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Forced magnetic reconnection
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[1] Using a multi-code approach, we investigate current
sheet thinning and the onset and progress of fast magnetic
reconnection, initiated by temporally limited, spatially
varying, inflow of magnetic flux. The present study
extends an earlier collaborative effort into the transition
regime from thick to thin current sheets. Again we find that
full particle, hybrid, and Hall-MHD simulations lead to the
same fast reconnection rates, apparently independent of the
dissipation mechanism. The reconnection rate in MHD
simulations is considerably larger than in the earlier study,
although still somewhat smaller than in the particle
simulations. All simulations lead to surprisingly similar
final states, despite differences in energy transfer and
dissipation. These states are contrasted with equilibrium
models derived for the same boundary perturbations. The
similarity of the final states indicates that entropy
conservation is satisfied similarly in fluid and kinetic
approaches and that Joule dissipation plays only a minor
role in the energy transfer. Citation: Birn, J., et al. (2005),
Forced magnetic reconnection, Geophys. Res. Lett., 32, L06105,
doi:10.1029/2004GL022058.

1. Introduction

[2] Magnetic reconnection is one of the most intriguing
plasma processes, enabling the rapid conversion of excess
magnetic energy into plasma heating, particle acceleration,
and fast plasma flows, associated, for instance, with mag-
netospheric substorms and solar flares. A major challenge in
investigating reconnection stems from the large discrepancy
between the size of the energy release region (say,
100,000 km in the solar atmosphere as well as in the Earth’s
magnetosphere) and the small ion and even electron inertia
or gyro scales involved in breaking the frozen-in field
condition in highly conducting, collisionless, space and
astrophysical plasmas (say, a few hundred km or less in
the magnetosphere and 0.1 m in the solar atmosphere).
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[3] Recently, a collaborative effort, termed the “Geo-
space Environment Modeling (GEM) Reconnection Chal-
lenge” [Birn et al., 2001], investigated magnetic
reconnection by a variety of simulation approaches,
including resistive MHD, Hall-MHD, hybrid simulations
(treating electrons as a fluid but ions as particles),
and fully electromagnetic particle-in-cell (PIC) codes.
All simulations addressed the same initial state, a
plane current sheet separating antiparallel magnetic fields
[Harris, 1962]. Reconnection was initiated by a finite
initial magnetic field perturbation, creating magnetic
islands and x-type neutral points. The surprising result
of these simulations was that all approaches that included
the Hall electric fields led to the same fast reconnection
rates, independent of the dissipation mechanism. In
contrast, resistive MHD simulations using typical (albeit
ad hoc) resistivity values with Lundquist numbers S > 1
resulted in much slower reconnection rates, which de-
pend on the resistivity. The MHD models achieved fast
reconnection only when localized resistivity models with
maximum values corresponding to Lundquist numbers of
order unity were used. Since the Hall-term was the
common factor in all simulations that achieved fast
reconnection, the underlying mechanism was attributed
to the dispersion properties of whistler waves, enabled by
the Hall term.

[4] The GEM studies started from an initial current sheet
with a half-thickness of 1/2 proton inertia length, and
the initial perturbed state contained magnetic islands and
x-points, without considering how this configuration was
achieved. It seems quite obvious that the onset of fast
magnetic reconnection requires a transition from a wider
current sheet, which is either stable or undergoes consider-
ably slower reconnection, to a thin one, driven by external
or internal processes. The present study investigates this
transition regime, where differences between fluid and
kinetic approaches might become important. For compari-
son with the earlier results, we use again the one-dimen-
sional initial Harris sheet. Current sheet thinning is forced
by imposing a finite deformation of the field above and
below the current sheet, resulting from plasma inflow over a
limited time. This approach is motivated by simulations and
equilibrium studies that demonstrate that thin current sheets
can form in the magnetotail as a consequence of magneto-
pause boundary deformations as caused by solar wind
interaction [e.g., Schindler and Birn, 1993; Hesse et al.,
1996].

[s] The study grew out of a collaboration during a work-
shop on Magnetic Reconnection Theory, held in August
2004 at the Isaac Newton Institute, Cambridge, England,
and was therefore dubbed the “Newton Challenge.” The
basic problem is also known as “Taylor’s problem” and
has been well studied by small-perturbation equilibrium
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Figure 1. Time variation of the maximum boundary
inflow speed v and the resulting inward displacement

0 = [ W)t

theory as well as resistive MHD approaches [e.g., Hahm
and Kulsrud, 1985; Fitzpatrick, 2003]. However, the pres-
ent problem, defined in section 2, differs from these studies
in several aspects. The most important one is the larger
system size relative to the initial current sheet thickness.
This has important consequences for the structure and
accessibility of new equilibrium states (section 3) as well
as for the stability and energy release driving reconnection
(section 4).

2. Definition of the “Newton Challenge”

[6] The initial state is a Harris sheet [Harris, 1962], as in
the GEM reconnection challenge, with magnetic field and
plasma density given in magnetospheric coordinates by

B, = By tanh(z/L) (1)

n = ny/ cosh® (z/L) + ny, (2)

In contrast, however, the current sheet half-width L
is larger by a factor of 4, that is L = 2 X\, where \; =
clwy,; = (miponee®)? is the ion inertia length. We include
again a background density n, = ny/5 and assume a
temperature ratio 7;/7, = 5. The system size is slightly
larger than in the GEM study, given by —16 < x/\; <
16, —8 < z/\; < 8.

[7] In the following we will use dimensionless quantities,
based on the magnetic field strength B, the ion inertia
length X\;, the density n,, and the ion cyclotron period
1/w.; = m/eBy. The time dependent boundary conditions
are characterized by a prescribed plasma inflow through
the boundaries |z| = zp. = 8, given by

v. = F(t) cos? (mx/16) for z=48 (3)

¥(t) = d¢/dt = 2awtanh(wt)/ cosh® (wr) (4)

((t) = atanh® (wr) (5)

The inflow velocity amplitude v and the corresponding
displacement ( are shown in Figure 1 as functions of time,
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for the parameters ¢ = 2 and w = 0.05. The parameter a
regulates the boundary deformation (or rather the deforma-
tion of a field line that initially forms the boundary at z =
Zmax)- The chosen value corresponds to an inward motion by
a maximum of about 2 units, causing a magnetic field
enhancement of about 25%. This is quite reasonable for the
increase of the lobe field in the Earth’s magnetotail during
the substorm growth phase. (The actual displacement might
be somewhat larger, mainly due to the onset of reconnec-
tion, which causes further inward flux transport.) In the PIC
simulations the inflow condition was implemented by a
prescribed boundary electric field E), rather than a flow
speed.

[8] The parameter w governs the time scale of the applied
inflow. The chosen value leads to a maximum inflow speed
of 0.08 (in units of the typical Alfvén speed) at # ~ 13, and
the inflow subsides after  ~ 60. This characteristic time
scale is sufficiently large compared to the characteristic
Alfvén time, so that wave fluctuations remain relatively
small, but, as it turns out, shorter than the typical system
response time. It also keeps the length of particle simula-
tions within reasonable time limits. Periodic boundary
conditions were employed at x = 0 and x = x,,,. MHD
runs using line-tying solid wall boundary conditions in-
stead, and a PIC run with open outflow boundaries showed
little effect on the dynamic evolution.

3. Neighboring Equilibria and Final State

[o] Before considering the dynamic evolution it is in-
structive to follow the procedure of Hahm and Kulsrud
[1985] for Taylor’s problem in looking for equilibrium
solutions for a perturbed boundary satisfying the Grad-
Shafranov equation

—V?4 = dp(4)/dA (6)

Here A is the flux function (y component of the vector
potential), defining the magnetic field B =V x [A(x, z)e,],
and e, is the unit vector in the y direction. It is easy to verify
that Hahm and Kulsrud’s solution corresponds to the case
where p(4) remains unchanged from the unperturbed case.
We note here that the dynamic approaches described in
section 4 do not satisfy this condition; a more appropriate
equilibrium approach should impose conservation of
entropy rather than of the pressure distribution. However,
this approach has not been developed far enough yet. We
therefore studied the equilibrium problem under the
conservation of the function p(4), which nevertheless
provides insights into the differences from the Hahm and
Kulsrud studies.

[10] Figure 2 shows equilibrium configurations obtained
for the same pressure function p(4) as the initial Harris
sheet but using a perturbed flux distribution at the bound-
aries z = +8, which would result for t — oo from the
inflow given by (3). Configurations (a) and (b) are
equivalent to the two solutions obtained by Hahm and
Kulsrud [1985] for small perturbations. Configuration
(a) has the same topology as the original Harris sheet
but contains a surface current at z = 0. Configuration (b) is
characterized by a continuous current distribution but
changed topology. This configuration differs from the
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Figure 2. Equilibrium configurations for the same pres-
sure function p(A4) as the initial Harris sheet but perturbed
flux at |z| = zyax, Which is the same for all cases. (a) This
configuration has the same topology as the initial Harris
sheet but contains a surface current at z = 0. (b) This
configuration is characterized by continuous current
distribution but changed topology. (c) This is the lowest
energy configuration under the given constraints.

corresponding one obtained by Hahm and Kulsrud as it
contains a magnetic island in the region of strongest
compression rather than an x-point.

[11] This is due to the fact that our system width in z is
large compared to the current sheet width, whereas Hahm
and Kulsrud considered a system with an initially uniform
current distribution. If we also take into account that our
characteristic scale in the x direction is much larger than the
initial current sheet width, a configuration as shown in
Figure 2b should satisfy approximate pressure balance in
the z direction [Birn et al., 1975]. This means that enhanced
magnetic pressure outside the current sheet, resulting from
flux addition, is balanced by enhanced plasma pressure
inside the current sheet. Since the flux addition is largest
at x = 0, the pressure should assume a local maximum at x =
0, z=0. For a monotonic pressure function p(4), such as the
exponential p = po exp(—24) defining the Harris sheet, this
implies that the flux variable 4 also should have a local
maximum or minimum, that is, an o-type neutral point.
Obviously, this configuration, which is a valid solution
under the given boundary conditions, is nevertheless not
accessible, as it requires the generation of new flux within
the magnetic island.

[12] In contrast to Figure 2b, the configuration in
Figure 2c, obtained by a numerical continuation method
[Neukirch and Hesse, 1993], has the same x-type topology
as the second solution derived by Hahm and Kulsrud.
However, it is no longer a neighboring solution but deviates
considerably from the initial state. It is fairly close to the
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current-free configuration for the same boundary distribu-
tion of 4 and represents the lowest energy configuration
under the given constraints.

4. Dynamic Evolution

[13] The reconnection problem outlined in section 2
was studied dynamically by a variety of codes: MHD
codes, using a resistivity model based on flow convergence
[Galsgaard, 2000], or spatially localized but fixed
resistivity (with maximum values m; = 0.02, and n; =
0.005) [Birn et al., 1996], a Hall MHD code without
explicit dissipation term [Huba, 2003], three different fully
electromagnetic particle-in-cell codes [Pritchett, 2001;
Hesse et al., 2001; Hoshino et al., 2001], an implicit particle
code [Lapenta and Brackbill, 2000], and a hybrid code with
dissipation associated with electron anisotropy [Hesse et al.,
1996; Yin et al, 2001]. All particle simulations results
shown here are obtained using an ion/electron mass ratio
of m;/m, = 25.

[14] Figure 3 summarizes results from these simulations,
showing the reconnected flux, defined as the integral over
B. between x- and o-point, as function of time. Obviously,
all particle studies, as well as the Hall-MHD study show
very similar reconnection rates, although the onset times
differ, not only between different codes, but also for similar
codes. All studies also show nearly the same final amount of
reconnected flux. Three of the studies (Hesse, Pritchett, and
Yin) show an interesting two-stage behavior with a weak
increase following the initial strong increase. This needs
further exploration.

[15] In contrast to the particle studies, the MHD simu-
lations show reduced reconnection rates, which depend on
the resistivity. The final amount of reconnected flux, how-
ever, is the same as in the particle and Hall simulations.
Also the final configurations are surprisingly similar to the
particle results. Figure 4 shows the magnetic field (contour
lines) and current distributions (color coded) for late stages
of three simulations indicated in the figure caption. (Others,
not shown here, are similar.) They all show a current
concentration in a ring around the o-point inside the
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Figure 3. Time variation of the reconnected flux for
various simulations of forced reconnection, as indicated.
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x

Figure 4. Late stages of the magnetic field (contour lines)
and current distribution (color coded) for various simula-
tions: (a) MHD simulations using spatially localized
resistivity (J. Birn), (b) Hall-MHD simulation without
explicit dissipation term (J. Huba), (c¢) PIC simulation
(M. Hesse).

magnetic islands, although local details differ. The overall
magnetic structure is similar to the lowest-energy equilibrium
in Figure 2c.

5. Summary and Conclusions

[16] We have extended a multi-code approach akin to the
GEM reconnection challenge [Birn et al., 2001] to explore
the initiation of fast reconnection by thinning of a relatively
thick current sheet, four times as thick as in the GEM study.
The thinning is forced by the application of spatially
varying and temporally limited inflow from outside the
current sheet, which causes local magnetic field enhance-
ment of ~20—-40%. The basic problem is known as Taylor’s
problem and has been studied extensively by equilibrium
and resistive MHD approaches [e.g., Hahm and Kulsrud,
1985; Fitzpatrick, 2003].

[17] However, the present problem differs from those
studies particularly by the larger system size, which
permits the growth of unstable tearing modes and the
release of free energy. Furthermore, our equilibrium
studies indicate, that for small perturbations, neighboring
equilibria with magnetic x-points at the location of
strongest compression do not exist; the corresponding x-
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type, lowest-energy configuration deviates strongly from
the initial state.

[18] Hence the configurations undergo drastic changes
with fast reconnection rates, which are similar for all studies
that include the Hall term, ~20—50% smaller than those in
the GEM studies. Similar to that study, resistive MHD
simulations show reduced reconnection rates that depend
on the magnitude of the resistivity. However, significant
reconnection rates were obtained also for MHD models with
moderate, localized resistivity, smaller than those needed in
the GEM studies.

[19] For similar compression, the final configurations are
surprisingly similar for various methods, including MHD as
well as PIC simulations. This indicates that entropy conser-
vation operates similarly despite the fact that kinetic
approaches include anisotropy, a different dissipation mech-
anism, and different waves not included in MHD and that
Joule dissipation E’ - j (where E’ is the electric field in the
plasma rest frame) is strongly localized and hence less
significant than the adiabatic transport for the pressure
distribution in the final state.
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