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ABSTRACT
We have investigated the relationship between the X-ray variability amplitude and black hole
mass for a sample of 46 radio-quiet active galactic nuclei observed by ASCA. 33 of the objects
in our sample exhibited significant variability over a time-scale of ∼40 ks. We determined the
normalized excess variance in the 2–10 keV light curves of these objects and found a significant
anticorrelation between excess variance and black hole mass. Unlike most previous studies,
we have quantified the variability using nearly the same time-scale for all objects. Moreover,
we provide a prescription for estimating the uncertainties in variance which accounts both for
measurement uncertainties and for the stochastic nature of the variability. We also present an
analytical method to predict the excess variance from a model power spectrum accounting for
binning, sampling and windowing effects. Using this, we modelled the variance–mass relation
assuming all objects have a universal twice-broken power spectrum, with the position of the
breaks being dependent on mass. This accounts for the general form of the variance–mass rela-
tionship but is formally a poor fit and there is considerable scatter.We investigated this scatter as
a function of the X-ray photon index, luminosity and Eddington ratio. After accounting for the
primary dependence of excess variance on mass, we find no significant correlation with either
luminosity or X-ray spectral slope. We do find an anticorrelation between excess variance and
the Eddington ratio, although this relation might be an artefact owing to the uncertainties in the
mass measurements. It remains to be established that enhanced X-ray variability is a property
of objects with steep X-ray slopes or large Eddington ratios. Narrow-line Seyfert 1 galaxies,
in particular, are consistent with being more variable than their broad-line counterparts solely
because they tend to have smaller masses.
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1 I N T RO D U C T I O N

Variability was discovered in the X-ray emission from active galac-
tic nuclei (AGN) roughly three decades ago (e.g.Marshall,Warwick
& Pounds 1981, and references therein). EXOSAT subsequently ob-
tained well-sampled light curves on time-scales of minutes to days,
and the power spectra generated from these light curves were de-
scribed as a power law P ∝ ν−α with a steep ‘red-noise’ index of
α ∼ 1.5 and an amplitude inversely proportional to the luminosity
(Green, McHardy & Lehto 1993; Lawrence & Papadakis 1993). It
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was clear that this power lawmust break at some lower frequency, or
the power would diverge, and some evidence for this was found us-
ing longer-term archival observations (McHardy 1988; Papadakis
& McHardy 1995). It was not until the launch of RXTE, how-
ever, that this break was measured definitively (Edelson & Nandra
1999).

A number of high-quality power spectra have now been obtained,
primarily usingRXTE andXMM–Newtondata (e.g.Uttley,McHardy
& Papadakis 2002; Markowitz et al. 2003; Vaughan, Fabian &
Nandra 2003b; McHardy et al. 2004). These have shown breaks
to be common and emphasized the similarity of AGN power spec-
tra to that of the black hole binary Cyg X-1. In the low/hard
state, the power spectrum of Cyg X-1 exhibits a twice-broken
power law which breaks from a slope of α ∼ 0 to 1 at the
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‘low-frequency break’ (νLFB) and from α ∼ 1 to 2 at the ‘high-
frequency break’ (νHFB), with νHFB ∼ 1–6 Hz (e.g. Belloni &
Hasinger 1990b). In the high/soft state, the power spectrum ex-
hibits only a high-frequency break, with νHFB ∼ 10–15 Hz (e.g.
Cui et al. 1997; Revnivtsev, Gilfanov & Churazov 2000). Though
still a subject of debate, the emerging consensus is that we usually
see the high-frequency break in the AGN power spectra, although
two breaks are apparently seen in two objects (viz. AKN 564 and
NGC 3783; Papadakis et al. 2002; Markowitz et al. 2003). In an-
other, the narrow-line Seyfert 1 (NLS1) NGC 4051, there is no
low-frequency turnover to α = 0 down to very low frequencies,
which led McHardy et al. (2004) to hypothesize that this object
(and possibly all NLS1s) resembled Cyg X-1 in the high/soft state.

Determining accurate power spectra for AGN is difficult, as it
requires high-quality data with near-even sampling. Such data are
available only for a limited number of objects and are very costly
to obtain in terms of observing time. It is nonetheless very useful
to quantify the X-ray variability of AGN to compare with other
properties, and normalized excess variance, denoted as σ 2

NXS, is
much simpler to calculate (Nandra et al. 1997a). An anticorrelation
was found between excess variance and luminosity for a sample
of AGN observed by the Advanced Satellite for Cosmology and
Astrophysics (ASCA), confirming the EXOSAT results but with a
larger sample of objects (Nandra et al. 1997a). Later work also
usingASCA data revealed that, for a given luminosity, theX-ray light
curves of NLS1s exhibit a larger excess variance than the classical
Seyfert 1 galaxies (Leighly 1999a; Turner et al. 1999).

Lu & Yu (2001) and Bian & Zhao (2003), again using ASCA
data, studied the relationship between the excess variance (on a
time-scale of roughly 1 d) and the black hole mass. Those studies
revealed an anticorrelation betweenσ 2

NXS andmass,which is sugges-
tive that this is the primary relationship rather than with luminosity.
The NLS1s appeared to follow the same relationship as the other
AGN.

Papadakis (2004) investigated the relationship between excess
variance and black hole mass on much longer time-scales (∼300 d)
using RXTE data on a sample of 10 AGN. The classical Seyfert 1
galaxies followed a variance–mass relation that is consistent with a
universal power-spectral shape as described above for the low/hard
state of Cyg X-1. In the universal model used by Papadakis (2004),
νHFB is inversely proportional to black hole mass, and the ampli-
tude, when represented in power × frequency space, is assumed
to be constant. In agreement with the power spectrum analysis of
McHardy et al. (2004), Papadakis (2004) found that the NLS1 NGC
4051 did not follow the same variance–mass relationship described
by the classical Seyfert 1s. The excess variance of NGC 4051 was
consistent with a singly broken power law, breaking from α = 1 to
2, with a break frequency 20 times higher than that deduced for the
other Seyfert 1s.

These works show that excess variance can be a useful comple-
ment to full-blown power-spectral analysis, and have the advantage
that they can be applied to a larger number, and wider variety of ob-
jects. As has been shown by Vaughan et al. (2003a), some caution
must be exercised when interpreting excess variancemeasurements,
primarily due to the red-noise shape of the power spectra and the
stochastic nature of the variability. Such effects have not been ac-
counted for in the majority of previous works. The intention of the
work presented here is to investigate the relationship between excess
variance and mass in a large sample of AGN, improving on these
previous studies by fully accounting for measurement uncertain-
ties, sampling and red-noise effects in the calculation of the excess
variance and its uncertainty.

2 T H E TA RTA RU S DATA BA S E
A N D T H E AG N S A M P L E

The Tartarus1 data base contains products for ASCA observations
with targets designated as AGN (Turner et al. 2001). We selected
radio-quiet objects that have data in the Tartarus (Version 3.0) data
base and also forwhichwe could conveniently obtain ameasurement
of the black hole mass, M •. Seyfert 2 objects were excluded from
our sample, with the exception of NGC 5506 because for this object
we are confident of seeing the X-ray emission directly (Blanco,
Ward & Wright 1990). This initial sample comprised 68 AGN. We
utilized the Tartarus analysis pipeline to extract light curves for the
objects in this sample. As we describe in detail in the following
section, not all light curves were suitable for our analysis. Having
screened the available data, there remained 46 objects for which we
could suitably characterize the X-ray variability. These objects are
listed in Table 1. Note that, while a flux limit was not formally
applied to our sample, the effect of the screening process was to
exclude objects having a low counting rate.

Recent progress in measuring black hole masses has made
possible the work we present here. We preferentially used the
reverberation-mapping mass estimate from Peterson et al. (2004). If
this was not available then we used the mass estimate as determined
from either the stellar velocity dispersion (Gebhardt et al. 2000) or
the empirical relationship between the broad-line region radius and
5100-Å luminosity (Wandel, Peterson&Malkan 1999). Themasses
are given in Table 1 where we also list the method used to determine
the mass and the corresponding reference. The masses for most ob-
jects were available in the literature. For eight objects in Table 1 we
obtained optical spectral information from Grupe et al. (2004) and
utilized equation (6) from Kaspi et al. (2000) and equations (1) and
(2) from Woo & Urry (2002) to determine M •.

The 2–10 keV luminosity L2–10 keV and hard-X-ray (either 2–
10 keV or 3–10 keV) photon index � are also listed in Table 1
for those objects in which we detected variability. The majority of
L2–10 keV and � values were taken from Nandra & Pounds (1994),
Nandra et al. (1997b), Reynolds (1997), Leighly (1999b), George
et al. (2000), Iwasawa et al. (2000) and Reeves & Turner (2000).
For the objects PG 0026+129, NGC 985, F 303 and MRK 279, we
fitted the available ASCA data to obtain L2–10 keV and �. The SIS0,
SIS1, GIS2 and GIS3 spectra were fitted simultaneously in the 2–
10 keV rest-frame energy range. We used an absorbed power law,
with N H constrained to be greater than the galactic value which
we obtained using the NASA HEASARC ‘nH’ tool.2 For our lu-
minosity calculations we obtained redshifts from the NASA/IPAC
Extragalactic Data base3 and used H 0 = 75 km s−1 and q 0 = 0.5.
All L2–10 keV values collected from the literature were transformed
to this cosmology as required.

3 E X C E S S VA R I A N C E A NA LY S I S

The number of ASCA observing sequences available for each ob-
ject is shown in Table 1. We extracted a 2–10 keV combined
SIS0+SIS1+GIS2+GIS3 light curve from each sequence. These
initial light curves had a resolution of 16 s and each bin was re-
quired to be fully exposed. The light curves were then rebinned to
a resolution of 256 s.

1 http://astro.imperial.ac.uk/Research/Tartarus
2 http://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl
3 http://nedwww.ipac.caltech.edu/
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X-ray variability and black hole mass in AGN 1407

Table 1. X-ray spectral and variability information for objects having at least one valid light-curve segment. The 2–10 keV luminosity and hard-X-ray photon
index are given for objects in which variability was detected.

Name M • LX � Num. Num. σ 2
NXS log σ 2

NXS � log σ 2
NXS Refs.

Seq. Seg. ± Boot. Unc. ± Total Unc. ± Total Unc.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

MRK 335 7.15 43.07 1.87 1 1 (3.12 ± 1.87) × 10−3 −2.51 ± 0.41 −0.44 ± 0.41 R,1,2
PG 0026+129 8.59 44.53 1.96 1 3 (1.31 ± 1.92) × 10−3 −2.88 ± 0.66 0.61 ± 0.66 R,1
TON S180 7.09 43.58 2.43 2 26 (1.59 ± 0.10) × 10−2 −1.80 ± 0.07 0.21 ± 0.07 L,3,4
I Zw 1 7.20 43.35 2.40 1 1 (1.88 ± 0.92) × 10−2 −1.73 ± 0.39 0.39 ± 0.39 L,3,4
F 9 8.41 43.91 1.91 8 6 (3.49 ± 5.52) × 10−4 −3.46 ± 0.70 −0.16 ± 0.70 R,1,2
RX J0152.4−2319 7.87 . . . . . . 1 2 <6.5 × 10−3 <−1.94 . . . L,5
MRK 0586 7.86 44.07 2.22 1 3 (2.57 ± 0.75) × 10−2 −1.59 ± 0.22 1.17 ± 0.22 L,6,4
MRK 1040 7.64 42.40 1.69 1 1 (1.20 ± 0.65) × 10−2 −1.92 ± 0.40 0.62 ± 0.40 S,6,7
NGC 985 8.05 43.50 1.73 1 2 (3.47 ± 1.76) × 10−3 −2.46 ± 0.32 0.48 ± 0.32 L,5
1H 0419−577 8.58 . . . . . . 2 3 <4.31 × 10−3 < −2.12 . . . L,3
F 303 6.37 43.03 1.92 1 1 (6.72 ± 6.03) × 10−3 −2.17 ± 0.44 −0.74 ± 0.44 L,5
AKN 120 8.18 43.88 1.93 1 2 (3.78 ± 7.67) × 10−4 −3.42 ± 0.91 −0.35 ± 0.91 R,1,8
PG 0804+761 8.84 . . . . . . 1 2 <3.37 × 10−3 < −2.23 . . . R,1
PG 0844+349 7.97 . . . . . . 1 2 <1.17 × 10−2 < −1.69 . . . R,1
MRK 110 7.40 . . . . . . 1 1 < 1.63 × 10−3 < −2.55 . . . R,1
PG 0953+415 8.44 . . . . . . 1 2 <8.18 × 10−3 < −1.85 . . . R,1
NGC 3227 7.63 41.66 1.52 2 4 (2.41 ± 0.20) × 10−2 −1.62 ± 0.16 0.91 ± 0.16 R,1,2
MRK 142 6.76 43.17 2.12 2 1 (4.54 ± 1.33) × 10−2 −1.34 ± 0.34 0.37 ± 0.34 L,5,4
HE 1029−1401 9.08 44.44 1.83 1 2 (1.02 ± 1.21) × 10−3 −2.99 ± 0.56 0.98 ± 0.56 L,6,9
NGC 3516 7.63 43.08 1.83 5 18 (3.70 ± 0.45) × 10−3 −2.43 ± 0.10 0.10 ± 0.10 R,1,2
PG 1116+215 8.21 . . . . . . 1 1 <1.06 × 10−2 < −1.73 . . . L,6
EXO 1128.1+6908 7.02 . . . . . . 1 1 <1.78 × 10−2 <−1.51 . . . L,5
NGC 3783 7.47 42.90 1.70 9 8 (3.91 ± 0.51) × 10−3 −2.41 ± 0.13 −0.03 ± 0.13 R,1,2
NGC 4051 6.28 41.21 1.92 2 6 (8.62 ± 0.66) × 10−2 −1.06 ± 0.09 0.31 ± 0.09 R,1,2
NGC 4151 7.12 42.62 1.53 13 29 (2.79 ± 0.22) × 10−3 −2.55 ± 0.07 −0.51 ± 0.07 R,1,2
PG 1211+143 8.16 . . . . . . 1 1 <2.39 × 10−2 < −1.38 . . . R,1
MRK 766 6.54 42.73 2.16 1 2 (4.02 ± 0.48) × 10−2 −1.40 ± 0.16 0.15 ± 0.16 L,6,2
NGC 4395 4.11 39.99 1.7 5 6 (1.13 ± 0.14) × 10−1 −0.95 ± 0.10 0.17 ± 0.10 L,10,11
NGC 4593 6.73 42.98 1.81 2 1 (1.42 ± 0.21) × 10−2 −1.85 ± 0.33 −0.16 ± 0.33 R,1,8
WAS 61 6.66 . . . . . . 1 1 <6.95 × 10−3 < −1.92 . . . L,5
PG 1244+026 6.07 43.03 2.46 1 2 (2.60 ± 0.62) × 10−2 −1.59 ± 0.18 −0.31 ± 0.18 L,5,12
MCG−6-30-15 6.19 42.72 2.00 6 48 (4.16 ± 0.13) × 10−2 −1.38 ± 0.03 −0.05 ± 0.03 L,3,2
IC 4329A 7.00 43.59 1.71 5 6 (2.36 ± 2.44) × 10−4 −3.63 ± 0.47 −1.70 ± 0.47 R,1,2
MRK 279 7.54 43.66 1.99 1 1 (2.32 ± 0.84) × 10−3 −2.63 ± 0.36 −0.19 ± 0.36 R,1
NGC 5506 7.94 42.73 2.08 1 2 (1.06 ± 0.14) × 10−2 −1.97 ± 0.23 0.87 ± 0.23 S,13,8
NGC 5548 7.83 43.41 1.79 11 16 (9.42 ± 2.67) × 10−4 −3.03 ± 0.14 −0.30 ± 0.14 R,1,2
MRK 1383 9.11 . . . . . . 1 1 < 6.33 × 10−3 < −1.96 . . . R,1
MRK 478 7.34 43.50 2.06 1 2 (6.14 ± 3.75) × 10−3 −2.21 ± 0.35 0.04 ± 0.35 L,3,4
MRK 841 8.10 43.54 2.00 3 5 (1.14 ± 0.93) × 10−3 −2.94 ± 0.38 0.05 ± 0.38 L,6,2
MRK 290 7.05 43.22 1.77 1 2 (4.11 ± 2.15) × 10−3 −2.39 ± 0.32 −0.41 ± 0.32 L,3,7
IRAS 17020+4544 6.77 43.73 2.37 1 2 (5.47 ± 2.00) × 10−3 −2.26 ± 0.28 −0.54 ± 0.28 L,14,4
MRK 509 8.16 44.03 1.82 11 2 (5.75 ± 7.17) × 10−4 −3.24 ± 0.59 −0.19 ± 0.59 R,1,2
AKN 564 6.06 43.38 2.58 13 70 (5.34 ± 0.14) × 10−2 −1.27 ± 0.03 0.00 ± 0.03 L,3,4
RX J2248.6−5109 7.67 . . . . . . 1 1 <1.08 × 10−2 <−1.73 . . . L,5
NGC 7469 7.09 43.25 1.84 3 2 (4.68 ± 1.60) × 10−3 −2.33 ± 0.27 −0.32 ± 0.27 R,1,2
MCG−2-58-22 8.54 . . . . . . 2 4 <1.53 × 10−3 <−2.58 . . . L,3

The objects are listed in order of RA. (1) Object name. (2) Log of black hole mass in units of M�. (3) Log of 2–10 keV luminosity in units of erg s−1.
(4) Hard-X-ray photon index. (5) Number of available ASCA observing sequences. (6) Number of usable light-curve segments. (7) Mean normalized excess
variance with the uncertainty or upper limit as determined from the bootstrap simulations. (8) Log of the mean normalized excess variance with the uncertainty
as determined by combining the bootstrap uncertainty and the derived red-noise scatter. (9) Residuals from the best-fitting universal model with the uncertainty
as determined by combining the bootstrap uncertainty and the derived red-noise scatter. (10)Method used to determine the black hole mass and references for the
mass and X-ray spectral properties. The methods, in order of preference, are as follows: R, reverberation mapping; S, stellar velocity dispersion; L, relationship
between broad-line region radius and optical luminosity. References: 1, Peterson et al. (2004); 2, Nandra et al. (1997b); 3, Bian & Zhao (2003); 4, Leighly
(1999b); 5, Grupe et al. (2004); 6,Woo&Urry (2002); 7, Reynolds (1997); 8, Nandra & Pounds (1994); 9, Reeves & Turner (2000); 10, Filippenko&Ho (2003);
11, Iwasawa et al. (2000); 12, George et al. (2000); 13, Papadakis (2004); 14,Wang&Lu (2001). The reference for the black holemass of each object is listed first.

3.1 Excess variance calculation

For a red-noise process, the variance in a light curve depends both
on the power spectrum of the variations and also on the time res-

olution and duration of the light curve. This means that different
σ 2
NXS measurements are only strictly comparable if the durations of

the light curves are equal. Therefore, we subdivided the light curve
from each sequence into many segments of similar duration. The
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advantage of using long durations is that the amplitude of vari-
ability increases, and the number of points used to calculate σ 2

NXS

is also larger, reducing the measurement uncertainty. On the other
hand, using short durations has the advantage that more light-curve
segments can be included. We chose a nominal segment length of
40 ks for our analysis as a trade-off between these considerations. In
reality we chose a duration of 39 936 ks which is an integer multiple
of our 256-s time bin.

The subdividing of the light curves proceeded as follows. First,
the earliest 40-ks segment of the light curve for a certain observing
sequence was selected. Then, beginning with the next exposed bin
following the end of this first segment, another 40-ks segment was
selected. This continued until the light curve had been completely
subdivided. Note that the actual duration of these light curves, which
we define as the time between the first and last exposed bin, can be
less than 40 ks because the dividing point between segments can
occur when there is a gap in the data train. We accepted all resulting
light-curve segments that had a duration >30 ks.

To ensure Gaussian statistics, we required each 256-s bin to con-
tain at least 20 counts. The number of counts in a certain 256-s bin
depends both on the source counting rate and the fractional expo-
sure of that bin. We do not wish to reject entire observing sequences
simply because some of the bins have a low exposure, but those in
which fully exposed bins have<20 counts should be excluded. If we
were to remove bins simply because they had a low counting rate,
wewould be biased against observing objects when their intensity is
low. Selecting according to fractional exposure, on the other hand,
can remove bins having too few countswithout introducing this bias,
as fractional exposure is not related to the intensity of the source.
If, for example, there are fully exposed bins with <20 counts, the
entire sequence was discarded. This is the case when we are dealing
with a weak source. For brighter sources where only underexposed
bins have <20 counts, we excise all bins below some minimal frac-
tional exposure. This gets rid of the non-Gaussian bins, allowing
us to keep the remainder of the light curve for further analysis, but
introduces no bias against those times when the source is weak due
to true flux variability.

Finally,we further required the truncated and screened light-curve
segments to have at least 20 bins, so that the variance could be
determined accurately.

This procedure resulted in 46 objects having at least one valid
light-curve segment, and a total of 305 valid segments in all.
The number of segments for each object is given in Table 1. The
mean durations of the light-curve segments for each object were in
the range 35–40 ks in the observers frame. The 48 objects in our
sample have redshifts in the range 0.001–0.234. Taking into account
the redshift of each object, the rest-frame mean durations were in
the range 30–40 ks. We expect the effect of these slightly different
durations to be small. For a power spectrum with a power-law slope
of α = 2, the worst case we expect, a ∼25 per cent reduction in the
light-curve duration (i.e. from 40 to 30 ks), results in a reduction
in the σ 2

NXS of only ∼0.1 dex. As presented later in this section,
the uncertainties in most of our observed σ 2

NXS values are a few to
several times larger than 0.1 dex. Therefore, the ∼25 per cent dif-
ference between the shortest and longest mean light-curve duration
can be neglected and allows us to use more data than would have
been available if we had imposed a strict limit on duration.

We tested to see which objects exhibited significant variability by
performing a chi-squared test. The χ 2 corresponding to the hypoth-
esis of a constant counting rate was determined for each ∼40-ks
light-curve segment. Then, for each object, we summed all of the
χ2s and degrees of freedom (DOFs) to test whether that object is

variable. We detected variability in 33 objects at the 95 per cent
confidence level. We then calculated the excess variance in each
light-curve segment with the following expression:

σ 2
NXS = 1

Nµ2

N∑
i=1

[
(Xi − µ)2 − σ 2

i

]
(1)

where N is the number of bins in the segment, Xi and σ i are the
counting rates and uncertainties, respectively, in each bin, and µ is
the unweighted arithmetic mean of the counting rates. For objects
with more than one valid segment, the unweighted average excess
variance was determined. A major advantage of our work is that,
given the large number of light curves available, there is often more
than one valid segment per object (see Table 1). Taking the mean
σ 2
NXS of thesemultiple segments reduces the potentially large uncer-

tainty owing to the stochastic nature of the variability (see below).
When calculating the mean excess variance we used all valid light-
curve segments for a particular object, including those segments that
did not, in themselves, exhibit variability based on the χ2 test.

3.2 Estimating the uncertainties in σ 2
NXSσ 2
NXS

Estimating the uncertainty for excess variance is somewhat compli-
cated. Analytical prescriptions have been given in the literature by
Nandra et al. (1997a; their correct formula is given by Turner et al.
1999), Edelson et al. (2002) and Vaughan et al. (2003a). The last
authors also discussed the uncertainties in σ 2

NXS on the basis of sim-
ulated red-noise light curves. These uncertainties depend both on
measurement uncertainties (e.g. Poisson noise) in the light-curve
data, and the stochastic nature of the variability: any given light-
curve segment represents just one realization of a random process,
and thus can exhibit a different mean and variance from the true
value, or another random segment. This ‘noise’ uncertainty can be
very large, especially for a single realization. One must, therefore,
account for this uncertainty before apparent differences in σ 2

NXS,
either in a given source (Nandra & Papadakis 2001) or in compar-
ing sources (e.g. Turner et al. 1999), can be considered robust. The
measurement and noise uncertainties on σ 2

NXS are unrelated, so can
and must be estimated separately.

To estimate the uncertainty in σ 2
NXS owing to measurement un-

certainties, we used bootstrap simulations (the reader is directed to
Press et al. 2001, for a discussion on bootstrap simulations). Sup-
pose that the observed light curve containsN bins. This light curve is
a distribution of N counting rates and corresponding Poisson-noise
uncertainties from which we calculate σ 2

NXS. Note that calculating
σ 2
NXS does not depend on the bins being in time order. A bootstrap

simulation involves randomly selecting, from that distribution, a
new set of N bins. The duplication of bins is permitted during the
selection process. This, then, results in the creation of a slightly
different distribution of counting rates, and σ 2

NXS can be determined
for this new distribution. If one repeats the entire process many
times, the resulting distribution of simulated σ 2

NXS values provides
an estimate of the uncertainty in σ 2

NXS.
We performed a series of 10 000 bootstrap simulations to deter-

mine the uncertainty in the mean observed σ 2
NXS for each object in

our sample. Each of these simulations involved: simulating a new
‘light curve’ from each valid light-curve segment, determining σ 2

NXS

for those simulated light curves, and then determining the mean of
these simulated σ 2

NXS values. We were thus able to generate 10 000
simulated values of the mean σ 2

NXS. The standard deviation of these
values was taken to be the measurement uncertainty in the mean
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observed σ 2
NXS. We refer to this value as the ‘bootstrap uncertainty’

and denote it as �boot(σ 2
NXS).

Estimates of the uncertainty owing to the noise process have been
presented by Vaughan et al. (2003a), based on light-curve simula-
tions, who showed that the noise uncertainty is proportional to the
mean value of the variance. The constant of proportionality depends
on the power-spectrum shape, whichwe do not know a priori. There-
fore, as pointed out by Vaughan et al. (2003a), it is preferable to
determine the uncertainties in σ 2

NXS directly from the data.
Our large data base contains six objects (viz. AKN 564, MCG−

6-30-15, TON S180, NGC 4151, 3516 and 5548) with a sufficient
number of light-curve segments (>15) to make a meaningful esti-
mate of the fractional uncertainty in σ 2

NXS owing to the noise nature
of our light curves. First, we determined the standard deviation σ obs

of the observed σ 2
NXS values for each object. We then determined,

from the bootstrap uncertainty, the standard deviation σ meas that
we would expect to observe in the distribution of the σ 2

NXS val-
ues if the scatter was owing only to measurement uncertainties. We
subtracted σ meas from σ obs, in quadrature, to obtain the standard de-
viation σ noise in the observed σ 2

NXS values that is owing only to the
stochastic nature of the variability. We then determined, for each of
the six distributions, the ratio between σ noise and mean σ 2

NXS. We
shall refer to this ratio as the ‘fractional standard deviation’ and de-
note it as σ frac. The fractional standard deviations for the six objects
were: 0.49 (AKN 564), 0.47 (MCG−6-30-15), 0.69 (TON S180),
0.79 (NGC 4151), 0.82 (NGC 3516) and 0.61 (NGC 5548). These
values of σ frac show that, even in the absence of measurement un-
certainties, one can expect noise uncertainties in the range ∼50–80
per cent for individual measurements of σ 2

NXS (see also Vaughan
et al. 2003a). This highlights the need for obtaining many realiza-
tions (i.e. many measurements of σ 2

NXS), regardless of the level of
Poisson noise in the data.

Vaughan et al. (2003a) showed that the uncertainty in the esti-
mated variance of a red-noise light curve increases with the steep-
ness of the power spectrum slope. Power-spectral analyses of AGN
have revealed that the value of νHFB generally decreases with in-
creasing black hole mass. This means that the shape of the power
spectrum in the frequency range probed by our light curves (∼2.5×
10−5 to 4 × 10−3 Hz) is expected to vary as a function of M •, such
that the objects with the highest M • should exhibit the steepest
(α ∼ 2) power spectra. We expect, then, that the scatter in σ 2

NXS

owing to red-noise fluctuations should also increase with mass. The
lowest-mass objects are AKN 564 and MCG−6-30-15, and the ob-
served values of νHFB for these fall within the frequency range of
our data (Papadakis et al. 2002; Vaughan et al. 2003b). We there-
fore expect σ frac for this pair of objects to be less than the others.
This does indeed appear to be the case: the σ frac values of AKN
564 and MCG−6-30-15 are both less than those of TON S180,
NGC 4151, 3516 and 5548. However, we possess only a limited
number of individual σ 2

NXS measurements to estimate both the mean
and standard deviation of each distribution, so it is possible that this
apparent difference is not statistically significant.We decided, there-
fore, to compare the six distributions of σ 2

NXS values using a series
of Kolmogorov–Smirnov (K–S) tests. Before we could compare the
distributions, we first had to correct each of them for the effect of
measurement uncertainties. To do this, we scaled the deviations of
the observed σ 2

NXS values so that the standard deviation of the ‘cor-
rected’ distribution was equal to σ noise, with the mean σ 2

NXS remain-
ing unchanged. We then normalized each of the corrected distribu-
tions by dividing the σ 2

NXS values by the mean. The corrected and
normalized σ 2

NXS distributions for AKN564 andMCG−6-30-15 are
consistent with being drawn from the same distribution. The same

Figure 1. Cumulative distribution functions of the combined normalized
σ 2
NXS distributions of AKN 564 and MCG−6-30-15 (solid line) and TON

S180, NGC 4151, 3516 and 5548 (dashed line).

is true when comparing the other four distributions with each other.
We then created two, combined distributions: one for AKN 564 and
MCG−6-30-15; and another for TON S180, NGC 4151, 3516 and
5548. The fractional standard deviations from these two combined
distributions were 0.48 (AKN 564, MCG−6-30-15) and 0.74 (TON
S180, NGC 4151, 3516, 5548), and a K–S test showed them to be
different at the 95 per cent confidence level. The cumulative dis-
tribution functions of the combined distributions are presented in
Fig. 1. Combining the normalized, corrected distributions of all six
objects resulted in a σ frac of 0.61.

For the objects AKN 564, MCG−6-30-15, TON S180,
NGC 4151, 3516 and 5548, we determined the total uncertainty
[�tot(σ 2

NXS)] in the mean excess variance directly from their respec-
tive values of σ obs. For each of the other objects, we estimated the
noise uncertainty and combined it in quadrature with the bootstrap
uncertainty [�boot(σ 2

NXS)] using the following expression:

�tot

(
σ 2
NXS

) =

√√√√(
σfracσ

2
NXS√

Nseg

)2

+ [
�boot

(
σ 2
NXS

)]2
(2)

where σ 2
NXS is the mean excess variance and N seg is the number

of available light-curve segments. For objects with log M • > 6.54
we adopted a fractional standard deviation of σ frac = 0.74, while
for the objects with log M • � 6.54 we adopted a value of σ frac =
0.48. These ranges in mass were selected on the basis that the object
MRK 766, which has log M • = 6.54, is the most massive object that
has an observed νHFB in the frequency range probed by our ∼40-ks
light curves (e.g. Papadakis et al. 2002; Vaughan & Fabian 2003;
Marshall et al. 2004; Vaughan et al. 2005, and see Introduction). For
objects more massive than this we expect νHFB to be less than our
observed frequency range. In the absence of a measurement of M •
or any information regarding the shape of the power spectrum, the
mean value of σ frac = 0.61 can be adopted.

The σ 2
NXS upper limits for the non-variable objects were also

estimated by combining the two components of uncertainty. We
multiplied the 1σ bootstrap uncertainty by the appropriate fractional
standard deviation of the noise uncertainty. This value was then
multiplied by 3 to provide an estimate of the 3σ upper limit.We also
estimated the 3σ ‘bootstrap upper limit’ bymultiplying the bootstrap
uncertainty �boot(σ 2

NXS) by 3.
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The distributions of the σ 2
NXS values for AKN 564 and MCG−6-

30-15 are quite asymmetric, with each having an extended tail to-
wards high values of σ 2

NXS. However, the distributions of log σ 2
NXS

lookmuchmore symmetric. This is not surprising as it is well known
that the logarithmic transformation of a random variable with an ex-
tended tail in its distribution brings that distribution much closer to
‘normality’ (e.g. Papadakis & Lawrence 1993). Ideally, then, we
would like to estimate log σ 2

NXS from each segment and then de-
termine the mean of log σ 2

NXS for each object. Unfortunately, we
cannot use this method because σ 2

NXS is negative for some light-
curve segments. We did, however, determine the logarithm of the
mean σ 2

NXS, which brings the distribution of the mean σ 2
NXS closer

to normality. We also transformed the uncertainties �tot(σ 2
NXS) to

be the uncertainty in the logarithm of the mean σ 2
NXS.

The mean σ 2
NXS values, uncertainties and upper limits are listed

in Table 1. The column listing σ 2
NXS gives the uncertainty and 3σ

upper limit as determined from only the bootstrap simulations. The
uncertainties and upper limits given in the column with log σ 2

NXS

include also the noise uncertainty.

3.3 The variance–mass relation

The relationship between log σ 2
NXS and log M • is presented in Fig. 2.

It is clear that there is a strong anticorrelation between the two quan-

Figure 2. Log of excess variance versus log of black hole mass. In the
top panel, the dot-dashed and solid lines show the best-fitting power law
and bending power-law models, respectively. In the bottom panel, the solid
line shows the best-fitting universal power spectrum model. The dotted and
dashed lines illustrate the effect of varying either CHFB or PSDAMP, respec-
tively (see text for details). The σ 2

NXS upper limits are, for clarity, shown
only in the upper panel.

tities. This is confirmed using both a Spearman rank-order corre-
lation test and Kendall’s τ , both of which show the anticorrelation
to be significant with >99.99 per cent confidence. The upper limits
to the variance in the case where no variability is detected, which
are shown in the upper panel of Fig. 2, are generally above the
measured values (for a given mass). This means they are unlikely
to affect significantly any model fitting and we ignore them in the
analysis below.

While there is a strong general trend for objects with higher mass
to be less variable, there is clearly substantial scatter in the variance–
mass relationship. As we have, for the first time, presented realistic
estimates of the uncertainties on σ 2

NXS we can be confident that this
scatter is not owing only to these uncertainties.

There is also evidence from the plot – albeit based solely on the
lowestmass object, NGC4395 – that the variance–mass relationship
is non-linear. This is expected in the presence of breaks in the power
spectrum (e.g. Papadakis 2004), as we now show by modelling the
variance–mass relationship using both simple parametrizations and
with a specific power-spectral form.

4 M O D E L L I N G T H E R E L AT I O N S H I P
B E T W E E N E X C E S S VA R I A N C E A N D M A S S

Having obtained the mean σ 2
NXS for each object, we then wished to

model the relation between σ 2
NXS and M •. All fits were performed

on log M • and log σ 2
NXS. We fitted the data using both a simple

parametrization and also with a model that assumes the existence
of a universal power spectrum.

4.1 Simple parametrizations

We initiallymodelled the data using a power law of the form σ 2
NXS =

AM•−γ . The index and normalization of the best-fitting power law
were γ = 0.570 and A = 125, respectively, and the reduced chi-
squared was χ 2

ν/DOF = 8.05/31. This model is shown as a dot-
dashed line in the top panel of Fig. 2. We do not quote uncertainties
in the best-fitting parameter values because the χ 2

ν is formally un-
satisfactory.

We then used a singly broken bending power law defined as:

σ 2
NXS = AM•−γlow

[
1 +

(
M•

M•bend

)γhigh−γlow
]−1

(3)

where A is the normalization factor and the function bends from a
power-law slope of γ low to γ high at the bend mass M •bend.

We fixed the lower index to γ low = 0. The best-fitting bend mass,
normalization and upper index were M •bend = 5.59 × 105 M�,
A = 0.144 and γ high = 0.836, respectively (χ2

ν/DOF = 5.99/30).
The bending power law clearly improves the fit statistic substan-
tially, but it is difficult to assess the formal improvement with, e.g.
an F-test, as the fits are so poor.

4.2 Predicting σ 2
NXSσ 2
NXS from a power spectrum model

Based on recent power-spectral analyses of AGN, it is possible that
the power spectra of AGN have the same shape with the time-scale
of the variations being proportional to black hole mass (see the
Introduction and references therein). We decided to investigate this
possibility bymodelling the relationship between σ 2

NXS and M • with
the assumption of a universal power spectrum.Amodel estimate can
be made simply by integrating the continuous power spectrum over
some frequency range, for example as defined by the length and the
time bin size of the observation (e.g. Papadakis 2004). This, how-
ever, neglects the effects from the sampling pattern of the light curve,
specifically the fact that it is binned, may have gaps, and is of finite
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duration. For reasons discussed below these effects, particularly that
of the finite duration and subsequent ‘red-noise leak’, are likely to
bemore important on the time-scales considered here than the much
longer ones discussed by Papadakis (2004). We have taken an an-
alytical approach to determining the model-predicted σ 2

NXS, rather
than use simulations as is typical for power-spectrum analysis (e.g.
Uttley et al. 2002). Our approach is preferable for two reasons. First,
simulations are far more computer-intensive, and second they rely
on the simulation technique accurately reproducing the characteris-
tics of the physical process giving rise to the variability. While the
technique described below applies to calculation of model σ 2

NXS val-
ues it can be adapted straightforwardly to the estimation of discrete
model power spectra.

According to Parseval’s theorem, the variance in a binned light
curve is equal to the sum of the powers in the observed discrete
power spectrum of that light curve. The model power spectrum,
however, is initially defined in a functional form and is thus contin-
uous.We denote this continuous power spectrum as PM(ν).We need
to determine how the discrete power spectrum PD(ν) is related to
PM(ν). The following description is appropriate for evenly sampled
light curves containing no gaps and having an even number of bins.
Note also that the model power spectrum PM(ν) must be defined
to be two-sided and, since we are dealing with a noise process, we
refer to the expectation value of each power.

The first effect to consider is binning. Suppose we have a contin-
uous process, with power spectrum PM(ν), and we transform it into
a discrete process by binning the signal over a time period of δt .
The power spectrum of the observed binned light curve, say PB(ν),
is related to PM(ν) through the following relation:

〈PB(ν)〉 = B(ν)PM(ν) (4)

where the binning function B(ν) (van der Klis 1989) is given by

B(ν) =
[
sin(πνδt)

πνδt

]2

. (5)

The next effect to consider is aliasing. The fact that the observed
light curve is sampled at discrete intervalsmeans that power can leak
into the power spectrum from above the Nyquist frequency νNyq =
1/(2δt). The binned and aliased power spectrum, say PBA(ν), is
related to the intrinsic power spectrum, PM(ν), through the relation
(Priestley 1989)

〈PBA(ν)〉 =
∞∑

i=−∞
〈PB(ν + i/δt)〉. (6)

The power in one of our typical model power spectra decreases
sharply with frequency and the data are binned. This means that
only a relatively small amount of power is aliased into the ob-
served frequency range. Accordingly, we found that summing from
i = −10 to i = 10 was easily sufficient to account for aliasing.
Power spectra that are either flat or increase with frequency might
require a larger range in i.

The final effect to account for is red-noise leak. This occurs when
variations exist at frequencies lower than those sampled by the ob-
served light curve, as is the case for a red-noise process. This ‘leak-
age’ of power from low to high frequencies can be seen as either
a rising or falling trend over the duration of the light curve. The
power spectrum of the final light curve, i.e. PD(ν), is related to
the intrinsic power spectrum, i.e. PM(ν), by the convolution of the
〈PBA(ν)〉with the so-called ‘window function’W (ν) of the observed
light curve. For evenly sampled light curves, W (ν) is simply Fejer’s

kernel (e.g. Priestley 1989):

W (ν) = 1

T

[
sin(πνT )

πν

]2

(7)

where T is the duration of the light curve. We performed the convo-
lution with the numerical integral:

PD(ν) = 2

N f /2∑
i=−N f /2

〈PBA(iδν
′)〉W (ν − iδν ′)δν ′

(ν = 1/T , 2/T , . . . , νNyq).

(8)

In the above sum, N is the number of bins in the light curve and f is
a positive integer. The frequency step δν ′ is given by δν ′ = 1/(T f ).
The value of f must be large enough so that the convolution extends
to a low enough frequency to account for all of the low-frequency
power. Determining a suitable value of f required a process of trial
and error. We performed the convolution with successively higher
values of f until further increases produced only a negligible effect.
We found that f = 500 was sufficient for all our convolutions. Note
that the introduction of the factor 2 in equation (8) means that PD(ν)
is single-sided and it is defined only for N/2 frequencies. Also note
that, for iδν ′ =±νNyq, the term δν ′ was replaced by δν ′/2, to account
for the end effects in the numerical integral.

The expected excess variance was then determined by summing
the powers in PD(ν):

σ 2
NXS,model =

[
N/2−1∑

i=1

PD(i/T )δν

]
+ 1

2
PD(νNyq)δν (9)

where δν = 1/T . The factor of 1/2 is required for PD(νNyq) because
in a double-sided power spectrum theNyquist frequency occurs only
once. The factor δν is required because the power is expressed in
units of fractional rms-squared per Hz.

Each of our 305 light-curve segments has its own particular dura-
tion and sampling pattern, and there are many gaps in the data train.
Therefore, the window function will be different for each segment
and will not, in general, be represented by Fejer’s kernel. However,
the presence of missing bins in the light curve will affect only the
scatter in the σ 2

NXS measurements, with the mean value being unaf-
fected. Moreover, we have taken care to use light-curve segments of
similar durations. Therefore, wewere able to simplify themodelling
procedure by assuming that our light curves were all fully sampled
with the same number of bins. We used N = 148, as this is the even
number-of-bins closest to the mean segment duration of 38 143.5 s.
Having made this simplification, we were required to determine
only a single value of σ 2

NXS,model for each object (for a certain model
power spectrum), thus speeding up the modelling process.

4.3 A universal power spectrum model

Motivated by power-spectral analyses ofAGN (see the Introduction,
and in particular Markowitz et al. 2003), and following the recent
work of Papadakis (2004), we hypothesized a universal power spec-
trum of the form:

PM(ν) = A(νLFB/νHFB)
−1(ν � νLFB) (10)

PM(ν) = A(ν/νHFB)
−1(νLFB < ν < νHFB) (11)

PM(ν) = A(ν/νHFB)
−2(νHFB � ν) (12)

where the normalization factor A is the power at the high-frequency
break νHFB. The value of νHFB is assumed to decreasewith black hole
mass, according to the expression νHFB = CHFB/M •, where CHFB

C© 2005 RAS, MNRAS 358, 1405–1416

 at N
A

SA
 G

oddard Space Flight C
tr on O

ctober 1, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1412 P. M. O’Neill et al.

Table 2. Best-fitting values for fits using the universal power spectrum
model.

Excluded objects CHFB PSDAMP χ2
ν/DOF

(Hz M�)
(1) (2) (3) (4)

None (all objects 43 0.024 6.24/31
are included)

NGC 4395 53 0.021 6.30/30

AKN 564, 55 0.033 4.30/24
MCG−6-30-15,
TON S180, NGC 4151,
NGC 3516, NGC 5548

(1) Objects excluded from fit. (2) Scaling constant for the high-frequency
break νHFB, where νHFB = CHFB/M •. (3) Power-spectral amplitude at
νHFB in power × frequency space. (4) Reduced chi-squared and degrees of
freedom for fit.

is a constant and M • is the mass of the black hole in units of M�.
The low-frequency break is related to the high-frequency break by
νLFB = νHFB/C LFB where C LFB is a constant. The normalization A
varies as a function of νHFB as A = PSDAMP/νHFB, where PSDAMP

is assumed to be the same for all objects. Using this model, the
relation between variance and mass can therefore be described with
three parameters: CHFB, C LFB and PSDAMP.

To determine the best-fitting model, we minimized χ2 for grid of
values of CHFB, C LFB and PSDAMP values. We found that we could
not constrain the parameterC LFB. This is because the low-frequency
break generally does not fall within our sampled frequency range.
Therefore, we fixed this at C LFB = 20. This is roughly the value of
C LFB observed in the AGN NGC 3783 (Markowitz et al. 2003) and
in Cyg X-1 in the low/hard state (Belloni &Hasinger 1990a; Nowak
et al. 1999).

The best-fitting values of CHFB and PSDAMP are given in Table 2.
This best-fitting model (for the fit including all 33 objects) is shown
as the solid line in Fig. 2 (bottom). The probability of exceeding the
χ 2

ν of the best-fitting universal model is 2 × 10−25. This indicates
that, while themodel appears to describe ratherwell the overall trend
of decreasing σ 2

NXS, there exists significant scatter not accounted for
by the model. The residuals �log σ 2

NXS from this model are listed
in Table 1. We also fitted the universal model to the data excluding
various objects. As seen in Table 2, neither the lowest mass object
(viz. NGC 4395), nor the six objects with the largest number of
light-curve segments (viz. AKN 564, MCG−6-30-15, TON S180,
NGC 4151, 3516, 5548), dominate the fit.

The scatter present in the relationship between log σ 2
NXS and log

M • can be explainedwith a variation of eitherCHFB or PSDAMP from
their best-fitting values. This is illustrated in Fig. 2 (bottom).Wefind
that a range in CHFB values between 7.2 and 520 (upper and lower
dotted-lines, respectively), or a range in PSDAMP between 0.004 and
0.29 (upper and lower dashed lines, respectively), can account for
most of the scatter in the log σ 2

NXS versus log M • relation.
The scatter might also be owing to a combination of the uncer-

tainties in log σ 2
NXS and log M •, the latter of which are typically

about 0.5 dex (e.g. Woo & Urry 2002; Peterson et al. 2004). We
performed simulations to investigate this possibility, adopting the
best-fitting relation between log σ 2

NXS and log M • as our model.
We needed first to obtain a set of 33 model data points to which
we could then apply scatter in log σ 2

NXS and log M •. To do this,
we projected each of our 33 observed data points on to the best-
fitting relation, minimizing the distance between the observed point

and the model. (The distance between an observed data point and
any particular location on the model relation was calculated from
the differences in log σ 2

NXS and log M • between the observed point
and the model, divided by the corresponding uncertainty in the ob-
served values.) Having thus adopted a set of 33 model data points,
we then performed 1000 simulations. Each of these involved adding
scatter to the model points and then determining the χ 2

ν between
the simulated data points and the model relation. We found that
79 per cent of the simulations produced a χ 2

ν exceeding that found
for the observed data. Therefore, the scatter that we have observed
in the relation between log σ 2

NXS and log M • might be owing only to
measurement uncertainties. If this is indeed the case, then we would
expect this scatter to be unrelated to other properties of the objects
in our sample, and we investigate this possibility in the following
section.

5 T H E O R I G I N O F T H E S C AT T E R I N T H E
VA R I A N C E – M A S S R E L AT I O N S H I P

Previous studies have revealed an anticorrelation between σ 2
NXS and

X-ray luminosity, and a positive correlation between σ 2
NXS and pho-

ton index � (e.g. Nandra et al. 1997a; Turner et al. 1999; Markowitz
& Edelson 2001; Papadakis 2004). Given the strong dependence
between the σ 2

NXS and M •, it is of interest to see whether these
correlations still exist when this primary dependence is removed.
This should allow us to shed light on the origin of the scatter in the
variance–mass relationship.

In Fig. 3 we plot log σ 2
NXS, log M • σ 2

NXS, and the residu-
als �log σ 2

NXS from the best-fitting universal model, versus the

Figure 3. Log of excess variance (top), log of the product of excess variance
and black holemass (middle), and excess variance residuals (bottom), versus
log of the 2–10 keV luminosity.
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Figure 4. Log of excess variance (top), log of the product of excess variance
and black holemass (middle), and excess variance residuals (bottom), versus
the 2–10 keV photon index.

logarithm of the 2–10 keV luminosity. The quantities log M • σ 2
NXS

and �log σ 2
NXS are useful because they remove the mass depen-

dence. Note that the quantity log M • σ 2
NXS is model-independent.

In Figs 4 and 5 we plot the variability parameters versus, respec-
tively, the photon index and the logarithm of the 2–10 keV luminos-
ity normalized to the black hole mass, log (L2–10 keV/M •). To the
extent that the X-ray luminosity is proportional to the bolometric
luminosity, as is commonly assumed, the value log (L2–10 keV/M •)
is proportional to the ratio between the mass-accretion rate and that
required to reach the Eddington luminosity (i.e. the ‘Eddington ra-
tio’). Note that the correction factor between the 2–10 keV and
bolometric luminosities is uncertain, with considerable scatter. The
Spearman rank-order correlation coefficient and Kendall’s τ of all
nine relationships are presented in Table 3.

As with previous studies, we find a very strong correlation be-
tween log σ 2

NXS and log L2–10 keV (see Fig. 3). This correlation dis-
appears when we remove the dependence of σ 2

NXS on M •. It seems
most likely that the primary correlation is in fact with mass, and that
the apparent correlation with log L2–10 keV is secondary.

A similar situation is present when considering the photon index
(see Fig. 4). Indeed, the correlation between log σ 2

NXS and � is not
very strong in any event, being significant at only the 96 per cent
confidence level, though there does seem to be an absence of ob-
jects having both a steep photon index and low σ 2

NXS. When the
mass dependence is accounted for, however, no residual correlation
remains. In the plot of �log σ 2

NXS versus �, the steep-spectrum ob-
jects do not have a systematically higher�log σ 2

NXS than the others.
Finally, we consider the relationship between the variability prop-

erties and the normalized luminosity log (L2–10 keV/M •) (see Fig. 5).

Figure 5. Log of excess variance (top), log of the product of excess variance
and black holemass (middle), and excess variance residuals (bottom), versus
log of the 2–10 keV luminosity normalized by the black hole mass.

There is considerable scatter, and no strong correlation, between log
σ 2
NXS and log (L2–10 keV/M •). Here, however, we do find a signif-

icant relationship between log (L2–10 keV/M •) and both the mass-
normalized excess variance and the residuals from our best-fitting
model. The latter correlation is significant with ∼99 per cent confi-
dence and, perhaps surprisingly, it is in the sense that objects with
larger values of normalized luminosity are less variable for a given
mass. While significant, this relationship should be treated with
some caution. The presence of random scatter in the black hole
mass estimates could possibly induce such an anticorrelation. If M •
is underestimated then �log σ 2

NXS will also be underestimated and
log (L2–10 keV/M •) will be overestimated. An artificial anticorrela-
tion would certainly be induced if all objects had the same value of
log (L2–10 keV/M •). However, it is less clear that this effect could pro-
duce an anticorrelation between �log σ 2

NXS and log (L2–10 keV/M •)
in our data because the normalized luminosities in our sample span
three orders ofmagnitude.Weused the simulations described in Sec-
tion 4.3 to test whether the observed anticorrelation could be owing
to the uncertainties in the black hole masses. For each of the 1000
simulations, we calculated log σ 2

NXS and log (L2–10 keV/M •) from the
simulated data points andmeasuredKendall’s τ .We found that, even
with no intrinsic anticorrelation between σ 2

NXS and L2–10 keV/M •, 57
per cent of the simulations gave a Kendall’s τ that was more nega-
tive than the observed value of−0.31. Therefore, we cannot rule out
the possibility that the observed anticorrelation between �log σ 2

NXS

and log (L2–10 keV/M •) is an artefact induced by the presence of
uncertainties in the measurements of black hole mass.
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Table 3. Correlation coefficients between X-ray variability properties and the 2–10 keV luminosity, photon index and
normalized luminosity.

Observables Spearman Kendall
Coeff. Sig. (per cent) Coeff. Sig. (per cent)

(1) (2) (3) (4) (5) (6)

log L2–10 keV log σ 2
NXS −0.61 99.98 −0.43 99.96

log M • σ 2
NXS 0.13 53 0.10 59

�log σ 2
NXS −0.06 25 −0.04 26

� log σ 2
NXS 0.36 96 0.25 96

log M • σ 2
NXS 0.10 43 0.10 56

�log σ 2
NXS 0.11 44 0.09 53

log (L2–10 keV/M •) log σ 2
NXS 0.29 89 0.19 89

log M • σ 2
NXS −0.50 99.7 −0.36 99.7

�log σ 2
NXS −0.44 99.0 −0.31 98.8

(1) X-ray spectral property on the abscissa. (2) X-ray variability property on the ordinate. (3) Spearman rank-order
correlation coefficient. (4) Significance of correlation. (5) Kendall’s τ . (6) Significance of correlation.

6 D I S C U S S I O N

6.1 Summary of results

We have investigated the relationship between normalized excess
variance and black hole mass for a sample of 46 radio-quiet AGN.
We restricted our light curves to have durations between ∼30 and
40 ks (rest-frame), allowing us to probe nearly the same range of
time-scales for all objects. There were 32 objects in our sample that
had more than one light-curve segment. For these objects, we were
able to determine the mean σ 2

NXS, decreasing the uncertainty in the
measurements. Moreover, for six objects, there were more than 15
light-curve segments available. An examination of the distributions
of the individual σ 2

NXS values for these six objects allowed us to esti-
mate the uncertainties in the mean σ 2

NXS for every object in our sam-
ple. These uncertainties incorporate the effects of bothmeasurement
uncertainties and the stochastic nature of the variability. Of the 46
objects in our sample, 33were found to be variable.Aswith previous
studies using ASCA (Lu & Yu 2001; Bian & Zhao 2003; Markowitz
&Edelson 2004) andRXTE (Markowitz&Edelson 2004; Papadakis
2004) data, we found a significant anticorrelation between σ 2

NXS

and M •.
We initially fitted the relationship between σ 2

NXS and M • with
both a power law and bending power law. Neither of these fits were
formally satisfactory; however, the bending power law was an im-
provement over the unbroken power law.

Wealsofitted the datawith a universal power-spectrummodel.We
determined the expected σ 2

NXS from the model as a function of M •,
accounting for the effects of binning, aliasing, and red-noise leak in
the observed light curves. The best-fitting high-frequency break ×
mass scaling coefficientwasCHFB = 43 Hz M�, and the best-fitting
amplitude was PSDAMP = 0.024. In his study using RXTE data,
Papadakis (2004) found values of CHFB = 17 and PSDAMP = 0.017
(CHFB = 340 for NGC 4051). Markowitz & Edelson (2004) studied
the variability of Seyfert 1 galaxies on various time-scales and found

that, on average, the variability time-scale followed the relation
T b = M •/106.7 d. Using our parametrization, this corresponds to a
scaling factor of CHFB = 58 HzM�.
In general, the mass–variance anticorrelation can therefore be

understood very simply by assuming that all size-scales scale with
mass, and hence so do all characteristic time-scales (such as those
represented by the break frequencies). Our analysis furthermore
supports the idea that the average, or typical power spectrum of
AGN resembles the ‘universal’ power spectrum discussed above.
The best-fitting universal model was not satisfactory, however, with
χ 2

ν/DOF = 6.30/31, indicating that, for a certain M •, there exists
significant scatter in the σ 2

NXS values. However, our simulations
showed that uncertainties in the mass measurements can account
for this scatter.

6.2 The origin of scatter in the variance–mass relation

Previous work has suggested that the excess variance is related to
source properties other than mass, such as the luminosity, X-ray
spectral index and Hβ linewidth (e.g. Nandra et al. 1997a; Turner
et al. 1999). We have reinvestigated some of these relations here.
Consistent with previous work using ASCA data, we found a corre-
lation between log σ 2

NXS and log L2–10 keV (e.g. Nandra et al. 1997a;
Leighly 1999a; Turner et al. 1999). The fact that no correlation ex-
ists when the dependence of σ 2

NXS on M • is removed suggests that
the correlation between log σ 2

NXS and log L2–10 keV is largely a result
of the σ 2

NXS – M • relation. This effect has also been seen in RXTE
data with a time-scale of about 300 d (Papadakis 2004).

We also found an absence of objects having both a steep photon
index and low σ 2

NXS. After accounting for the dependence on mass,
however, we found no evidence for a correlation between excess
variance and X-ray spectral index. This is perhaps surprising, as
previous work has suggested that narrow-line Seyfert 1 galaxies –
which have soft X-ray spectra as a general characteristic (e.g. Boller,
Brandt & Fink 1996; Brandt, Mathur & Elvis 1997) – are more
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variable than their broad-line analogues (Leighly 1999a;Turner et al.
1999). An effect similar to that which we have observed has already
been noted by otherworkers usingASCA data. Lu&Yu (2001) found
that the narrow-line Seyfert 1 galaxies in their sample appeared to
follow the same variance–mass relation as the broad-line objects.
Bian & Zhao (2003), in an expanded study using the variance mea-
surements of Turner et al. (1999) and Lu & Yu (2001), also found
that the AGN with FWHM(Hβ) less than 2000 km s−1 appeared to
follow the same relation as those objects with broad Hβ emission
lines (see also the discussion in Markowitz & Edelson 2004).

We also found an anticorrelation between excess variance resid-
uals and the normalized luminosity (L2–10 keV/M •), which we shall
now simply refer to as the Eddington ratio Ṁ . Our simulations
showed that this apparent anticorrelation between �log σ 2

NXS and
Ṁ could be an artefact owing to the uncertainties in the measure-
ments of the black hole masses. The fact that we did not find a
positive correlation between excess variance and Ṁ , for a given
mass, is surprising: in the prevailing paradigm, NLS1s generally
show more variability and are thought also to be accreting at high
Eddington ratios (Pounds, Done&Osborne 1995). It is not yet clear,
then, that a high value of Ṁ is a contributing factor to an AGN ex-
hibiting a relatively large excess variance. Further investigations in
this regard will benefit enormously from future improvements in
black hole mass measurements.

6.3 Models for X-ray variability

In the standard coronal model, which can be applied both to
stellar-mass black holes and AGN, seed photons from an optically
thick accretion disc are inverse Compton scattered by hot elec-
trons in an accretion disc corona (e.g. Sunyaev & Titarchuk 1980;
Haardt & Maraschi 1993; Churazov, Gilfanov & Revnivtsev 2001;
McClintock & Remillard 2005).

One class of models involves the superposition of individual
‘shots’ in the light curve (Terrell 1972). These shots are possi-
bly associated with magnetic flares in the corona (e.g. Poutanen
& Fabian 1999, and references therein). In the model of Poutanen
& Fabian (1999), there is a distribution of shot time-scales, with
the value of νHFB being inversely proportional to the duration of the
longest shots. Also in that model, the variance of the counting-rate
fluctuations is inversely proportional to the mean rate λ of the oc-
currence of flares. One can then assume a basic framework in which
all size-scales (and, therefore, time-scales) and the luminosity of
the individual shots is proportional to the black hole mass, account-
ing for the main variance–mass relationship. The total luminosity is
proportional to λ, so for a given black hole mass the variance in the
light curve is expected to be inversely proportional to the Eddington
ratio.

In the so-called ‘propagating perturbation’ class of models, vari-
ations in the accretion rate occur over a range of radii from the black
hole (e.g. Lyubarskii 1997; Churazov et al. 2001; Kotov, Churazov
&Gilfanov 2001; Uttley 2004, and references therein). Slower vari-
ations occur at larger radii and propagate inwards, coupling together
with the faster variations produced at smaller radii. Themodulations
in the accretion rate propagate to the X-ray emission region and pro-
duce variations in the X-ray flux. This type of model is attractive
because it can provide an explanation for the well-known ‘rms–flux’
relation seen in X-ray binaries and AGN (e.g. Uttley & McHardy
2001; Gaskell 2004; Uttley 2004). The value of νHFB is expected to
be inversely proportional to the size of the X-ray emission region
because the variations that originate fromwithin the emission region
are suppressed (Churazov et al. 2001; Uttley 2004). In the model of

Churazov et al. (2001), the low/hard state in Cyg X-1 occurs when
the optically thick, geometrically thin accretion disc is truncated far
from the emission region. In the high/soft state, the disc reaches all
the way down to the emission region and this leads to the X-ray
variations following an unbroken α = 1 power law. In this model, it
is not fully specified how the emission region changes as the inner
radius of the disc varies. It is clear, however, that the emission region
would need to become smaller as the disc approaches that region
because νHFB is higher in the high/soft state than in the low/hard
state.

McHardy et al. (2004) appealed to the analogy with black hole
X-ray binaries and speculated that the location of the inner edge of
the accretion disc in AGN is perhaps related to the mass-accretion
rate or the black hole spin. For a certain black hole mass, then,
different AGN might be regarded as existing in different states,
just as Cyg X-1 is observed in different states. In this scenario, we
would expect the X-ray variability of AGN to be related not only to
the black hole mass but also the Eddington ratio and photon index.
Objects having a relatively high Ṁ and soft X-ray spectra would, for
a certain value of M •, have a relatively high value of νHFB (i.e. a high
value of CHFB) and should, therefore, exhibit a relatively high value
of σ 2

NXS for a given range in time-scales. We found no evidence that
the X-ray variability depends on these properties, and so the reality
of this scenario remains to be established. Note, however, that if an
anticorrelation existed betweenCHFB and PSDAMP, thenCHFB could
possibly increase without there being a corresponding increase in
σ 2
NXS.
Discriminating between various possible scenarios obviously re-

quires the use of power-spectral analyses, preferably covering a
wide range in source properties. The challenge, then, is to assemble
enough high-quality power spectra so that we can relate the power-
spectral parameters not only to M • but also to the Eddington ratio
and other quantities such as photon index. We note, in particular,
that an analysis of the AGN data in the XMM–Newton and Chandra
archives, even from relatively short observations, would be useful
in studying the properties (e.g. power-law slopes) of the variability
at frequencies above the high-frequency break. A natural starting
point, of course, is to conduct a rigorous comparison between the
currently available power spectra (e.g. Uttley et al. 2002;Markowitz
et al. 2003;McHardy et al. 2004) and the other relevant source prop-
erties. Any conclusions drawn from these comparisons could then
be tested on a larger sample of objects by using measurements of
excess variance.
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