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[1] Amazon forests exert a major influence on the global
carbon cycle, but quantifying the impact is complicated by
diverse landscapes and sparse data. Here we examine
seasonal carbon balance in southern Amazonia using new
measurements of column-averaged dry air mole fraction of
CO2 (XCO2) and solar induced chlorophyll fluorescence
(SIF) from the Greenhouse Gases Observing Satellite
(GOSAT) from July 2009 to December 2010. SIF, which
reflects gross primary production (GPP), is used to disentangle
the photosynthetic component of land-atmosphere carbon
exchange. We find that tropical transitional forests in southern
Amazonia exhibit a pattern of low XCO2 during the wet
season and high XCO2 in the dry season that is robust to
retrieval methodology and with seasonal amplitude double
that of cerrado ecosystems to the east (4 ppm versus 2 ppm),
including enhanced dilution of 2.5 ppm in the wet season.
Concomitant measurements of SIF, which are inversely
correlated with XCO2 in southern Amazonia (r =�0.53,
p< 0.001), indicate that the enhanced variability is driven by
seasonal changes in GPP due to coupling of strong vertical

mixing with seasonal changes in underlying carbon exchange.
This finding is supported by forward simulations of the
Goddard Chemistry Transport Model (GEOS-Chem) which
show that local carbon uptake in the wet season and loss in
the dry season due to emissions by ecosystem respiration and
biomass burning produces best agreement with observed
XCO2. We conclude that GOSAT provides critical
measurements of carbon exchange in southern Amazonia, but
more samples are needed to examine moist Amazon forests
farther north. Citation: Parazoo, N. C., et al. (2013), Interpreting
seasonal changes in the carbon balance of southern Amazonia using
measurements of XCO2 and chlorophyll fluorescence from GOSAT,
Geophys. Res. Lett., 40, 2829–2833, doi:10.1002/grl.50452.

1. Introduction

[2] The Amazon basin plays a significant role in the global
carbon cycle. Nearly half of all tropical biomass (120 PgC)
is stored in roots and trees, with 0.5 PgC year�1 lost through
deforestation and 0.6 PgC year�1 gained by intact forests
[Malhi et al., 2009, and references therein]. There is also
significant interannual variability in carbon exchange, driven
by changes in the biophysical state of rain forests during
large-scale disturbances such as drought, which cause anom-
alies in the global growth rate of atmospheric CO2 [Bousquet
et al., 2000]. With vulnerability to drought stress expected to
increase with climate change [e.g., Phillips et al., 2009],
Amazonian forests may play a more prominent role in
modulating future increases of atmospheric CO2 and,
through radiative forcing, climate change [e.g., Cox et al.,
2004]. However, there is still much uncertainty in our under-
standing of basin-wide carbon balance.
[3] In particular, seasonal patterns of net ecosystem

exchange (NEE) measured from flux towers vary signifi-
cantly across Amazonia, with weak seasonal cycles in the
north at Manaus, stronger seasonality to east at Tapajos
National Forest near Santarem and south at Jarú Reserve
and Fazenda Maracai (SIN), and still stronger seasonality
southeast of Amazonia (e.g., Pe DeGigante) (sites described
in Keller et al. [2004] and Baker et al., [2013] and shown in
Figure 1). These patterns predominantly follow vegetation
and precipitation gradients [e.g., da Rocha et al., 2009];
however, additional factors such as vegetation age, topogra-
phy, and soil properties also influence NEE [e.g., Keller
et al., 2004]. Ecosystem models and flux tower measure-
ments of gross primary production (GPP) and ecosystem

Additional supporting information may be found in the online version of
this article.

1Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California, USA.

2Joint Institute for Regional Earth System Science and Engineering,
University of California, Los Angeles, California, USA.

3Department of Physics, University of Toronto, Toronto, Ontario,
Canada.

4Department of Global Ecology, Carnegie Institution for Science,
Stanford, California, USA.

5National Aeronautics’ Space Administration, Goddard Space Flight
Center, Greenbelt, Maryland, USA.

6Department of Atmospheric Science, Colorado State University, Fort
Collins, Colorado, USA.

7Department for Biogeochemical Systems, Max Planck Institute for
Biogeochemistry, Jena, Germany.

8IMK-ASF, Karlsruhe Institute of Technology, Leopoldshafen, Germany.
9Netherlands Institute for Space Research, Utrecht, Netherlands.
10Center for Global Environmental Research, National Institute for

Environmental Studies, Tsukuba, Japan.
11NOAA Earth System Research Laboratory, Boulder, Colorado, USA.
12Now at Center for Isotope Research, University of Groningen,

Groningen, The Netherlands.

Corresponding author: N. Parazoo, Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA 91109, USA. (Nicholas.
C.Parazoo@jpl.nasa.gov)

©2013. American Geophysical Union. All Rights Reserved.
0094-8276/13/10.1002/grl.50452

2829

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 2829–2833, doi:10.1002/grl.50452, 2013



respiration have contributed greatly to our physiological un-
derstanding of seasonal carbon balance in Amazonia, but
progress has been hindered by the limited spatial coverage
and local nature of flux tower data.
[4] Advancing our understanding of the seasonal carbon

balance requires a network for monitoring carbon fluxes at
ecosystem scale. Measurements of atmospheric CO2 provide
such a constraint on NEE [Bousquet et al., 2000]. For
example, aircraft measurements in eastern Amazonia help
to quantify the underlying seasonal carbon balance, but only
for eastern Amazonia [Gatti et al., 2010]. Dedicated
measurements from new spaceborne instruments offer the
potential to substantially improve sampling of Amazonia.
The Greenhouse gasses Observing SATellite (GOSAT) has
produced global retrievals of column-averaged dry air mole
fraction of CO2 (XCO2) since June 2009 [Watanabe et al.,
2010]. Ground based evaluation of XCO2 has relied primar-
ily on the Total Carbon Column Observing Network
(TCCON). Although GOSAT XCO2 has high noise, in
general, there is good seasonal agreement at northern lati-
tude sites and during dry season months at the tropical site
in Darwin, Australia [Butz et al., 2011; Wunch et al., 2011].
[5] Concurrent measurements of solar induced chlorophyll

fluorescence (SIF) from GOSAT offer the potential to provide
regional-scale constraints on GPP [Frankenberg et al., 2011a;
Joiner et al., 2011] to better understand drivers of NEE
variability. SIF is light re-emitted from chlorophyll receptors
during photosynthesis and therefore offers a direct probe into
the photosynthetic process [Damm et al., 2010]. Retrievals
of SIF from GOSAT correlate strongly (r2 = 0.80) with
ecosystem-scale GPP from the Max-Planck-Institute for
Biogeochemistry (MPI-BGC) GPPmodel model [Frankenberg
et al., 2011b], indicating that, on average, most of the

photosynthesis that occurs during emissions of SIF also
leads to carbon assimilation. It therefore appears that SIF has
skill in detecting large-scale GPP changes, including the
physiological effects of drought [e.g., Daumard et al., 2010].
[6] While GOSAT represents a major improvement in the

number of CO2 observations in the lower tropical atmo-
sphere, most soundings in the tropics are unusable due to
the presence of clouds and aerosols [Crisp et al., 2012].
Consequently, data of the highest quality and quantity are
located in southern portions of tropical South America,
including transitional tropical forests in southern Amazonia
and cerrado ecosystems to the southeast (map inset in
Figure 1). According to Davidson et al. [2012], these
regions are uniquely different in terms of total annual
precipitation and vegetation type. In general, region 1 is
wetter and has a much larger fraction of tropical evergreen
forest than region 2 to the east, which is predominantly
cerrado. We therefore examine seasonal carbon balance in
these unique but poorly sampled eco-regions through joint
analysis of XCO2 and SIF data from GOSAT. There are
three main objectives: (1) quantify and evaluate robustness
of seasonal XCO2 variations across tropical eco-regions,
(2) relate XCO2 variability to underlying biology, and (3)
examine the photosynthetic component of biological carbon
exchange using SIF.

2. Methods

[7] Retrievals of XCO2 are calculated from the NASA At-
mospheric CO2 Observations from Space Build 2.9 (ACOS
b2.9) algorithm [O’Dell et al., 2012]. These data reproduce
much of the expected global spatial and seasonal patterns of
XCO2, including negligible global bias (~0.13 ppm) and
~30% reduction in variance compared to previous versions
[Osterman et al., 2011; Crisp et al., 2012]. ACOS b2.9 is
corrected a posteriori for errors related to instrumental, obser-
vational, and geophysical parameters [Wunch et al., 2011]. To
evaluate XCO2 retrievals in Amazonia, we compare ACOS
b2.9 to estimates from ACOS Build 2.10 (ACOS b2.10),
RemoTeC (SRON-Netherlands Institute for Space Research/
KIT-Karlsruhe Institute of Technology) [Butz et al., 2011],
and NIES SWIR L2V02 (NIES) [Yoshida et al., 2011]. See
auxiliary material for quality control procedures.
[8] Two steps are taken to relate XCO2 variability in

Amazonia to underlying biological processes. First, we
compare XCO2 to estimates of GPP from SIF (see below) to
assess the empirical relationship between XCO2 and
underlying biology. Second, we run transport simulations in
which a wide range of NEE estimates are used to drive the
GEOS-Chem global transport model (see Nassar et al.
[2010] for details). Model output is then compared to GOSAT
XCO2. By accounting for long-range transport, we can assess
which pattern of NEE is most consistent with observations.
[9] Details of SIF, including retrieval, methods, and

sampling biases are given in SI. SIF is retrieved following
Frankenberg et al. [2011a]. We estimate changes in GPP by
scaling SIF using the slope of linear fit between SIF andmodel
GPP in the global and annual average. Midday retrievals are
converted to daily averages by scaling SIF by the cosine of
the solar zenith angle, then aggregated to 2.5� � 2�. Although
the R2 of model GPP and SIF ranges from 0.63 in Simple
Biosphere Model, version 3, 0.67 in Carnegie-Ames-Stanford
Approach-Global Fire Emissions Database version 3, and
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Figure 1. Seasonal cycle of ACOS b2.9 XCO2 in southern
Amazonia (blue, region 1), southeastern Amazonia (red,
region 2), and southern Hemisphere tropics ([15�S–5�N,
180�W–180�E], land points only).We use a minimum of three
samples to calculate monthly means. Uncertainty is estimated
as the standard monthly error. Secular trend (black dashed)
based on CO2 data from Mauna Loa and South Pole
Station (http://www.esrl.noaa.gov/gmd/ccgg/trends/) is re-
moved. The map inset shows the total number of samples
per 2.5� � 2� grid box from July 2009 to December 2010,
contours of Amazonia (black) and eco-regions (blue and
red), and locations of flux tower sites.
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0.83 in MPI, we find this technique gives estimates of
seasonal change in GPP in Amazonia that is robust to the
choice of calibration model and with reduced variance
relative to models.
[10] Despite the potential of satellite measurements of SIF

to deliver globally distributed information on GPP, we stress
that SIF methods are still new, challenging, and uncertain. In
particular, we assume GPP scales with SIF by the same
linear factor at global scale. Furthermore, we are limited to
clear sky snapshots, which leads to under sampling of thick
clouds and smoky skies. This sampling bias may cause
differences in observed and expected time averaged GPP
due to sensitivity to total incoming radiation. Given these
limitations, GPP is treated more as a correlative measure
rather than an absolute estimate (i.e., the technique is better
suited to address changes in GPP than absolute values).

3. Results

[11] Seasonal XCO2 over Amazon eco-regions is plotted
in Figure 1. XCO2 in tropical transitional forests (blue box,
region 1) is plotted in blue; XCO2 in cerrado ecosystems
(red box, region 2) is plotted in red. XCO2 has a similar

seasonal phase in these regions, with highest mixing
ratios in the dry season (~June–August) and lowest
mixing ratios in the wet season (~November–February).
However, the amplitude is twice as strong in region 1
(4 ppm compared to 2 ppm). Regional differences are
most pronounced from September 2009 through March
2010, including the end of the dry season and most of
the wet season, with XCO2 in region 1 diluted by up to
2.5 ppm relative to region 2.
[12] With the exception of October and November 2010,

these seasonal signals appear to be robust to measurement
error. In particular, the seasonal amplitudes of regions 1 and
2 exceed the standard monthly error (≤1.0 ppm and 0.5 ppm,
respectively), indicating the seasonal signal is statistically
significant relative to monthly variability. In addition, regional
signals, including difference between regions of 2.5 ppm
during the 2009–2010 wet season, are robust to retrieval
methodology, bias correction technique, quality control
criteria, and specific soundings used (Figure S2).
[13] The role of non-local processes such as long-range

transport on XCO2 variability in southern Amazonia is also
examined in Figure 1. We find that seasonal variations in
region 2 tend to track changes in the Southern Hemisphere
tropical zonal average to within 1 ppm for the entire period
of record. This indicates that transport of background CO2

has a strong influence on column variations in region 2.
The same is generally true for region 1 during dry season
and transitional months, suggesting background CO2 also
has a strong influence on the continental interior; however,
XCO2 is lower by 1–2 ppm from September 2009 to March
2010, indicating local processes contribute substantial
variability in southern Amazonia during the wet season.
[14] Comparison of clear sky XCO2 with SIF provides

evidence that these local effects have biological origin.
Figure 2a shows that XCO2 is inversely correlated with
SIF, and hence GPP, in region 1, with high XCO2 corre-
sponding to low GPP (and vice versa). Furthermore, XCO2

is better correlated with GPP in region 1 (Figure 2a,
r =�0.53, p< 0.001) than in region 2 (r =�0.34, not
shown), and twice as sensitive to changes in GPP in region
1 (slope =�0.54� 0.06 ppm/gCm�2 d�1 and �0.26� 0.04
ppm/gCm�2 d�1, respectively). The pattern for higher
slope and correlation in region 1 is robust to retrieval
product and bias correction technique except for NIES
(Figure S2 and Table S1), which excludes most wet season
data due to strict quality control. Seasonal plots of GPP
and XCO2 (Figure 2b) show the inverse relationship is
strongest through July 2010, after which GPP and XCO2

increase together. The correlation improves slightly
(r =�0.59) when months after July 2010 are ignored,
suggesting another mechanism becomes dominant at this time.
[15] Sensitivity of XCO2 to local surface processes

requires a combination of ecophysiology and dynamical
effects. In particular, NEE must be coupled locally with
strong vertical mixing. Keppel-Aleks et al. [2011] show this
latter condition is not satisfied in high northern latitudes due
to the nature of the atmospheric circulation, which favors
horizontal advection, causing non-local effects to dominate
column variations. Trace gases in the tropical atmosphere,
however, are generally well mixed by deep and persistent
cumulus convection [e.g., Denning et al., 1999]. Conse-
quently, variations in CO2 forced at the surface by local
carbon fluxes are rapidly mixed into the column.
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Figure 2. (a) Scatter plot of 2.5� � 2� grid cell monthly
mean XCO2 versus gross primary production (GPP) in south-
ern Amazonia. GPP is approximated as SIF * m, where
m=16.28 is the linear fit between MPI GPP and chlorophyll
fluorescence. Linear regression lines in solid blue and 95%
confidence interval in dashed blue. Linear Pearson correlation
(r) and slope/SE of regression are also shown. (b) Comparison
of XCO2 (blue solid, same as Figure 1) in region 1 to XCO2

output from GEOS-Chem using NEE from the control
experiment (blue dotted) and Experiment 5 (blue dashed,
NEE experiments described in Table 1). Seasonal GPP from
Figure 2a is plotted in green.
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[16] We use GEOS-Chem to test this claim; and in addition,
help quantify seasonal carbon balance in region 1. We first test
the null hypothesis that long-range transport explains XCO2

variability in region 1. In this control experiment, we prescribe
global NEE, biomass burning, air-sea gas exchange, and
fossil fuel following Nassar et al. [2010] but set carbon
fluxes within tropical South America (all grid points north
of 20�S) to zero. Seasonal XCO2 output from GEOS-
Chem is weakly correlated with observations in region 1
(r = 0.43, see Table 1), the slope of regression is not significant
from zero (slope = 1.41� 0.77), and seasonal amplitude is
strongly damped relative to observations (1 ppm versus
4 ppm, Figure 2b), with a model excess of 2–3 ppm in the
wet season and deficit of 1 ppm in the dry season. In contrast,
GEOS-Chem is correlated with observations in region 2
(r = 0.60), with significant slope (1.172� 0.39) and most of
the seasonal amplitude reproduced (1.5 ppm versus 2 ppm,
not shown). These results suggest that transport dominates var-
iability in region 2 but has a muchweaker influence in region 1.
[17] In order to explain XCO2 variability in region 1, we

postulate that wet season carbon uptake and dry season
efflux such as that reported from 3 years of flux tower data
at Fazenda Maracai (SIN in Figure 1), a mature Brazilian
transitional tropical forest site in the center of region 1
[Vourlitis et al., 2004], are needed. We test this hypothesis
using the same model setup as before except steady state
NEE in region 1 is replaced with estimates of seasonal
NEE reported in the literature. These estimates range from
strongly seasonal, including wet season source and/or dry
season sink and reversed patterns, to weakly seasonal,
including year round source, steady state, and sink [Keller
et al., 2004; Stephens et al., 2007; Baker et al., 2013]. We
test a total of eight scenarios for NEE (Table 1), assuming
a constant flux of 1.7 gCm�2 d�1 (or 500 kgC ha�1mo�1,
representing average minimum and maximum NEE at the

four sites reported by Keller et al., [2004]) and that wet
and dry seasons are either a source, sink, or in steady state.
[18] Correlation and slope of regression between observed

and model XCO2 are shown in Table 1. In half the cases
(Experiments 1, 4, 6, and 7), the correlation decreases
relative to the control run and linear regression fails the
Student’s t-test on slope = 0, with the seasonal cycle reversed
relative to observations when a wet season source and/or dry
season sink is assumed (1, 4, and 7). The best correlations
emerge when a wet season sink and/or dry season source is
assumed (2, 3, and 5, r = 0.6, 0.55, and 0.63, respectively)
with slopes significant from zero and close to 1
(1.14� 0.38, 1.01� 0.40, and 0.83� 0.26). A visual com-
parison of observed and model variability (Figure 2b) shows
our hypothesis of wet season uptake and dry season efflux
(Experiment 5) is valid from July 2009 to August 2010 but
is violated in October and November 2010, at which time
observed XCO2 increases but model XCO2 decreases.
Experiment 5 provides a much improved fit when these
months are ignored (r = 0.93 and slope = 1.11� 0.12).
[19] We postulate that seasonal NEE driven by GPP is the

primary source of XCO2 variability through the middle of
the 2010 dry season but that biomass burning in southeast
Amazonia is the primary source of enhanced XCO2 at the
end of the 2010 dry season.Marengo et al. [2008] show that
most drought years have increased forest fires due to
extended periods of anomalously dry conditions. A major
drought persisted through much of southern Amazonia in
2010, causing enhanced water stress throughout the dry
season [e.g., Lewis et al., 2011; Lee et al., in review].
Measurements of Pollution in the Troposphere data show
enhanced carbon monoxide in Amazonia (relative to the
background) from August to October 2010 (see Figure S8),
indicating a biomass burning source. Finally, Chen et al.
[2011] use MODIS active fire data to show the presence of
forest fires in southeastern Amazonia. It is therefore likely
that biomass burning explains high XCO2 in October and
November 2010, which occurs in regions 1 and 2 and in
all retrieval products (Figure S2). In addition, we attribute
high XCO2 variance in region 1 to transport from region 2
and reduced sampling coverage due to high aerosol loading
(three samples in October 2010 versus 15 in October 2009).

4. Discussion and Conclusions

[20] We observe a distinct seasonal cycle in XCO2 in
southern Amazonia in clear sky conditions, with low mixing
ratios in the wet season and high mixing ratios in the dry
season. The seasonal phase resembles cerrado ecosystems
to the east but the amplitude is twice as strong (4 ppm versus
2 ppm) due to the combination of deep vertical mixing with
strongly seasonal GPP, creating local carbon imbalance with
respiration. After accounting for the effects of long-range
transport in GEOS-Chem, our results suggest that carbon is
gained in southern Amazonia during the wet season and lost
in the dry season. These findings are consistent with GPP
and NEE measurements at Fazenda Maracai and Jaru. As
this is a transitional forest with an extended dry season, it
is likely that water limitation effects, including exacerbation
of water stress during the 2010 drought, drive variations of
GPP and NEE. Finally, we provide evidence that strong
biomass burning during the 2010 drought contributes to
enhanced XCO2 at the end of the 2010 dry season.

Table 1. Results FromNet Ecosystem Exchange (NEE) Sensitivity
Experimentsa

Scenarios for Seasonal Carbon Exchange
(NEE= 1.7 gCm�2 d�1)

XCO2 Comparison
(GEOS-Chem

Versus ACOS b2.9)

Experiment
Name

Wet Season
NEE

(Nov–Feb)

Dry Season
NEE

(Jun–Sep) r Slope

Control Steady State Steady State 0.43 1.41� 0.77 (fail)
1 Source Steady State �0.31 �1.09� 0.86 (fail)
2 Sink Steady State 0.61 1.14� 0.38 (pass)
3 Steady State Source 0.55 1.01� 0.40 (pass)
4 Steady State Sink �0.20 �1.14� 1.39 (fail)
5 Sink Source 0.63 0.81� 0.26 (pass)
6 Source Sink �0.65 �1.68� 0.50 (fail)
7 Source Source 0.26 0.81� 0.77 (fail)
8 Sink Sink 0.48 1.53� 0.73 (fail)

aNEE scenarios (column 1) are based on the sign of seasonal carbon exchange
during the wet (Nov-Mar) and dry (Jun-Sep) season (column 2 and 3, respec-
tively), where source represents a flux to the atmosphere (and vice versa).
Model XCO2 is calculated by running non-NEE CO2 fluxes as described

in Nassar et al. [2010] and each NEE scenario through GEOS-Chem,
sampling output at ACOS b2.9 soundings, and converting to XCO2 using
the ACOS averaging kernel. XCO2 is then aggregated over region 1,
averaged at monthly timescales, and detrended as in Figure 1. Linear
Pearson correlation coefficient (r) and slope of regression with 95%
confidence interval (slope) are shown in columns 4 and 5, respectively, with
results of Student’s t-test on slope = 0 in parenthesis. Slopes greater than one
indicate seasonal amplitude is underestimated (and vice versa).
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[21] Without an extended record of data, however, the
effect of seasonal and interannual variability is unclear.
Additionally, the limited spatial coverage of GOSAT
prevents examination of carbon dynamics in moist forests
in northern Amazonia. Land surface models and flux tower
measurements indicate much spatial heterogeneity in the
Amazon carbon cycle due to strong gradients in annual
precipitation, dry season length, and vegetation type.
Because of this spatial and temporal variability, estimates
of carbon exchange at annual and continental scales are
unlikely to substantially improve our understanding of the
role of Amazonia in the global carbon cycle. However, we
are optimistic that disentangling seasonal and interannual
effects will be possible over the next few years as the
GOSAT record expands and additional dedicated CO2

satellites such as the NASA OCO-2 become available. In
addition, OCO-2 will have a much smaller footprint
(~4 km), which will help see through clouds, and several
orders of magnitude more measurements, which together
should improve sampling of Amazonia.
[22] We use an ensemble approach to demonstrate robust-

ness of the results to details of the XCO2 retrieval algorithm,
but we note these efforts do not constitute validation.
Furthermore, there is significant scatter in XCO2, and
because systematic sampling of clear sky conditions may
introduce sampling biases exceeding 1 ppm (e.g., Corbin
et al. [2008] and Figure S3), further examination of cloudy
sky data is needed. Such problems should be alleviated by
OCO-2. In addition, a TCCON site will be installed at
Manaus in northern Amazonia in November 2013, which
will greatly improve evaluation of tropical data. Despite
these issues, it is encouraging to see that satellite XCO2 is
sensitive to local processes in southern Amazonia and poten-
tially constrains estimates of land-atmosphere CO2 exchange
in this critical region.

[23] Acknowledgments. ACOS b2.9 XCO2 data were produced by
the ACOS/OCO-2 project at the Jet Propulsion Laboratory, CalTech, and
obtained from the ACOS/OCO-2 data archive maintained at the NASA
GES DISC. Development of RemoTeC algorithm is partly funded from
ESA’s CCI on GHGs and the European Commission’s seventh framework
program under grant agreement 218793 and by the Emmy-Noether
programme of DFG through grant BU2599/1-1. CarbonTracker 2011 results
provided by NOAA ESRL, Boulder, Colorado, USA from the website at
http://carbontracker.noaa.gov. We thank Prof. Dr. Paulo Artaxo, Dr. Kenia
Wiedemann, Fernando Morais, Alcides Ribeiro, University of Sao Paulo,
Brazil, and Livia Oliveira, INPA, Brazil, for their assistance and support in
installing and operating the Picarro instrument at the TT34 tower. Part of this
research was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with NASA © 2013. All rights reserved.
[24] The Editor thanks an anonymous reviewer for his/her assistance in

evaluating this paper.

References
Baker, I. T., et al. (2013), Surface ecophysiological behavior across
vegetation and moisture gradients in tropical South America, Agric.
Forest Meteorol., http://dx.doi.org/10.1016/j.agrformet.2012.11.015.

Bousquet, P., P. Peylin, P. Ciais, C. Le Quere, P. Friedlingstein, and
P. P. Tans (2000), Regional changes in carbon dioxide fluxes of land and
oceans since 1980, Science, 290, 1342, doi:10.1126/science.290.5495.1342.

Butz, A., et al. (2011), Toward accurate CO2 and CH4 observations from
GOSAT, Geophys. Res. Lett., 38, L14812, doi:10.1029/2011GL047888.

Chen, Y., J. T. Randerson, D. C. Morton, R. S. DeFries, G. J. Collatz,
P. S. Kasibhatla, L. Giglio, Y. Jin, and M. E. Marlier (2011),
Forecasting fire season severity in South America using seas surface
temperature anomalies, Science, 334, 787–91, doi:10.1126/science.1209472.

Corbin, K. D., A. S. Denning, L. Lu, J.-W. Wang, and I. T. Baker (2008),
Possible representation errors in inversions of satellite CO2 retrievals,
J. Geophys. Res., 113(D2), D02301, doi:10.1029/2007JD008716.

Cox, P. M., R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, and
C. D. Jones (2004), Amazonian forest dieback under climate-carbon
cycle projections for the 21st century, Theor. Appl. Climatol.,
78, 137–156, doi:10.1007/s00704-004-0049-4.

Crisp, D., et al. (2012), The ACOS CO2 retrievals algorithm - Part II:
Global XCO2 data characterization, Atmos. Meas. Tech., 5, 687–707.

da Rocha, H. R., et al. (2009), Patterns of water and heat flux across a biome
gradient from tropical forest to savanna in Brazil, J. Geopyhs. Res., 114(G1),
G00B12, doi:10.1029/2007JG000640.

Damm, A., et al. (2010), Remote sensing of sun-induced fluorescence to
improve modeling of diurnal courses of gross primary production
(GPP), Global Change Biol., 16, 171–186.

Daumard, F., S. Champagne, A. Fournier, Y. Goulas, A. Ounis,
J.-F. Hanocq, and I. Moya (2010), A field platform for continuous mea-
surement of canopy fluorescence, IEEE T. Geosci. Remote, 48, 3358.

Davidson, E. A., et al. (2012), The Amazon basin in transition, Nature, 481,
doi:10.1038/nature10717.

Denning, A. S., et al. (1999), Three-dimensional transport and concentration
of SF6: A model intercomparisons study (TransCom 2), Tellus, 51B,
266–297.

Frankenberg, C., A. Butz, and G. C. Toon (2011a), Disentangling
chlorophyll fluorescence from atmospheric scattering effects in O2 A-
band spectra of reflected sun-light, Geophys. Res. Lett., 38, L03801,
doi:10.1029/2010GL045896.

Frankenberg, C., et al. (2011b), New global observations of the terrestrial
carbon cycle from GOSAT: Patterns of plant fluorescence with gross
primary productivity, Geophys. Res. Lett., 38, L17706, doi:10.1029/
2011GL048738.

Gatti, L. V., J. B. Miller, M. T. S. D’Amelio, A. Martinewski, L. S. Basso,
M. E. Gloor, S. Wofsy, and P. Tans (2010), Vertical profiles of CO2
above eastern Amazonia suggest a net carbon flux to the atmosphere
and balanced biosphere between 2000 and 2009, Tellus B, 5, 582–594.

Joiner, J. Y., Y. Yoshida, A. P. Vasilkov, Y. Yoshida, L. A. Corp, and
E. M. Middleton (2011), First observations of global and seasonal terres-
trial chlorophyll fluorescence from space, Biogeosciences, 8, 637–651,
doi:10.5194/bg-8-637-2011.

Keller, M., et al. (2004), Ecological research in the large-scale biosphere-
atmosphere experiment in Amazonia: Early results, Ecol. Appl., 14(4),
supplement, S3–S16.

Keppel-Aleks, G., P. O. Wennberg, and T. Schneider (2011), Sources of
variations in total column carbon dioxide, Atmos. Chem. Phys., 11,
doi:10.5194/acp-11-3581-2011.

Lewis, S. L., P. M. Brando, O. L. Phillips, G. M. F. van der Heijden, and
D. Nepstad (2011), The 2010 Amazon drought, Science, 331,
doi:10.1126/science.1200807.

Malhi, Y., J. T. Roberts, R. A. Betts, T. J. Killeen, W. Li, and C. A. Nobre
(2009), Exploring the likelihood and mechanism of a climate-
change-induced dieback of the Amazon rainforest, P. Nat. Acad.
Sci. USA, 106, 20610–20615.

Marengo, J. A., C. A. Nobre, J. Tomasella, M. D. Oyama, G. S. de Oliveira,
R. de Oliveira, H. Camargo, L. M. Alves, and I. F. Brown (2008), The
drought of Amazonia in 2005, J. Climate, 21, 495.

Nassar, R., et al. (2010), Modeling global atmospheric CO2 with improved
emission inventories and CO2 production from the oxidation of other
carbon species, Geosci. Model Dev., 3, 689–716.

O’Dell, C. W., et al. (2012), The ACOS CO2 retrieval algorithm - Part 1:
Description and validation against synthetic observations, Atmos. Meas.
Tech., 5, 99–121.

Osterman, G., E. Martinez, A. Elderling, and C. Avis (2011), ACOS Level 2
Standard Product Data User’s Guide, v2.9, retrieved from http://oco.jpl.
nasa.gov/ocodatacenter/

Phillips, O. L., et al. (2009), Drought sensitivity of the Amazon rainforest,
Science, 323, 1344–1347.

Stephens, B. B., et al. (2007), Weak northern and strong tropical land
carbon uptake from vertical profiles of atmospheric CO2, Science, 316,
1732. doi:10.1126/science.1137004.

Vourlitis, G. L., N. P. Filho, M. M. S. Hayashi, J. de S. Nogueira, F. Raiter,
W. Hoegel, and J. H. Campelo Jr. (2004), Effects of meteorological
variations on the CO2 exchange of a Brazilian transitional tropical forest,
Ecol. Appl., 14(4) Supplement, S89–S100.

Watanabe, H., A. Yuki, K. Hayashi, F. Kawazoe, N. Kikuchi, F. Takahashi,
T. Matsunaga, and T. Yokota (2010), GOSAT higher level product status
1.5 year after the launch, Proc. SPIE, 7826, 782606, doi:10.1117/
12.898391.

Wunch, D., et al. (2011), A method for evaluating bias in global
measurements of CO2 total columns from space, Atmos. Chem.
Phys., 11, 12317–12337, doi:10.5194/acp-11-12317-2011.

Yoshida, Y., et al. (2011), Retrieval algorithm for CO2 and CH4 column
abundances from short-wavelength infrared spectral observations by the
Greenhouse gases observing satellite, Atmos. Meas. Tech., 4, 717–734,
doi:10.5194/amt-4-717-2011.

PARAZOO ET AL.: CARBON CYCLE OF SOUTHERN AMAZONIA

2833

http://dx.doi.org/10.1016/j.agrformet.2012.11.015
http://oco.jpl.nasa.gov/ocodatacenter/
http://oco.jpl.nasa.gov/ocodatacenter/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


