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GLGM‐3: A degree‐150 lunar gravity model from the historical
tracking data of NASA Moon orbiters
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[1] In preparation for the radio science experiment of the Lunar Reconnaissance Orbiter
(LRO) mission, we analyzed the available radio tracking data of previous NASA lunar
orbiters. Our goal was to use these historical observations in combination with the new
low‐altitude data to be obtained by LRO. We performed Precision Orbit Determination on
trajectory arcs from Lunar Orbiter 1 in 1966 to Lunar Prospector in 1998, using the
GEODYN II program developed at NASA Goddard Space Flight Center. We then created
a set of normal equations and solved for the coefficients of a spherical harmonics
expansion of the lunar gravity potential up to degree and order 150. The GLGM‐3
solution obtained with a global Kaula constraint (2.5 × 10−4l−2) shows good agreement
with model LP150Q from the Jet Propulsion Laboratory, especially over the nearside.
The levels of data fit with both gravity models are very similar (Doppler RMS of ∼0.2
and ∼1–2 mm/s in the nominal and extended phases, respectively). Orbit overlaps and
uncertainties estimated from the covariance matrix also agree well. GLGM‐3 shows
better correlation with lunar topography and admittance over the nearside at high degrees
of expansion (l > 100), particularly near the poles. We also present three companion
solutions, obtained with the same data set but using alternate inversion strategies that
modify the power law constraint and expectation of the individual spherical harmonics
coefficients. We give a detailed discussion of the performance of this family of gravity
field solutions in terms of observation fit, orbit quality, and geophysical consistency.
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1. Introduction

1.1. Rationale

[2] The Lunar Reconnaissance Orbiter (LRO) mission
marks the robotic return of NASA to the Moon. With the
purpose of building high‐resolution data sets to ultimately
enable the landing of astronauts, the LRO spacecraft carries
a suite of capable instruments, with a particular focus on the
lunar poles, for determining high‐resolution imagery,
altimetry, surface thermal properties; mapping permanently
shadowed regions and potential ice deposits within; and so
forth [Chin et al., 2007]. The S‐band telecom subsystem
will be used to track the spacecraft and precisely estimate its
trajectory, which will allow the measurements of all the
instruments to be precisely geolocated. When combined
with the topographic data obtained by the laser altimeter (the
Lunar Orbiter Laser Altimeter (LOLA); see Smith et al.
[2009]), the radio tracking data will help define a new

geodetic reference frame for the Moon. The required posi-
tion knowledge (50 m total position; 1 m radial) is chal-
lenging, given the low altitude of the polar orbit [Chin et al.,
2007], and will necessitate new solutions of the lunar
gravity field in order to model short‐wavelength gravity
anomalies not necessarily captured by current solutions.
[3] One of the largest perturbations on the LRO orbit will

be errors in the knowledge of the lunar gravity field
[Lemoine et al., 2008; Rowlands et al., 2009]. To reduce this
error in spacecraft ephemerides, and in the mission data
products, we have planned to create a tuned gravity model
that merges the historical data (from Lunar Prospector,
Clementine, the Apollo subsatellites, and the Lunar Orbiters
1–5) with the tracking data we will obtain from LRO,
including the radiometric tracking data, the one‐way laser
data, and the LOLA‐derived altimeter crossovers. We have
reprocessed all the historical data [Lemoine et al., 1997]
with updated force models and planetary ephemerides
(section 2.1). The data from the extended phase of the Lunar
Prospector mission are especially valuable; this orbit (alti-
tude 30 ± 15 km) is very similar to LRO’s mapping orbit
(polar, near‐circular, altitude 50 ± 15 km), and we discuss
the contribution of each in section 2.2. We also note the
close similarity between the orbits of LRO and of the Lunar
Prospector extended mission. The LRO mission will use
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S‐band tracking from the Universal Space Network rather
than the Deep Space Network, in addition to precise one‐way
laser ranging and altimeter data in the form of crossovers for
orbit determination. The Lunar Prospector data, because of
their precision and coverage, will still form the cornerstone
of any lunar geopotential models in the near term, even when
LRO data are eventually analyzed and included. We expect
the new LRO data will contribute incrementally by refining
the low‐degree field and by improving the determination of
low‐order m‐daily harmonics [Kaula, 1966] and some of the
zonal harmonics.
[4] Herein we summarize the results of our new high‐

resolution gravity field model from the historical data,
GLGM‐3, in the same line as Goossens et al. [2006] did
before the JAXA SELENE mission.

1.2. Previous Work

[5] Lunar space geodesy has long been a challenge, owing
to the tidal lock of the Moon with Earth that prevents simple
orbiter missions from being tracked over a large part of its
surface (typically ∼40%, on the farside, for a 100 km alti-
tude orbit). Effectively, this lack of radio tracking data has
translated into a poor spatial resolution of the farside grav-
ity, constrained only by the observation of the effect of the
gravity field‐induced perturbation on the spacecraft trajec-
tory. Until recently, the best lunar gravity fields presented a
clear contrast in predicted error between the two hemi-
spheres. LP150Q (see A. S. Konopliv and the Lunar Pros-
pector Gravity Science Team, LP150Q Spherical Harmonic
Model, 2000, available at http://pds‐geosciences.wustl.edu/
lunar01/lp‐l‐rss‐5‐gravity‐v1/lp_1001/sha/jgl150q1.sha,
hereinafter referred to as Gravity Science Team, 2000), and
the latest model from the Jet Propulsion Laboratory (JPL), in
the family as LP165P described by Konopliv et al. [2001]. It
combined data from all existing NASA orbiter missions,
including the Lunar Prospector missions (1998–1999), and
described several large‐scale anomalies in the farside low‐
latitude region, thanks to the combination of data from
satellites at various inclinations.
[6] The Japanese SELENE mission avoided this “farside

data gap” problem by having a small satellite (in a high
eccentric orbit) relay radio signals between ground stations
and the main orbiter Kaguya when it was over the farside.
These four‐way tracking data were used to create the
SGM90d solution [Namiki et al., 2009], which revealed
signatures of new gravity anomalies. Nevertheless, given
Kaguya’s 100 km orbit during its primary mission, the
short‐wavelengths anomalies that will affect the LRO orbit
were not captured in SGM90d. Current orbit tests with the
Lunar Prospector extended mission tracking data show that
LP150Q may still provide better orbit performance for LRO.

1.3. Overview

[7] In section 2 we present the orbit determination method
and the data processing strategy we used. We then detail how
normal equations were created from the radio tracking data
and how the gravity field was inverted. In section 3 we
conduct a detailed analysis of the GLGM‐3 solution. After a
direct comparison with LP150Q, we assess the gravitational
uncertainties and orbit performance, using data fit and pre-
diction capability criteria. Geophysical performance, based
on correlation and admittance calculations, is also addressed.

Finally, before concluding the paper, we derive a family of
alternate gravity field solutions resulting from experimenting
with the power law constraint and a priori information. This
allows us to study the variability of the solutions depending
on the inversion approach used.

2. Gravity Field Solution

2.1. Method

[8] We use Precision Orbit Determination (POD) to esti-
mate the gravity field of the Moon, similar to many studies
in the past [e.g., Konopliv et al., 1993, 2001; Lemoine et al.,
1997]. The gravitational anomalies are inferred from their
impact on the spacecraft orbit, as observed by the tracking
data. The measurements, which consist of S‐band radio-
metric tracking data, are processed with a least squares orbit
determination batch filter [Kaula, 1966; Lawson and
Hanson, 1974; Tapley et al., 2004]. Principally because of
the buildup of force model error, the data arcs are usually no
longer than 2 days. The normal equations are created by the
NASA Goddard Space Flight Center Orbit Determination
and Geodetic Parameter Estimation Program, GEODYN
[Pavlis et al., 2006]. The normal equations are aggregated
by satellite and mission phase, and the gravity solutions are
generated by using the companion SOLVE program
[McCarthy, 2008]. The lunar potential is modeled by using
spherical harmonics as in

V ¼ GM

r

Xlmax

l¼0

ae
r

� �lXl

m¼0

Plmðsin’Þ Clm cosðm�Þ þ Slm sinðm�Þ� �

ð1Þ

where the expansion truncated at degree lmax is defined in
terms of radius r, latitude ’, and longitude l; Clm and Slm
represent the normalized geopotential coefficients; Plm is the
normalized associated Legendre functions of degree l and
order m; ae is the reference equatorial radius of the Moon;
and GM is the gravitational constant of the Moon [Kaula,
1966]. The a priori lunar gravity model for this study was
the degree‐100 model LP100K [Konopliv et al., 2001],
which we used to speed up the orbit tests and evaluations.
Because we adjust the coefficients to degree and order 150,
we can make an assessment as to how the results of the
current analysis agree with the LP150Q solution, also a
degree‐150 gravity field.
[9] The current analysis used the JPL DE421 ephemerides

[Williams et al., 2008], with the new lunar orientation
parameters derived from recent lunar laser ranging data
[Seidelmann et al., 2002]. This means the lunar body‐fixed
coordinate system associated with any gravity model we
derive will be based on the lunar orientation constants
embedded in DE421. A new representation of the planetary
radiation pressure for the Moon was applied. Cylindrical
grids of the albedo and thermal emissions used were based
on temperature data provided by D. Paige (personal com-
munication, 2008). This contrasts with previous analyses
[e.g., Lemoine et al., 1997; Goossens et al., 2006; Goossens
and Matsumoto, 2008], in which a spherical harmonic was
used to represent the planetary radiation pressure perturba-
tion [Floberghagen et al., 1999]. The albedo and thermal
maps, uniformly spaced in cylindrical coordinates, are bili-
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nearly interpolated at the evaluation points (of a ring model;
see Knocke [1989] and Knocke et al. [1988]) instead of being
calculated from the spherical harmonics expansion.
[10] To model the lunar solid tide, we use a Love Number

k2 of 0.027 [Williams et al., 1987]. Other force and mea-
surement modeling is similar to that described by Lemoine
et al. [1997, p. 16,343], except that we apply updated
models of ocean loading for the terrestrial tracking data
sites, on the basis of the GOT00 ocean tide model [Ray,
1999] and an updated Earth orientation series supplied by
the International Earth Rotation Service [Dick and Richter,
2008]. Weather data for the Deep Space Network com-
plexes (supplied by Mars Global Surveyor and used by
Lemoine et al. [2001]) were used to compute a troposphere
correction for the Lunar Prospector tracking data. We made
some attempts to locate geodetic survey reports or other
station coordinate information for the Manned Space Flight
Network stations but had no success and so did not readjust
station coordinates in the current analysis. Station coordi-
nate error may still be a factor in the Apollo subsatellite
POD results.
[11] In addition to the initial state of the spacecraft, we

adjusted scale factors for the solar radiation acceleration and
for biases for the range and three‐way Doppler measure-
ments. Biases for the Lunar Prospector Doppler data existed
because of the rotation of the spacecraft. However, the
Doppler averaging (over 5 s) nearly matched its spin, thus
reducing any periodic signature in the residuals. In the case
of the Lunar Prospector tracking data, estimating a constant
empirical along‐track acceleration per arc was found to be
beneficial to reduce the Doppler RMS of fit and to improve
the quality of the gravity field solutions. This was especially
true in the first 2 months of the nominal mission, when
outgassing occurred (noted by Konopliv et al. [2001]); we
obtained values consistent from arc to arc, which peaked at
∼2.5 × 10−9m/s2, and the overlap errors between successive
arcs were reduced by about one order of magnitude. The
acceleration magnitudes decreased afterward, the mean
dropping to nearly zero, but they continued to benefit the
overlaps (although not as significantly, i.e., by less than a
factor of 2).

2.2. Data Processing

[12] We use the radio tracking data from the following
historical NASA lunar missions: Lunar Orbiters 1–5 (1966–
1968), the subsatellites deployed by Apollo 15 and 16
(1971–1972), Clementine (1994) and Lunar Prospector
(1998–1999). Konopliv et al. [2001] provided a detailed

overview of the different types of data, tracking stations, and
mission characteristics. Table 1 shows some general infor-
mation in addition to time span: number of arcs we created,
total number of data points, and approximate periapsis and
apoapsis. In the case of Lunar Prospector, we followed
Konopliv et al. [2001] and Rowlands et al. [2009], using an
average arc length of 2 days. Those missions have a variety
of semimajor axes, eccentricities, and inclination. The low‐
altitude ground track coverage and gravity field sensitivity
of these different orbits are complementary, and enhance the
separability of the gravity field coefficients in the least
squares solutions.
[13] The primary radiometric data are Doppler observa-

tions of the transponder frequency from the orbiting
spacecraft, sent from Earth and received at the same or a
different Earth‐based tracking station. Although range data
are available, they are generally limited in quantity and
accuracy. For Lunar Prospector, nearly 10% of the S‐band
data are range; however, their impact on the orbit solutions
is slight. All the tracking data from the historical lunar orbits
are S‐band. We assigned an a priori data weight of 1 cm/s to
the Doppler data of the Lunar Orbiters and the Apollo
subsatellites, and of 1 mm/s to the Lunar Prospector data.
The latter number is higher than that used by Konopliv et al.
[2001], because we chose to put more emphasis on the
representative arc RMS values than on the individual mea-
surement noise. By doing this for both Doppler and range
(5 m), we could select relative weights that tended to be
consistent with what each data type actually brings to the
adjusted orbits in terms of constraints.

2.3. Gravity Field Inversion

2.3.1. Preparation
[14] We created normal equations to degree and order 150

(150 × 150) in spherical harmonics for all satellites except
Clementine, for which normal equations were created only
to 75 × 75. The homogeneous normal equation size for the
different lunar satellites helped ensure that the power spec-
trum of the solution would not manifest distortions at
intermediate degrees as the result of truncation of signal.
Clementine, with a periapsis near 400 km, has sensitivity to
at most degree 30–35, so creating the normal equations to
75 is adequate and avoids these issues.
[15] We note that the expansion to l = 150 is not sufficient

to exhaust the gravitational signal in some arcs, such as
those of the Apollo subsatellites and the Lunar Prospector
extended mission data. However, the creation of normal
equations to l = 200 (for example) would be not only sig-

Table 1. Characteristics of the Historical Lunar Missions

Mission Start End
Number of

Arcs
Data Points
(Doppler)

Periapsis
(km)

Apoapsis
(km)

Lunar Orbiter 1 08/10/66 10/28/66 70 48,575 50 1830
Lunar Orbiter 2 11/10/66 07/24/67 90 77,726 50 1870
Lunar Orbiter 3 02/09/67 10/06/67 73 62,264 50 1820/320
Lunar Orbiter 4 05/08/67 07/10/67 32 48,688 2700/75 6000/4000
Lunar Orbiter 5 08/05/67 01/29/68 70 42,916 100/170 1750/2000
Apollo 15 subsatellite 08/29/71 05/19/72 93 52,500 75 160
Apollo 16 subsatellite 04/27/72 05/29/72 46 42,579 30 190
Clementine 02/19/94 05/04/94 40 378,022 370 2960
Lunar Prospector (nominal) 01/11/98 12/18/98 184 2,198,751 90 110
Lunar Prospector (extended) 12/19/98 07/30/99 127 1,372,150 25 45
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nificantly more expensive computationally but also not
necessarily the best way to extract the shorter‐wavelength
gravitational anomalies, given the total lack of information
over the farside. A hybrid approach, using line‐of‐sight
residuals of the Doppler data to bring regional improve-
ments to a classically obtained spherical harmonics gravity
field (such as described here), is more efficient [see Han,
2008].
[16] The normal equations associated with each spacecraft

were combined into a single matrix by using the SOLVE
program [McCarthy, 2008], part of the GEODYN II pack-
age. For Lunar Prospector, we aggregated the arcs for the
nominal mission (mean altitude 100 km) and the extended
mission (mean altitude 40 km) separately. The final effec-
tive data weights for each satellite are applied in SOLVE by
scaling each aggregated matrix in the final least squares
solution.
[17] Because all those normal equations are rank‐deficient

(obviously because of the farside data gap), gravity inver-
sion cannot be performed without additional constraint
(regularization). Failure to apply a regularization will cause
the power spectrum of the gravity solution to deviate from a
reasonable power law, and the coefficients at the higher
degrees will have unnaturally high power. A power law
constraint, or Kaula rule [Kaula, 1966], is commonly used
to limit the power of the high‐degree coefficients when the
signal is not strong enough to lead to robust estimation. For
each degree, the Clm and Slm coefficients are given a vari-
ance such that the total degree RMS is nearly sl = K/ln. In
the case of the Moon, because of the large farside data gap,
it is preferable to apply a Kaula rule beyond degree l ∼ 10.
We use K = 2.5 × 10−4 and n = 2 on the basis of the power
law of the LP165P solution of Konopliv et al. [2001]. In
section 3.5 we discuss the impact of other power law con-
straints on the solution.
2.3.2. Gravity Field Solution
[18] Formal calibration of the gravity field proved diffi-

cult. Methods of optimal data weighting, such as that of

Lerch [1991], use a master and a subset solution to assess
whether the aggregate changes in the spherical harmonic
coefficients are commensurate with the aggregate change in
the coefficient standard deviations. This approach was
applied in the development of the Earth satellite‐only
gravity solutions [e.g., Lerch et al., 1994; Lemoine et al.,
1998]. However, the technique relies on the near‐linearity
of the solution, which is a problem for the Moon because the
farside anomalies are largely unknown and the a priori
solution is not necessarily expected to be close to truth. The
procedure we followed did not lead to a satisfying solution,
so instead we relied on orbital and geophysical performance
as well as spatial resolution of the farside field to select a set
of weights for the satellites making up the solution.
[19] Lemoine et al. [1997] used this calibration method,

but at the time, Lunar Prospector data were not available,
and the various tracking data sets all contributed relatively
evenly to the solution. Owing to its global, low‐altitude
coverage, long mission duration, and high‐quality tracking,
Lunar Prospector completely dominates the gravity field
solutions, which is very evident merely from the number of
observations listed in Table 1. When a single data set exerts
such dominance, we have found it difficult to apply the
Lerch method of calibrations. We note that similar behavior
was observed during the development of EGM96 [Lemoine
et al., 1998]. The satellite‐only geopotential solution,
EGM96S, included GPS data from a number of GPS sa-
tellites. After many tests, we found that the calibrations
found with the Lerch method did not necessarily behave in a
linear case.
[20] For each spacecraft data set, we chose the weights on

the basis of the average observation RMS of fit of the arcs,
instead of the noise level of the individual measurements.
We then deweighted the data with respect to these average
RMS of fit to prevent adverse effects on the solution arising
from systematic errors (owing to force mismodeling) for a
particular satellite. Some of the early lunar missions (Lunar
Orbiter 1–3, Apollo subsatellites) are important to help

Figure 1. Hammer projection (centered at 0°E, 0°N) of the GLGM‐3 gravity anomalies in milligals
(1 mGal = 10−5 m/s2). In Figures 1–11 the fields were truncated at degree l = 140 to remove aliasing.
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resolve some of the large farside gravity anomalies (e.g.,
Korolev and Hertzprung) because their low inclination
complements the meridionally integrated perturbations of
the polar Lunar Prospector orbits (see also section 3.2).
However, those spacecraft have lower quality data, and
some orbits experience very large farside perturbations, such
that excessive weighting leads to artifacts on the nearside.
Also as discussed by Konopliv et al. [2001] and Lemoine et
al. [1997], the Lunar Orbiter data are affected by uncoupled
thruster jet firings to control the spacecraft attitude. These
attitude maneuvers are explicitly modeled and parameters in
the orbit solution are adjusted to accommodate them, but
only when we have information that such attitude events
might have occurred.
[21] Our preferred solution, the Goddard Lunar Gravity

Model 3 (GLGM‐3), is shown in Figure 1, and the data
weights are given in Table 2. Some Lunar Orbiter data sets
(1–3) were downweighted owing to their affecting the
nearside negatively. To put an emphasis on the nearside
short‐wavelength features for the LRO mission, we slightly
overweighted the Lunar Prospector extended mission in
comparison with its ratio of observation fit over data noise.
As we will show in section 3, GLGM‐3 performs well with
respect to a number of evaluation criteria. Even though it is
not overwhelmingly better than other solutions from the
same “family,” which were obtained with alternative con-
straint and regularization methods (presented in section 3.5),
GLGM‐3 is the solution that can be best compared with
previous work, because it relies on a standard inversion.
This low sensitivity of the solution quality to the data
constraint is a further sign of the robustness and stability of
the inversion. The solution was not iterated; that is, we did
not reconverge the data arcs, recreate normal equations, and
perform the inversion again. Such procedures may be the
focus of future work (section 4).

3. Discussion

3.1. Comparison With LP150Q

[22] Figure 2a presents various RMS degree spectra of
gravity fields and of the potential from uncompensated
topography (assuming a crustal density of 2900 kg m−3 and
an average density of 3340 kg m−3). At lower degrees (l ∼
20), the power in GLGM‐3 is well above that of the JPL
solutions, likely reflecting the different strategies of data
weighting and regularization that affect the farside. GLGM‐3

and LP150Q agree well in power at high degrees, and both
start to develop excess power owing to aliasing at l ∼ 140.
Their power spectra lie close to the uncompensated potential
of ULCN 2005 [Archinal et al., 2006], which is interesting
because at high degrees the topography is expected to be
mostly uncompensated. However, the more recent and
accurate SELENE LALT topography shows much higher
power. This difference is in part due to the farside/nearside
dichotomy, the more sparsely sampled farside being the main
driver of the global power spectrum. When localizing those
spectra hemispherically (the nearside defined as an 80° cap
centered on 0°N,0°E, and the farside defined as its comple-
mentary region), the deficit in nearside gravity field power
begins only near l ∼ 100 (Figure 2b), compared with near
l ∼ 20 on the farside (Figure 2c).
[23] Those hemispherical uncertainties were obtained after

localizing the full covariance matrix (including off‐diagonal
terms), as described by Han et al. [2009]. The shape of the
localized sigma spectrum over the nearside (Figure 2b) is
similar to what has been observed for Mars [Lemoine et al.,
2001] and for the Moon with the SELENE four‐way
tracking data. Figure 2b also shows the nearside differences
with LP150Q (Gravity Science Team, 2000, using the same
data sets). For l > 30, they are small, comparable with the
predicted uncertainties (see section 3.2). For lower degrees,
the differences are much larger than predicted by this
localization method. Discrepancies with the observed field‐
to‐field differences could result from optimistic formal
errors, because nonlinearities induced by the farside gap
are not properly captured in the covariance matrix.
[24] Spatially, those differences are concentrated near the

limbs and the poles (Figure 3). This in part reflects our
different approach to the data weighting of the Lunar
Prospector data set. Because most of the tracking data of the
Lunar Prospector mission was acquired from an omnidi-
rectional antenna, signal multipath effects near the pole
during the extended mission at lower altitude lead to higher
noise when recorded by ground stations. Instead of
increasing the data noise within each arc, we put less weight
on the normal equations created with the extended mission
arcs. Konopliv et al. [2001] applied a latitudinal deweighting
function, which had a maximum value of 50 for points
within 1° of the poles. The idea was to compensate for the
convergence of the ground tracks near the poles and the
potential oversampling overinformation. We did not apply
this deweighting function to the Doppler observations, a
strategy that appears to be partly responsible for improve-
ments near the poles (section 3.4).
[25] However, the large basins in the low latitudes of the

farside are better resolved with LP150Q, although both
fields considerably lack resolution in comparison with the
solution obtained with the four‐way SELENE tracking data
[Namiki et al., 2009]. Whereas the Lunar Prospector data are
the major constraint for the nearside field to the highest
degrees, its polar inclination prevents the localization in
latitude of the farside anomalies. Only when combined with
data of the low‐inclination satellites (Lunar Orbiters, Apollo
subsatellites) can the observed hemispherically integrated
orbit perturbations spatially constrain the location of the
gravitational anomalies. The large long‐wavelength features
are due to higher power at low degrees (l ∼ 10; see Figure 2c)
and are not necessarily significant because they occur mostly

Table 2. Characteristics of the Data Sets Used for the Combined
Normal Equations

Spacecraft
Average Arc RMS

of Fit (cm/s)

Final Effective
Data Weight for
GLGM‐3 (cm/s)

Lunar Orbiter 1 0.24 3.16
Lunar Orbiter 2 0.11 3.16
Lunar Orbiter 3 0.07 3.16
Lunar Orbiter 4 0.05 0.55
Lunar Orbiter 5 0.21 0.49
Apollo 15 subsatellite 0.12 0.95
Apollo 16 subsatellite 0.15 0.32
Clementine 0.31 1.34
Lunar Prospector (nominal) 0.02 1.41
Lunar Prospector (extended) 0.25 3.78
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at nonequatorial latitudes with few favorable spacecraft in-
clinations. The error spectra shown in Figures 2b and 2c
confirm a comment in the work of Konopliv et al. [2001]
stating that most of the aliasing observed and the error
spectrum were due to the farside data gap.

3.2. Spatial Error Estimation

[26] We used the (full) error covariance matrix to quantify
the formal uncertainty of the gravity field estimates in the
spatial domain by performing an error propagation up to
degree and order 100. The estimated errors in surface
gravity anomalies (Figure 4) closely follow the tracking data
coverage, with the lowest errors on the nearside, moderately
higher errors near the limbs (where coverage was reduced
owing to lunar librations or owing to direct radio link only at
high altitudes). Over the farside, as observed previously, the
equatorial region shows lower errors than the high latitudes,
because of the many early low‐inclination orbiters, which
enable the spatial determination of large anomalies. These
formal uncertainty estimates (9 ± 3 mGal for the nearside;
38 ± 22 mGal for the farside) are a bit lower but consistent
with those quoted by Konopliv et al. [2001] for LP165P
(which were calculated up to degree and order 110).
[27] It is interesting to see how important each spacecraft

is to the combined solution. The different panels in Figure 5
show the reduction in formal error between a solution
without and with a given spacecraft. The extended mission
of Lunar Prospector is the single most important data set, but
the nominal mission is important for the limb regions, where
the spacecraft could be tracked while orbiting at 100 km, but
not near 50 km. The other satellites contribute little to the
nearside but are important for improving the farside. An
exception is Apollo 16, whose very low altitude and low‐
inclination orbits contribute to low formal errors in the
equatorial region even when Lunar Prospector extended
mission data are used (Figure 5).

3.3. Orbit Performance

3.3.1. Residuals
[28] A common measure of the quality of a gravity field

solution is the improvement of the observation fit. Given
that our a priori field is to degree and order 100 (LP100K),
we can expect improvements for altitudes less than 110 km.
The results for Lunar Prospector (the spacecraft with the
most radio tracking and the most consistent arcs for evalu-
ation) are plotted on Figure 6. To first order, the results are
similar to those obtained with LP150Q, that is, modest in the
nominal phase and significant in the extended phase.
Actually, Lunar Prospector provides a slight yet consistent
improvement over LP150Q both in the nominal phase
(∼90% of the arcs) and in the low‐altitude extended phase

Figure 2. (a) Degree RMS spectrum of potential from
uncompensated topography (ULCN‐2005 and SELENE/
LALT), gravity fields (LP150Q and GLGM‐3), and formal
uncertainties of GLGM‐3. (b) Nearside‐localized degree
RMS spectrum of the potential from uncompensated
SELENE/LALT topography, of the LP150Q and GLGM‐3
gravity fields and their difference, and of the formal uncer-
tainties of GLGM‐3. (c) Same as Figure 2b, localized on the
farside.
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(∼70% of the arcs). However, we note that the LP150Q
solution was developed with different models, a different
inversion scheme, and a different orbit determination pro-
gram. In particular, the LP100K and LP150Q fields were
obtained by using the DE403 ephemeris [Standish et al.,
1995]. As noted in the work of Williams et al. [2008], the
small changes in principal axes contribute only to position
differences at the meter level. Tests conducted on Lunar
Prospector arcs indicate that using LP100K and LP150Q
with the newer DE421 ephemeris marginally affects the
residual values. The Doppler RMS increases by less than
0.5% on average with LP100K, and by about 1% with
LP150Q, while the range values show smaller, often bene-
ficial changes. The extended mission appears to be less

sensitive, probably because of the significantly higher re-
siduals than during the nominal phase. Our solution performs
better with the models from which it was obtained, but one
should be careful not to overinterpret these improvements.
[29] Another interesting way to evaluate the observation

fit is, instead of looking at a single value for each arc like the
residual RMS, plotting them spatially. Here, we use the
differences between sequential Doppler residuals to create
line‐of‐sight accelerations (in milligals). Figure 7 shows the
difference between these accelerations after convergence
with LP150Q and with GLGM‐3, over restricted altitude
ranges (100–110 km for Figure 7a; 40–50 km for Figure 7b).
The color tone indicates which gravity field has the lowest
residual value (red for LP150Q, green for GLGM‐3).

Figure 3. Hammer projection (centered at 0°E, 0°N) of the differences between LP150Q and GLGM‐3
in milligals. Note the regions 1–3, referred to in sections 3.4 and 3.5 and in Figures 8–9.

Figure 4. Hammer projection (centered at 0°E, 0°N) of the gravity a nomaly uncertainties estimated by
propagating the covariance matrix (up to degree and order 100).
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GLGM‐3 performs better in the nominal phase, but by only a
small margin (∼1% of the ±0.2 mGal scale displayed). The
sectorial pattern results from the polar orbit of LP and the arc
length (2 days). A better fit by either gravity model usually
results in the majority of the residuals of an arc being lower.
The radial component of the line‐of‐sight accelerations is
also expected to be larger near the equator, resulting in paler
colors near the poles.
3.3.2. Prediction Overlaps
[30] We used the Lunar Prospector data set to evaluate the

changes in orbit prediction from the a priori model. The
2 day arcs were forward‐propagated for 6 h, without any
tracking data. Differences in the trajectories of adjacent arcs
that overlapped during this 6 h period were evaluated.
[31] The changes with respect to LP100K are modest in

the nominal phase of the Lunar Prospector mission. The
average overlaps of ∼0.8, ∼3, and ∼11 m in the s are reduced
by ∼0.2, ∼0.9, and ∼1.4 m, respectively. In the low‐altitude
extended phase, where the lower‐degree a priori model is
expected to have more difficulties in orbit propagation than
will a higher‐altitude model, the average radial, transverse,
and normal direction overlaps (∼5.3, ∼31, and ∼83 m) are

significantly improved, decreasing to ∼2.9, ∼16, and ∼54 m,
respectively. The LP150Q model performs better in the
extended phase, on average (∼2.4, ∼13, and ∼42 m,
respectively). However, we note that LP150Q does not
consistently show smaller orbit differences; in one third of
the extended mission arcs, GLGM‐3 performs better.

3.4. Geophysical Performance

[32] The geophysical performance of a gravity field is an
important measure of its quality, because it uses an inde-
pendent data set, topography. At the resolution required
here, the uncertainties in the geolocated topographic points,
caused in part by gravitational perturbations, are insignifi-
cant. We use the recent SELENE LALT topography [Araki
et al., 2009], which has global coverage and consistent
precision (∼10 m vertical), unlike the earlier ULCN 2005
[Archinal et al., 2006], which merged control points derived
from stereophotography and Clementine laser altimetry data
[Smith et al., 1997]. As shown in the work of Han et al.
[2009], the LALT topography yields more robust results.
[33] Except at low degrees, where large‐scale geophysical

processes operate, gravity and topography are expected to

Figure 6. RMS of the Doppler (range‐rate) observations (in millimeters per second) of each Lunar Pros-
pector arc, during its (top) nominal and (bottom) extended phases. The a priori field (LP100K) is shown in
black, LP150Q in blue, and GLGM‐3 in red. Circles are filled when the field performs better than the
other.
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be related. In the case of the Moon, large‐scale geophysical
processes (e.g., mascons, large impact basins, potential
mantle convection) dominate the l = 5–20 range [Muller and
Sjogren, 1968], but at higher degrees the gravity is expected
to generally result from the amount of crustal material and
hence the topography. In addition to assessing the topo-
graphic spectrum, correlation, and admittance globally, we
evaluate them hemispherically (nearside and farside) and
regionally (see the three regions defined in Figure 3).
3.4.1. Topography Correlation
[34] Because short‐wavelength loads on the elastic litho-

sphere will not produce significant bending and compen-
sation, the observed gravitational signal will be closely
related to the topography, except in zones with local tec-
tonics. Thus, a large correlation coefficient at high degrees is

usually interpreted as a sign of quality of the gravity field,
accurately reproducing the signal of mostly uncompensated
topography. Previously, because of the lack of reliable
global topography at high degrees, the correlation dropped
off early and could not be used effectively. However, the
new LALT topography shows improved correlation for l >
100 with the degree‐150 fields compared with correlations
obtained with our a priori field, LP100K. When the fields
are localized hemispherically, only the nearside shows real
improvement (Figure 8a). The very poor and partly negative
correlation at low degrees over the nearside has been
observed previously and interpreted as overcompensation of
the mascons [Neumann et al., 1996]. In the global and
nearside correlation, we observe slight improvements over
the LP150Q solution at very high degrees, which are also

Figure 7. Hammer projections (centered at 0°E, 0°N) of the differences in median residual line‐of‐sight
Lunar Prospector accelerations (i.e., differences in Doppler residuals) between the LP150Q and GLGM‐3
gravity fields. Green indicates that LP150Q has larger unmodeled accelerations. Only data within a given
altitude range are used: (a) 30–40 km, corresponding to the extended mission, and (b) 100–110 km, the
nominal mission. The scale bar is ±1 mGal in Figure 7a and ±0.2 mGal in Figure 7b.
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seen at more regional scales (Figure 8b). The different
weighting scheme of the Lunar Prospector range‐rate data
might explain those differences, as could potentially a
smaller weight given to the Apollo subsatellites (which can
help improve the farside gravity but can create stripe arti-
facts on the nearside; see Figure 3).
3.4.2. Admittance
[35] The admittance is the transfer function between

gravity to topography. For the same reasons as above, the
uncompensation of short‐wavelength topography should
lead to admittance values stabilizing at high degrees (at a
level related to the density of the crust). Figure 9 shows the
admittance calculated for the LP100K, LP150Q and
GLGM‐3 fields in various regions. The same observations
can be made as for the correlation (GLGM‐3 generally
performing better than LP150Q at high degrees on the

nearside, and worse at low degrees on the farside), but
all fields show a significant decrease compared with the
expected flattening at high degrees (starting at l − 80 on the
nearside and l − 40 on the farside; see Figure 9a). The over-
compensation of the nearside mascons is clearly visible at
low degrees on Figure 9b (region 3, defined in Figure 3).

3.5. Other Solutions

[36] We describe various gravity field solutions obtained
with the same data set, but using other inversion strategies.
For the most part, these solutions perform similarly to
GLGM‐3 in terms of data fit (that is, over the nearside,
where data are available) and overlap analysis. Nevertheless,
these are important experiments, and pursuing them with
new data can be worthwhile. For our detailed comparison
with LP150Q above, we think GLGM‐3 was the most

Figure 8. Correlation of the LP150Q and GLGM‐3 gravity fields with the SELENE/LALT topography,
localized in various regions: (a) nearside and farside (thin and thick lines, respectively) for GLGM‐3 (red)
and LP150Q (blue); (b) smaller spherical cap regions (various colors), indicated in Figure 3, for GLGM‐3
(solid line) and LP150Q (dashed line).

Figure 9. Same as Figure 8, but admittance (in milligals per kilometer) is plotted.
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appropriate field, because of its similar inversion method.
But this family of solutions can be used to assess the vari-
ability of outcomes owing to technical inversion approach.
The comparison of results from such related models could
be beneficial, for instance, in mission planning or orbital
prediction error studies.
3.5.1. Varying Kaula (GLGM‐3a)
[37] As explained in section 2.3.1, the application of a

power law constraint (Kaula rule) is necessary to obtain a
reasonable lunar gravity solution. We assess the impact of
the power law on the solutions by varying the weight of the
power law. The power law is applied as an additional
(diagonal) matrix in the least squares solution. By changing
the scale factor, we effectively assess the impact of weaker
or stronger power law constraints.
[38] We first changed the weighting given to the power

law. A fivefold reduction leads to larger power at high
degrees on the nearside, improving correlation and admit-
tance, but the solution is very degraded on the farside at low
degrees. However, an increase reduces the short‐wavelength
power on the nearside, which is already depleted in com-
parison with uncompensated SELENE/LALT potential
(Figure 2).
[39] In addition, we fitted a power law to this topography

potential to replace the (common) l−2 constraint (the fitted
values are K = 2.1 × 10−4 and n = 1.88), and obtained a new
gravity field, GLGM‐3a (Figure 10). On the nearside, we
see a similar power spectrum. Correlation begin to differ at
around l = 100 near the poles and l = 60 in region 3 (from
Figure 3), but only marginally. Admittance is improved in
the North Pole region (l > 110), but only slightly near the
South Pole (l > 120). In region 3, differences arise at longer
wavelength (l ∼ 60); the change in admittance is highest near
l = 80 and becomes insignificant for l > 110. More power is
present over the farside than in the GLGM‐3 solution,
because of the looser Kaula rule.
3.5.2. Localized Constraint (GLGM‐3b)
[40] As discussed previously, the lack of direct tracking

data over the Moon’s farside presented an important prob-
lem for gravity solutions. Newly obtained indirect (four‐

way) radio tracking data of the SELENE mission greatly
improved resolution of the farside gravity anomaly and will
be quite valuable once they become available. Otherwise,
the use of a power law constraint during inversion to limit
the power of the numerous high‐degree expansion coeffi-
cients is necessary.
[41] However, Han et al. [2009] showed that the nearside

field is seriously affected and biased when this constraint is
applied globally. They performed the inversion with an
alternate set of localized spherical harmonics basis func-
tions, which allowed the power law constraint to be applied
only on the coefficients with power concentrated on the
farside. We applied this technique here with the same data
sets and weights as GLGM‐3, and obtained a local‐constraint
gravity field, GLGM‐3b. It differs from the gravity field
published by Han et al. [2009], because of additional data
sets (Lunar Orbiter 1–3) and a slightly different weighting
scheme. Although the farside field is visually nearly iden-
tical to previous (globally constrained) solutions, the near-
side field has more power at high degrees (l > 100; see
Figure 10). Correlation and admittance showed significant
improvements. In particular, over the nearside and over
smaller regions (Figure 3), the admittance is stable up to
very high degrees (l ∼ 140, comparable to the maximum
expected resolution before aliasing). The correlation is most
significantly improved near the North Pole, gaining nearly
0.1 in the l = 90–110 band.
[42] NASA’s GRAIL mission, to be launched in 2011,

will bypass the Earth tracking‐geometry issues by having
two identical spacecraft track one another continuously and
provide uniform high‐precision coverage [Zuber et al.,
2008]. Until then, this constraint localization technique
will be valuable when producing new gravity fields (e.g.,
with LRO low‐altitude data).
3.5.3. A Priori Bias Constraint (GLGM‐3c)
[43] If we assume that short‐wavelength topography is

uncompensated (and that crustal density is uniform), we can
predict its contribution to the gravitational potential at high
degrees and use it to constrain the gravity field. However,
because of all this imposed a priori information, the corre-

Figure 10. (a) Degree RMS spectra and (b) admittance of the various gravity field solutions obtained
with alternate constraints or techniques.
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lation of the field with topography is expected and thus is
not diagnostic of the contribution of the tracking data. The
increased resolution, of the farside in particular, can be
beneficial to orbital performance.
[44] The common Kaula rule used to regularize the least

squares inversion is modified: instead of an expectation
value for each coefficient of zero, expansion coefficients’ a
priori values are set to the SGM90d gravity field up to
degree‐80, and the potential from uncompensated SELENE/
LALT topography is used at higher degrees. But the a priori
constraint on the coefficient variances is identical to the
global constraint used in GLGM‐3. The spherical harmonics
expansion coefficients of SGM90d were calculated from the
gridded map published by Namiki et al. [2009].
[45] Over the farside, the resulting field (GLGM‐3c) dif-

fers from the a priori constraint at intermediate wavelengths
(where there are constraints from the data). On the nearside,
the current field (GLGM‐3c) is close, though not identical in
some areas and at high degrees, to that obtained with
GLGM‐3. In particular, artifacts due to the low‐inclination
orbits of the Apollo and Lunar Orbiter spacecraft appear near
the limbs (similar to those seen in Figure 3). As expected,
over the nearside, correlation (not shown) and admittance
(Figure 10) are improved. Regionally, the admittance is
significantly better (flattening at high degrees, as expected
from uncompensated topography) over both poles. The
gravity field is also improved in region 3, but after leveling
between l ∼ 80 and l ∼ 100, we note a decline due to loss of
power for l > 100. The correlation is improved over region 3
at short wavelength (l > 70), with increases over already high
levels in both the north and south polar regions for l > 90 (up
to 0.2 near l = 100 and 0.07 near l = 110, respectively).
[46] Unfortunately, the field does not perform better than

GLGM‐3 in terms of Doppler RMS for arcs of the Lunar
Prospector extended mission (the only data set that still has
observation fit higher than the data noise level). Of course,
only the nearside can be evaluated with this criterion
because of the lack of data over the farside. An increase in
the field resolution (lmax) and more farside data coverage are
probably necessary.
[47] However, the orbit prediction capability is improved

with this high‐resolution topographic information. The tra-
jectory of an initial 2 day arc, reconstructed with tracking

data, was propagated for one additional month, with no data
input. The predicted trajectory was then compared with a
sequence of 2 day arcs spanning that entire month, each
converged with radio tracking data. Figure 11 shows the
total position errors obtained with various gravity fields,
over three distinct periods. The a priori constraint consis-
tently improves the predictions by GLGM‐3, usually by a
small amount but in one case (Figure 11, left) significantly.
However, in cases when LP150Q has a better prediction
capability than GLGM‐3, the additional constraints from
topography are not sufficient to reverse this pattern. Inde-
pendent orbits and data from the LRO mission will enable
us to better evaluate the prediction quality of those fields.

4. Conclusion and Future Work

[48] The main purpose of this work was to prepare for the
LRO mission, and the quality of the normal equations pro-
duced appears to be satisfactory. The GLGM‐3 gravity
solution, based on the same data as the JPL LP150Q, shows
good agreement with that field, which is widely used as
reference in the lunar science community. Quantitatively,
the levels of data fit are nearly identical. With our orbit
determination setup, their orbital performance is similar.
Also, while GLGM‐3 lacks some resolution on the farside,
it does offer improved correlation and admittance on the
nearside and polar regions. Qualitatively, the anomalies
(expanded to degree and order 140) over the nearside do not
show artifacts or aberrations, their correspondence with
geophysical features is good, down to very small scales.
[49] The addition of LRO radio tracking data when they

become available will help improve the determination of the
nearside gravity anomalies. Future work may include further
use of the local‐constraint technique mentioned above; for
example, data sets important for farside resolution could be
given a lower weight in the nearside region, where their use
can produce artifacts. As evidenced by the lack of
improvement in the arc RMS of Lunar Prospector with the
various gravity fields, an inversion to higher degrees might
be necessary to make further headway. Hybrid models, built
globally by the inversion of a set of normal equations and
regionally refined by line‐of‐sight techniques [e.g., Han,
2008], will be explored.

Figure 11. Error in prediction position when using various gravity fields. Shown are the three different
periods of ∼30 days. In the middle panel, prediction errors from GLGM‐3 and GLGM‐3b are nearly
equal.
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[50] We are also considering the use of GLGM‐3 as the a
priori gravity field to create a new set of normal equations for
all the tracking data (an iteration of the solution). Provided
the LRO LOLA altimetric crossover constraints are strong
[Mazarico et al., 2010], the constraints could be used as data,
and give further constraints on the farside field, before the
GRAIL mission provides high‐resolution global coverage
and to some extent “solves” the problem of selenodesy.
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