, the mosaic biomass curve
levels out because of continuous growth of dominant trees in
some patches are balanced by the loss of biomass due to
competition and mortality in other patches (II in Figure 4b).
If the trees over the area have relatively similar longevities,
there is also a subsequent period when several (perhaps the
majority) of the pieces that comprise the forest mosaic all
have deaths of the canopy dominant trees (III in Figure 4b).
Over time, the local biomass dynamics become desynchro-
nized and the biomass curve varies about some quasi‐
equilibrium level (IV in Figure 4b).
[21] The occurrence of such patterns has been docu-

mented for several different mature forest systems. The
presence of shade‐intolerant trees in patches of mature
undisturbed forest is one observation consistent with the
mosaic dynamics of mature forests (for tropical rain forests
see Whitmore [1982] for review and discussion as well as
Jansen et al. [2008]; see alsoManabe et al. [2009] for warm
temperate forests and Kenderes et al. [2008] for cool tem-
perate forests). The spatial scale of these patterns is

important in designing measurement approaches to capture
the biomass of the mosaic forest or the dynamics occurring
at gap‐filling patches. The scales of the mosaics in many
natural forests are somewhat larger than one would expect
from gap filling of single tree gaps [Rackham, 1992] indi-
cating an importance of phenomena that cause multiple tree
replacements. Also, the relatively long records (ca. 40 years
in most cases) that are available for different forests show
the spatial scales where the processes of mortality and
recruitment impact the forest composition and biomass
development (see Jones [1945] and Rackham [1992] for
temperate forests and see Swaine and Hall [1988] for
tropical forest examples).
1.2.3. Modeling Forest Dynamics at Different Scales
[22] In general, forests can be studied at two spatial scales

that are represented by a set of sampling scales: At a large
scale, a forest stand seeks an equilibrium state with a par-
ticular mean configuration. This state once attained remains
the same, thereafter. At a small scale (the so‐called the gap
scale), the forest ecosystem never reaches an equilibrium
state and is continuously undergoing changes driven by the
presence of large trees. For example, at 0.1 ha scale, forest
dynamics are nonequilibrium seeking and quasi‐cyclical; at
hectare scale the dynamics are equilibrium seeking. The
demarcation between these two modes of behavior is on the
order of the size of the tree canopy of dominant trees (10 m
to 30 m implying a 0.01 to 0.1 ha area). It is typically larger
in temperate and boreal forests and smaller in tropical rain
forest [Kuuluvainen, 1992].
[23] Regardless of the ecosystem type, the mechanisms

that define the scales are very similar. At the scale of gap
dynamics, the forest undergoes a characteristic dynamic that
is explained in terms of demographic mechanisms and life
history traits of the species involved [Huston and Smith,
1987]. At the larger scale of the forest stand, attributes
such as stand biomass, diameter distributions, and species
composition are variables that express the integration or
steady state condition of forest dynamics under a set of
environmental conditions [Smith and Urban, 1988]. At any

Figure 3. Average forest height predicts the aboveground biomass of even‐aged and managed forests of
northern midlatitude forests: (left) continental scale relationship of biomass and average height from 645
forest plots with a canopy taller than 10 m to represent closed canopy forests and (right) relationships
between mean forest age and forest height for the northern regions (United States, Canada, East Asia,
and Europe), suggesting the highest overall site quality is in U.S. forests, followed by European, Asian,
and Canadian forests (modified from Fang et al. [2006] with kind permission from Springer Science and
Business Media).
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intermediate states, forest structural configuration or beha-
viors is not coherent and cannot be interpreted easily. This
suggests that the choice of a reference scale and the sam-
pling method are important to capture both qualitative pat-
terns and quantitative characteristics of forest stands.
[24] One of the significant implications of this spatial‐

scale related difference in the apparent fundamental behavior
of a forest is its impact on the resolution and the sampling

density of forest structure or biomass. To characterize the
landscape‐scale biomass variations, plots or remote sensing
resolutions of 1.0 ha is more appropriate because it captures
the equilibrium state or the aggregate pattern of the forest.
However, plot sizes or spatial resolutions of 0.1 ha (or less),
are more suitable to sample the nonequilibrium state of the
forest and capture the processes controlling the forest dynamics
(see Figure 1). The interactions at the finer scales reveal the
mechanisms that would drive future dynamic change in forest
structure. These 0.1 ha scale dynamics are largely lost in the
averaging to coarser‐scale forest characterizations. While this
finding is from a model‐based simulation, it uses a spatially
explicit version of a class of models that have been able to
reproduce a broad array of forest pattern and dynamics
and that have been considered for applications involving
responses of forests to global environmental change [Shugart,
1990; Shugart and Prentice, 1992; Shugart et al., 1992,
1996].
[25] Forests often display distinct layering, with different

pools of species associated with each layer. In rain forests
(where the structure is the most complex), these include:
forest floor, herb layer, shrub layer, understory, canopy, and
emergents [Richards, 1953; Baker and Wilson, 2000].
Brunig et al. [1979] found that if one sampled a tropical rain
forest using relatively narrow transects, then the layering
structure of the forests (in this case forests near San Carlos
on the Rio Negro, Venezuela) was displayed in the data.
However, when wider transects were used to survey the
same forest, the appearance of layers was lost from the data.
Chave et al. [2004] found similar scale‐related responses for
the 50 ha mapped forest plot located in a moist tropical
forest on Barro Colorado Island in Panama (Figure 1). They
found the distribution of the aboveground biomass changes
from a skewed and nonsymmetric form at small plots (0.04–
0.1 ha), illustrating the gap dynamics to a symmetric and
approximately normal form at large plots (0.5–1.0 ha),
representing the equilibrium state. Baker and Wilson [2000]
in developing a methodology of quantifying tree strata noted
that transects wider than tree canopies confound the identi-
fication of forest strata. Clark et al. [2008] recently made
direct collections of the leaf area height profiles of the
tropical forest in La Selva, Costa Rica and found significant
layering but could not resolve the horizontal extent of the
layering phenomena (due to the nature of their sample
design). They conjectured that it was likely to be the average
horizontal extent of areas of similar forest height, approxi-
mately the size of the crowns of canopy trees. Similarly,
Parker and Brown [2000] found that in temperate deciduous
forests in Virginia, there is a strong dependency between the
detection of strata and spatial resolution of samples. These
observations have significant implications for the design of
sampling density and scale for both ground and remote
sensing measurements. Small plots (∼0.1 ha) or resolutions
(10–30 m) and large sampling density would be appropriate
to capture the behavior of the forest gap dynamics, whereas
large plots (∼1.0 ha) or resolutions (∼100 m) would be
suitable to capture average behavior such as the forest
biomass.
1.2.4. Biomass Estimators
[26] As discussed earlier, allometric equations are transfer

functions to estimate the tree biomass from structural mea-
surements (DBH, Height, Crown Size, etc.). These estima-

Figure 4. Biomass dynamics for an idealized landscape.
The response is from a relatively large, homogeneous area
composed of small patches with gap‐phase biomass dynam-
ics. (a) The individual dynamics of the patches that are
summed to produce (b) the landscape biomass dynamics.
The landscape biomass dynamics curve has four sections
indicated: I, increasing landscape biomass curve rising as
all of the patches are simultaneously covered with growing
trees; II, local drops in biomass are balanced by the contin-
ued growth of large trees at other locations (the landscape
biomass curve levels out); III, if the trees have relatively
similar longevities, there is a period when several (perhaps
the majority) of the patches that comprise the forest mosaic
all have deaths of the canopy dominant trees; IV, the local
biomass dynamics become desynchronized and the land-
scape biomass curve varies about some level.
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tors or equations have been developed using trees sampled
from isolated sites or from small regions. Often, the equa-
tions are specific to individual species or group of species
with growth characteristics of a region with specific climate,
soil, and hydraulic conditions, hence extending such equa-
tions to other species or regions will introduce uncertainties
in estimating the biomass. As a result, there are inherent
errors in estimating forest biomass at large scales using the
site specific estimators. These errors include (1) the use of
coefficients derived for one species to another species,
(2) sample trees and wood densities are not representative of
target population because of size range and stand conditions,
and (3) statistical errors in estimating coefficients or form of
the estimators [Jenkins et al., 2003]. Other factors such as
inconsistent standards and methodologies in both sampling
and development of equations, and measurements and data
processing errors also impact the use of equations for large‐
scale forest biomass or carbon assessments. The propagation
of errors from individual tree measurements to biomass
equations depends on the spatial scale of the analysis.
Errors in estimating the biomass density are potentially
large at small scales (∼0.1 ha) where the variability in
structure and composition of forest are large and the forest
is in nonequilibrium state, and small when the scale
increases to 1.0 ha where the variability is small the forest
structure approaches to an equilibrium and aggregate state
[Chave et al., 2004].
[27] Recently, several papers have reviewed allometric

equations for trees in boreal forest and temperate forests
[Ter‐Mikaelian and Korzukhin, 1997; Jenkins et al., 2003]
as well as tropical forests [Chave et al., 2005]. Jenkins et al.
combine a large collection of allometric equations to
develop generalized equations for large areas of North
American forests. Chave et al. generalize over different
tropical forests across the world. The relatively larger pool
of sample sizes in these generalized equations tend to
compensate for the lumping of trees across species and
across the different physiognomic forms that trees of the
same species can have in different settings. One also sees the
general patterns that one would expect across collections of
species: collected equations for angiosperms (“hardwoods”)
produce higher biomass values for a given diameter tree
than gymnosperms (“softwoods”); the proportion of mass in
branches for smaller angiosperms is higher than for com-
parable sized gymnosperms; foliage mass is higher in
gymnosperms [Jenkins et al., 2003]. One can use these
results to produce aboveground biomass predictors. Infor-
mation on the height of the trees (relating directly to cap-
turing the variation in biomass associated with form)
increases predictive capability for trees [Chave et al., 2005].

2. Remote Sensing of Forest Structure

[28] Remote sensing, the process of imaging or sampling
the interactions between electromagnetic energy and matter
at selected wavelengths, has the ability to monitor terrestrial
ecosystems at various temporal and spatial scales and has
been widely tested for land cover mapping and various
forestry applications [Patenaude et al., 2005]. A remote
sensing image of a landscape is composed of picture ele-
ments or pixels. Whether it is an aerial photograph, an air-
borne or spaceborne optical spectral image (AVIRIS,

Landsat, MODIS), or an active microwave image generated
with radar sensors, the spatial resolution of each pixel
usually covers many trees. Viewing these images make
several things readily apparent (Figure 5). Forests and
woodlands appear quite different from cropland, range or
peatlands, urban structures, water or bare soil. Within for-
ested ecosystems other differences are apparent. Needleleaf
canopies are quite distinct from broadleaf ones, and within
each of these classes, young canopies can be readily dis-
tinguished from older ones. The reason for these differences
is to a large extent dependent on the measurement approach
(passive and active sensing) and the wavelength of obser-
vation (optical and microwave). However, optical properties
of vegetation components, three‐dimensional structure, tree
architecture, and the spatial arrangement of leaves, branches,
and stems are among the most important factors impacting
the ability to distinguish vegetation communities using remote
sensing. In addition to differences in the remote sensing
observations among vegetation types, the spatial extent and
horizontal variations in vegetation structure (tree density,
canopy type, gap density, etc.) can be observed and mon-
itored in the image data (Figure 6). As forest stands age,
thinning in the stands and differences in the tree height and
crown density distinguish one age class from another.
[29] In general, there are two types of remote sensing

techniques: passive and active. There are a variety of subtle
differences between these techniques. Passive sensing refers
to sensors that detect or measure the reflected or emitted
electromagnetic radiation from natural sources (radiation
from the Sun in terms of visible and infrared photons,
thermal, or microwave energy). Active sensing refers to
sensors that detect reflected responses from objected irra-
diated from artificially generated energy sources, such as
photons in lidar (light detection and ranging) and microwave
energy in radar (radio detecting and ranging) sensors.
Measurements from passive sensors are related to the
hemispherically integrated reflection from the surface in all
directions and hence are less sensitive to the vegetation
structure, but more to optical properties (in visible and
infrared wavelengths) and moisture (in thermal and micro-
wave wavelength). However, several passive optical sensing
techniques have been used to estimate vegetation canopy
structure, horizontal variations from texture variations, or
land cover extent and changes. Active sensors, on the other
hand, measure reflection in one direction by penetrating into
the vegetation canopies, and hence are more sensitive to the
arrangement of objects (structure) on their propagation
pathway. Radar and lidar sensors are currently being pro-
posed as promising active techniques for a globally con-
sistent and spatially resolved measurement of the vegetation
three‐dimensional structure and the above ground woody
biomass from space and providing spatial data on vegetation
structure, biomass and their changes due to disturbance and
recovery processes.

2.1. Active Remote Sensing of Forest Structure

[30] Two active remote sensing sensors: imaging synthetic
aperture radar (SAR), operating at largewavelengths (25–1m)
in fully polarimetric and interferometric (InSAR) modes,
and multibeam lidar operating at 1064 nanometer wave-
lengths are the key sensors recommended for measurements
of forest structure and biomass. These sensors measure
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complementary characteristics of forest structure and bio-
mass and their synergistic use from space can provide the
most reliable data on the spatial distribution of the above-
ground carbon stock and its changes.
2.1.1. Lidar Sensing of Structure
[31] Lidars emit nanosecond pulses of coherent light at the

characteristic wavelength of its laser (a popular frequency is
in the near infrared at 1064 nm). The pulses are emitted in
the nadir or near‐nadir direction and are scattered back into
the lidar detectors by the land surface and its vegetated
structures. The time elapsed since each pulse was fired and
then received back at the instrument determines the dis-
tances to scattering events and the underlying terrain sur-
face. The recorded signal or lidar waveform is a history of
the laser return energy as a function of time. The shape of
the waveform is a function of canopy height and vertical
distribution of foliage, trunks, twigs, and branches at vary-
ing heights within the lidar footprint. The total waveform is
therefore a measure of both the vertical distribution of
vegetation surface area and the distribution of the underly-
ing ground height [Blair et al., 1999]. A lidar sensor also

includes a processing and geolocation data system that
evaluates each return waveform to extract relative timing
points to allow the generation of topographic elevation and
vertical structure parameters. The last pulse detected within
the lidar waveform is the subcanopy ground response. The
ground response is relatively easy to identify in more open
(<90% canopy cover) forests and can be determined with
accuracies on the order of centimeters.
[32] Differing lidar “metrics” related to canopy structure

result from the manner in which the lidar waveform is
processed [Nilsson, 1996; Nelson, 1997; Means et al., 1999;
Lefsky et al., 1999; Dubayah and Drake, 2000; Nelson et al.,
2009a, 2009b]. Two different relative height (RH) metrics
(relative to the ground return) are often used in estimating
biomass within the lidar footprint: (1) RH100, the height
relative to the ground over which 100 percent of the lidar
energy from a pulse is returned, and (2) RH50, the height
relative to the ground over with 50% of the lidar energy is
returned. The lidar waveform also responds to the average
vertical and horizontal stand structure. Ni‐Meister et al.
[2001] found that using the waveform to estimate the ver-

Figure 5. (top) Landsat‐5 TM image (20 July 2005) from western Oregon (rgb equals 752 combina-
tions) with arrows plus dates referring to the date of harvest; (bottom) date of disturbance (harvest) color
coded, with permanent forest shown as dark green, nonforest shown as gray, and water shown as blue.
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tical profile of foliage area density for horizontally
“clumped” canopies led to a significant error unless the
horizontal heterogeneity was accounted for.
[33] Airborne lidar instruments can be designed to be

either imaging or sampling. However, imaging lidar sensors
for measuring vegetation structure have yet to fly in space.
Only sampling lidar sensors are at a technology readiness
level to be flown aboard orbiting platforms. The lidar pro-
files are rich in information related to vertical structure, and
its distribution horizontally [Drake et al., 2002a]. In addi-
tion to forest structure, forest biomass can be inferred from
the height information contained in the vertical lidar profile
[Drake and Weishampel, 2000; Drake et al., 2002a, 2002b;
Lefsky et al., 2002; Dubayah et al., 1997].
[34] A number of studies have shown that the difference

between the first and last lidar returns and its various inter-
mediate levels, measures of the height index of the forests in
the lidar spot, are directly proportional to forest biomass,
over a large range of ecosystem types [Lefsky et al., 2005;
Drake et al., 2002b]. However, the accuracy of estimating
forest height and biomass may vary depending on forest
types [Drake et al., 2002b;Lefsky et al., 2005, 2007;Anderson
et al., 2006].
[35] Unfortunately, for now we are constrained to use only

sampling lidars from space, but the sampled lidar informa-
tion, when combined or fused with optical and radar
imagery, promises a kind of “signature extension” of the

lidar information from the points sampled, to entire images
[Ranson et al., 2007].
2.1.2. Radar Sensing of Structure and Biomass
[36] The imaging radar sweeps the landscape with the

unique capability of its radio waves penetrating into the
forest canopy and scattering from large woody components
(stems and branches) that constitutes the bulk of biomass and
carbon pool in forested ecosystems. The sensitivity of
backscatter measurements at different wavelengths and
polarizations to the size and orientation of woody compo-
nents and their density makes the radar sensors suitable for
direct measurements of live above ground woody biomass
(carbon stock) and structural attributes such as volume and
basal area. The recent innovations in orbital designs for
repeat pass radar interferometry (InSAR) will also allow the
sensor to measure the height of forests and provide a vertical
dimension for accurately resolving the vegetation biomass
over a variety of old growth and regenerating forests globally
[Balzter, 2001]. Current state‐of‐the‐art in radar technology
allows L band (1.25 GHz) and P band (434 MHz) radar
measurements from space with high spatial resolution (25–
100 m), day and night imaging capability regardless of
atmospheric conditions and cloud cover, and with a repeating
global coverage at monthly to seasonal intervals. Such a
system should be able to access information over forests
globally, measure the magnitude of forest biomass in boreal
and temperate regions, improve current estimates of forest

Figure 6. Google Earth true color close‐up of a portion of Figure 5 area showing how patches of
different age appear at higher resolution. (Google Earth imagery (c) Google Inc. Used with permission.)
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biomass in the tropics, monitor and identify changes of
forest structure and biomass from disturbance (fire, logging,
deforestation) and characterize post disturbance recovery.
[37] Radar measurements of forest structure and above-

ground biomass can be divided into two approaches in the
literature based on (1) polarimetric backscatter energy or
(2) polarimetric InSAR (Pol‐InSAR) measurements. In both
cases, structure and biomass are estimated indirectly from
radar measurements. In polarimetric backscatter measure-
ments, forest components (stem, branch, and leaves) are
scatterers within the footprint of the radar beam that interact
with the incoming waves. The size (volume) and the
dielectric constant (moisture or wood density) and orienta-
tion and morphology of the scatterers determine the magni-
tude and polarization of the reflected waves. As a result, the
backscatter radar energy at linear polarizations (HH, HV,
VV; H: Horizontal, and V: Vertical for transmit and receive
configurations, respectively) is a function of the forest vol-
ume and biomass (Figure 7). The shape of this function is
known to be dependent on wavelength, polarization, forest
type and moisture conditions [Dobson et al., 1992; Le Toan
et al., 1992]. In most studies, the cross‐polarized (HV) term
is shown to be most strongly correlated with the forest bio-
mass. The estimation of biomass from backscatter measure-
ments is exploited using either empirical statistical approaches
or by inversion of physically based scattering models. In
empirical statistical approaches, regression models are devel-
oped between the radar backscatter measurements at different
frequencies or polarizations with forest structure (volume, basal
area) and biomass components (stem and crown) obtained from
field measurements [Dobson et al., 1995; Ranson et al., 1997;
Lucas et al., 2006; Saatchi et al., 2007].

[38] Statistical approaches based on a single measurement
may provide ambiguous estimates of biomass because of the
impacts of other ecological and structural variables. By
increasing the number of measurements (multiple polariza-
tions, wavelength, and times) the estimation becomes less
ambiguous [Dobson et al., 1995; Saatchi et al., 2007]. In
model‐based inversions, multiple measurements and sim-
plifying assumptions are used to invert for key structural
variables [Saatchi and Moghaddam, 2000]. In both cases,
the errors associated with the biomass estimation can be
reduced by increasing the wavelength of operation and by
stratification of forest types based on structure and land-
scape types [Dobson et al., 1995; Saatchi et al., 2007].
[39] The loss of sensitivity to biomass with biomass

increase produces a so‐called saturation level, an upper
bound on the range of biomass measured by radar back-
scatter power. This saturation is dependent on both radar
wavelength, polarization mode, incidence angle as well as
the type of forest, canopy structure and moisture conditions
[Ranson and Sun, 1997]. As a result, there is a wide range of
field‐observed saturation levels depending on the conditions
under which the radar measurements were acquired. In
addition to saturation limit, the accuracy of biomass esti-
mation plays a major role to define the limitations of radar
sensors for biomass estimation [Saatchi et al., 2010; Le Toan
et al., 2010]. In general, the loss of sensitivity introduces
larger errors or an underestimation of biomass. The accuracy
required for biomass estimation for a global measurement
and monitoring system is less than 20% [Houghton et al.,
2009; Frolking et al., 2009]. It is widely accepted that the
L band backscatter power will provide biomass measure-
ments of up to 100–150 Mg/ha with the above accuracy

Figure 7. Radar imager maps of observed radar energy returned at various polarization transmit‐receive
combinations (HH, HV, VV, where H is horizontal polarization and V is vertical polarization) which are
related to the volume and biomass of forest components. The multibeam lidar sampler measures the ver-
tical variation in the strength of the scattered laser signal, which is related to forest vertical structure pro-
file and biomass. The two signals are combined using “fusion” algorithms to improve the accuracy of
radar estimates of biomass and to extend lidar measurements of structure in both space and time.
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[Kasischke et al., 1997]. However, at L band, reported sat-
uration levels range from 60 Mgha−1 of biomass [Luckman
et al., 1998] in tropical forests using single polarization to
about 200 Mgha−1 in boreal forests using multiple polar-
izations [Ranson et al., 1995]. At P band this range may vary
from 100 to 300 Mgha−1 in tropical forests [Santos et al.,
2003; Hoekman and Quinones, 2000; Saatchi et al., 2010],
and 200–300 Mgha−1 in boreal and temperate forests [Rignot
et al., 1994; Dobson et al., 1995; Kasischke et al., 1997;
Saatchi and Moghaddam, 2000; Saatchi et al., 2007].
Despite, the varying saturation range, radar backscatter with
polarimetric measures and spatial textures have been used
extensively to characterize or classify forests in terms of bio-
mass and structure, even beyond the so‐called saturation range
[Hoekman and Quinones, 2000; Saatchi and Moghaddam,
2000; Quinones and Hoekman, 2004].
[40] In addition to measuring one‐time biomass densities,

imaging radar provides the capability of monitoring biomass
changes resulting from forest disturbance [Rowland et al.,
2002; Mitchard et al., 2010]. Acquiring multitemporal ima-
ges at different polarizations and wavelengths allows
detection of deforestation resulting from clear cutting, forest
fires and insect disturbance, wind damage and to some extent
changes in forest structure [Saatchi and McDonald, 1997;
Rignot et al., 1994; Couturier et al., 2001; Siegert et al., 2001;
Salas et al., 2002; Ranson et al., 2003]. The results from
these studies indicate the accuracy of monitoring forest dis-
turbance and recovery by radar backscatter measurements
and highlight various sources of errors and ambiguities.
However, the results generally indicate that backscatter
polarimetric measurements can potentially monitor distur-
bance modes in most global forested ecosystems (Figure 8).

[41] InSAR technique is based on the fact that radar
backscatter contains information about the intensity and the
phase of backscatter signal. The phase is determined by the
two‐way propagation length from the sensor to the resolu-
tion cell. By acquiring two complex SAR backscatter
measurements over the same resolution cell from very close
antenna positions (separated by a distance baseline), the
phase difference associated with two viewing distances can
be readily related to the three‐dimensional position of the
resolution cell [Zebker et al., 1992]. Therefore, InSAR
techniques were first used to measure surface topography
such as in the SRTM (Shuttle Radar Topography Mission)
[Rodriguez et al., 2006] using either a single wavelength or
single polarization sensors. Over vegetated surfaces, these
observations showed a strong sensitivity to vegetation
height and structure [Rodriguez and Martin, 1992; Askne
et al., 1997; Treuhaft et al., 1996]. However, it was only
recently that results from experiments and model develop-
ments showed that a combination of polarimetric and InSAR
measurements can provide forest height and potentially
three‐dimensional structure over different forest types
[Papathanassiou and Cloude, 2001; Cloude, 2007; Balzter,
2001; Hajnsek et al., 2009].
[42] Although interferometry measurements are directly

related to the height of the surface, over the vegetated sur-
faces, the InSAR coherence and phase are nonlinear func-
tions of vegetation height, and as in backscatter case, the
shape of the function depends wavelength, polarization,
forest type, and canopy and surface moisture condition.
Hence, the process of extracting vegetation height and
structure, similar to backscatter case, involves either statis-
tical regression or model inversion techniques [Askne et al.,

Figure 8. Relationship between backscatter power (in dB) at HV (horizontal transmit, vertical receive)
polarization versus aboveground dry biomass (tons/ha). The best regression fit to the data is with logarithm
of biomass. (left) Data extracted from ALOS PALSAR imagery over four study areas in tropical, temperate,
and woodland savanna forests, (S. Saatchi, unpublished results, 2010). (right) Data extracted from P band
airborne sensors from boreal, tropical, woodlands, and plantation forests [Le Toan et al., 2010].
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1997; Cloude and Papathanassiou, 1998]. Height estima-
tion from Pol‐InSAR, at large wavelengths (L band and
P band), has been performed successfully over a variety of
forest types [Neumann et al., 2010; Hajnsek et al., 2009;
Papathanassiou and Cloude, 2001]. These results suggest
that it is possible to derive an unambiguous derivation of
height without a clear saturation level (L band and P band;
Figure 8).

2.2. Passive Remote Sensing of Forest Structure
Using Solar Radiation

[43] Passive remote sensing instruments measure vegeta-
tion properties indirectly by measuring the fraction of inci-
dent light that is reflected from the vegetation at different
wavelengths. In forest stands, the sensors measure the
aggregate reflectance as a function of wavelength (spec-
trum) of the tree canopies and understory within a pixel. The
reflectance varies seasonally with phonological changes in
the vegetation. The spectral reflectance spectrum is then
exploited to extract information on forest structure, type,
age, condition, biomass, leaf area, and even photosynthetic
rate.
[44] The reflectance of a particular forest stand is deter-

mined by (1) the fraction of incident light that is scattered
directly back into the sensor detectors from the canopy
elements and the understory (sunlit canopy and understory)
and (2) the fraction of light that is scattered multiple times
from these elements, then into the sensor detectors (diffuse
canopy and under story, or shadow). In the visible part of
the spectrum the dominant signal detected by the sensor is
the direct scattering, or sunlit canopy and sunlit under story.
Multiple bounces of photons from the forest back to the
sensor is small in comparison to direct scattering because
the chlorophyll and other leaf pigments within the forest
foliage are highly absorbing at visible wavelengths. At near
infrared wavelengths, however, the foliage is more trans-
parent and multiple scattering becomes more important.
Hence, the near infrared wavelengths are sensitive to veg-
etation changes over a wider range of vegetation densities.
[45] In principle, given remote sensing measurements

canopy reflectance at enough different wavelengths, the
fraction of sunlit canopy and background and the fraction of
shaded canopy and background can be inferred. These terms
define the three‐dimensional optical and morphological
structure of the forest. The sunlit canopy reflectance is
determined by the internal structure and optical properties of
trees, the main factors being leaf reflectance and transmit-
tance, related to leaf morphology and biochemistry, branch
and bark reflectance, all characteristic of individual tree
species, the leaf area, the leaf to branch area ratios, the leaf
angle distribution etc. These factors give rise to very dif-
ferent reflectance for some species; for example some con-
ifers and deciduous crowns have very different reflectance.
[46] Individual tree heights and shapes as well as stem

density determine the shaded and sunlit fractions viewed by
a sensor field of view. The 30 m resolution of Landsat and
the 250 m and greater resolution of MODIS can include
many individual trees of different morphologies, even
nonforest cover types. Variations in these factors from one
pixel to the next, introduce texture into the image, which can
be used to extract further information related to the land-
scape‐scale structures induced by the underlying topogra-

phy, edaphic variations, and disturbance history. A number
of studies have shown that the fraction of shadow in a pixel
can in some cases be used to estimate stand biomass. For
low‐density canopies, the reflectance is exquisitely sensitive
to spectral contrast between the sunlit canopy/background
and the shadowed canopy/background. This contrast has
been used very effectively to estimate biomass density [Hall
et al., 1995, 1996, 1997; Peddle et al., 1999] by relating
shadow and sunlit canopy fraction to canopy volume, hence
biomass density.

3. Data Fusion

[47] Radar and lidar sensors provide complementary
information about the forest structure from space. The vol-
ume of vegetation sensed by these two instruments at a pixel
level is not exactly the same (Figure 7). However, the sig-
natures have some level of commonality because of bio-
physical and structural nature of forest stands. The vertical
distribution of reflective surfaces that can be inferred from
lidar reveals the bole and branch structure supporting the
leaves within a near vertical volume of the vegetation. Lidar
sensors from space measure this vertical profile by sampling
the forest stand along its orbital tracks. Radar provides
imaging capability to estimate forest height through InSAR
configuration or forest volume and biomass through polar-
imetric backscatter power. However, the vegetation signa-
ture from radar measurements is from a slanted volume and
is sensitive to both vertical and horizontal arrangement of
vegetation components (leaves, branches, and stems). The
combination of the two sensors has the capability of pro-
viding the vegetation three‐dimensional structure at spatial
resolutions suitable for ecological studies (25–100 m).
However, there are limited studies to explore the fusion of
the two measurements because of the lack of data over the
same study areas. Potentially, fusion between the two sen-
sors can be exploited at three levels.
[48] 1. Parameter level, where forest structure such as

height metrics, basal area and volume estimated by lidar and
radar algorithms at a pixel level are combined in allometric
equations to estimate stand‐level forest biomass or other
structural and biophysical parameters. This approach requires
assessments of pixel‐level structural parameters estimated
from each sensor and careful consideration of spatial vari-
ability of forest structure at the stand level (spatial resolutions
of greater than 100 m). The spatial averaging and comparison
with stand‐level ground measurements are important in this
approach because lidar‐ and radar‐estimated structures are
not necessarily from the same vegetation volume or three‐
dimensional location. For example, leaves interact with the
wavelengths of lidar emissions but are transparent to the
wavelengths of P band radar. This differential sensitivity to
targets of different dimensions represents a potential advan-
tage for fusion because the sum of the range of structural
element sizes detected by different sensors is greater than that
of any one sensor alone.
[49] 2. Signal level, where radar backscatter or Pol‐InSAR

measurements are combined with lidar height metrics in
statistical regression models to estimate forest three‐
dimensional structure (height, biomass, volume, basal area)
[Hyde et al., 2007; Sun et al., 2008, 2002; Slaton et al., 2001].
This approach is dependent on ground inventory data to
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develop the statistical models and validate the results and hence
requires careful assessment of the compatibility of inventory
plot size and spatial resolution of remote sensing data.
[50] 3. Physical model level, where lidar measurements of

vertical structure are used in radar backscatter and Pol‐
InSAR electromagnetic models to predict the radar returns
and reduce the number of structural parameters in radar
estimation algorithm. The advantage of this approach is that
by including the physics of measurements and sensors’
geometry, the uncertainty and errors due to variability in
forest structure and sensor characteristics can be quantified.
However, because of the large number of variables involved
in developing a physically based model, in practice the
fusion algorithms are developed for site‐specific applications
and will not be suitable for a globally operational system.
[51] 4. The fusion of active sensors with one another as

well as the conjoining of active sensor information with
information obtained from the existing constellation of
passive remote sensing devices is currently limited by the
lack of contemporaneous applications of the sensors at
locations with well developed ground data. This will likely
be an ongoing research area for several years to come.

4. Concluding Remarks

[52] Terrestrial ecosystem structure, seen as the three‐
dimensional arrangement of the vegetation at a location,
determines the processing of water, essential elements and
physical fluxes essential to understanding of the role of these
ecosystems in the total Earth system. In forests, ecosystem
structure is a statistical consequence of the sizes of trees,
usually derived as a consequence of allometric transforma-
tions of statistical distributions of the diameters of trees.
Remote sensing, particularly with active remote sensing,
provides a capability to quantify the structure of forest sys-
tems by direct measurement of other indicators of structure.
Theoretical, model‐based investigations of the expected pat-
terns of forest structure when measured at different scales
indicates a fundamental difference in the fine‐scale (approx-
imately 0.10 ha) dynamics of forests and the larger‐scale
(approximately 10 ha) dynamics. The fine‐scale dynamics of
structure are cyclical, nonequilibrium kinetics associated with
the birth, growth and death of a canopy dominant tree. In
contrast, the large‐scale dynamics are equilibrium seeking
and a statistical‐mechanical consequence of the fine‐scale
dynamics. What this implies for remote sensing of forest
ecosystems structure is that a complete understand of the
functioning of a forest requires measurement at both fine and
large scales.
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