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Global mass flux solutions from GRACE: A comparison of parameter
estimation strategies—Mass concentrations versus Stokes coefficients
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[1]1 The differences between mass concentration (mascon) parameters and standard Stokes
coefficient parameters in the recovery of gravity information from gravity recovery and
climate experiment (GRACE) intersatellite K-band range rate data are investigated. First,
mascons are decomposed into their Stokes coefficient representations to gauge the range of
solutions available using each of the two types of parameters. Next, a direct comparison is
made between two time series of unconstrained gravity solutions, one based on a set of
global equal area mascon parameters (equivalent to 4° x 4° at the equator), and the other
based on standard Stokes coefficients with each time series using the same fundamental
processing of the GRACE tracking data. It is shown that in unconstrained solutions, the
type of gravity parameter being estimated does not qualitatively affect the estimated
gravity field. It is also shown that many of the differences in mass flux derivations from
GRACE gravity solutions arise from the type of smoothing being used and that the type of

smoothing that can be embedded in mascon solutions has distinct advantages over
postsolution smoothing. Finally, a 1 year time series based on global 2° equal area

mascons estimated every 10 days is presented.
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1. Introduction

[2] Over the years mass concentration (mascon) parame-
ters have been used by researchers to model variations in
planetary gravity fields. Muller and Sjogren [1968] were
probably the first to identify planetary surface mascons from
tracking data, and then Wong et al. [1971] estimated mascon
parameters directly from satellite tracking data. They found
that mascons were ideal parameters for lunar gravity recov-
ery in conditions of uneven geographical tracking coverage.
Rapp [1974] formally addressed the use of satellite obser-
vations to estimate regional gravity models in the form of
gravity anomalies, with Rummel et al. [1978] extending this
concept to satellite-to-satellite tracking configurations.
More recently, Rowlands et al. [2005] and Luthcke et al.
[2006a, 2008] applied a mascon technique optimized for the
unique characteristics of the gravity recovery and climate
experiment (GRACE) mission [Tapley et al., 2004] to
estimate time variable gravity solely from GRACE inter-
satellite tracking data. They found that mascons significantly
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improved the spatial and temporal resolution achievable
from the GRACE intersatellite K-band range rate (KBRR)
observations when using correlation constraint equations in
least squares solutions. These recent mascon studies were
used to recover regional mass flux and are computationally
convenient because they can be estimated from a small
subset of the global GRACE KBRR data.

[3] To study mass balance from GRACE in a region such
as Greenland, many researchers have used the standard
GRACE mission Level 2 monthly Stokes coefficients as
the fundamental data type. Some of the first Level 2 Stokes
coefficient based derivations of mass flux over Greenland,
for example by Velicogna and Wahr [2006], used Gaussian
smoothing and averaging kernels estimating only trends in
mass flux over only the northern and southern subregions of
Greenland. More recently, Wouters et al. [2008] used
Gaussian smoothing and a forward model ““fingerprinting”
technique to gain increased spatial and temporal resolution
from the GRACE Level 2 Stokes coefficients. Using this
approach, they were able to derive mass flux estimates
(including trend and average annual signal) in individual
drainage basins similar to the drainage basins used in the
mascon-based approach of Luthcke et al. [2006a] (an
approach in which mass flux is estimated directly from
GRACE Level 1B tracking data). Although the two
approaches (Stokes coefficients with fingerprinting and
mascons) have yielded similar results for mass trends in
the drainage basins (and Greenland overall), the mascon
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approach has revealed more information about interannual
variability in the subregions than any Stokes coefficient
based approach. Luthcke et al. [2006a] produced time series
of mass flux in each drainage basin with a temporal
resolution of 10 days revealing each year’s distinct melt
and accumulation seasons. Furthermore, the mascon-based
approach of Luthcke et al. [2008] was able to produce a time
series of mass flux over individual Alaska glaciers at 2°
spatial and 10 day temporal resolution. To date no spherical
harmonic based approach for mass flux derivation from
GRACE has been demonstrated to produce that type of
resolution. One of the goals of this paper is to investigate
the nature of the differences in recovered mass flux from
Stokes coefficients and from mascons.

[4] One of the problems with comparing Stokes coeffi-
cients and mascons that have been estimated from GRACE
data is that most GRACE mascon solutions have been
regional, estimating only a few parameters from a small
subset of the GRACE data (limited to the coverage of the
region of interest). In this paper, we estimate two global sets
of mascons (one with 4° spatial resolution and the other at
2° spatial resolution). As will be shown in subsequent
sections, these mascon solutions easily translate into Stokes
coefficients that can be compared to Stokes coefficients that
have been estimated as individual parameters. This paper
will have the following format. First, we will describe the
mascon formulation and its relationship to the underlying
spherical harmonic basis functions. Second, we compare
Stokes coefficients from a standard solution to Stokes
coefficients that have been reconstituted from a 4° global
mascon solution (with each solution using the same data
and fundamental data processing prior to estimation). Fi-
nally, we provide results for a 2° equal area global mascon
solution using its corresponding spherical harmonic repre-
sentation. This 2° global mascon solution uses specialized
sets of regional smoothing constraint equations in the least
squares solution along with the standard observation equa-
tions. This reconstituted spherical harmonic solution does
not require postsolution mitigation techniques, such as
Gaussian smoothing and averaging kernels, in order to be
used in mass flux computations.

2. Mascon Formulations

[s] Mascon parameters are used to obtain a geographi-
cally specific correction to a global mean gravity field. Each
mascon parameter represents a surplus or deficit of surface
mass (as compared to the a priori mean field and forward
models) in a predetermined region over a specified time
interval. Each mascon region is usually (but not necessarily)
a regularly shaped area like a rectangular cell. The surplus
or deficit of mass in the region is represented as a uniform
mass layer (expressed in centimeters of equivalent water)
over that region. In other words, mascons represent surface
mass distribution as spatial and temporal step functions.

[6] In order to recover a gravity parameter from satellite
tracking data, it is necessary to relate the orbital motion of
each satellite participating in an observation to gravity
parameters. The procedure for relating standard Stokes
coefficients to orbital motion is universal and is the back-
bone of almost all satellite tracking data analysis. We start
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with the potential at satellite altitude computed from the
Stokes coefficients:

max

> XI: ( )HIP,,,, (sin®)

U(r,9,\) = ~ M
R == (1)

(Cimcos mA + Syysin mA),

where 7, 9, and A are the spherical geocentric radius,
latitude, and longitude coordinates of the point where the
geopotential is evaluated; GM is the product of the universal
gravitational constant, G and the Earth’s mass, M; R is the
Earth’s mean semi-major axis; / and m are the spherical
harmonic degree and order; P,m are the fully normalized
associated Legendre functions; and C,,, S, are the fully
normalized Stokes coefficients.

[7] Mascon parameters are less commonly used, and the
method for relating them to orbital motions varies among
researchers. What is common among users of mascons is
the need to upward continue the gravitational potential
associated with the differential mass distribution at the
Earth’s surface to satellite altitude. This differential mass
distribution is composed of a direct effect arising from the
addition of a layer of surface mass and an indirect effect
arising from the redistribution of the original underlying
surface mass (caused by the loading of the additional
surface mass). The formulation for mascon parameters is
derived from the fact that a change in the gravitational
potential caused by adding a small uniform layer of mass
over a region, j, at an epoch ¢ can be represented as a set of
(differential) potential coefficients which can be added to
the mean field. The delta coefficients can be computed
(Chao et al., 1987):

2
ACjm(t) = W /P;m(sm ) cos m\ dQ
(@)
2
ASjin(t) = W /sz(sm ) sin m\ dQ

where the evaluation of the integrals is restricted to region j;
K, is the loading Love number of degree /, to account for the
Earth’s elastic yielding which in general counteracts the
additional surface density; o/(¢) is the mass of the layer over
a unit of surface area at the epoch, ¢, for region, j; ) is the
solid angle surface area of the region where o(f) is applied,
d) = cos 9 d Y\

[8] In principle, there can be various ways to upward
continue this gravitational potential, but equation (2) con-
veniently relates the additional surface mass (including
loading) to standard Stokes coefficients, making upward
continuation convenient and straightforward for tracking
data analysis.

[9] The units of o,(¢) are kg/m and this quantity can be
rewritten as 10 x H(f) where H,(f) represents the height of a
uniform layer of water over region J, expressed in centi-
meters. The factor of 10 arlses from the fact that a layer of
water 1 cm deep over 1 m* has a mass of 10 kg. H(?) is our
mascon parameter for the jth mascon region. The epoch, ¢,
associated with the mascon parameter is a representative
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Figure 1.

Simulated GRACE KBRR observations for a direct overflight of a 4° x 4° block having a

surplus water height of 20 cm. Shown are the observations for a field truncated to degree 60 and the
difference in the observations if the field is extended to degree 120.

time tag (usually the center point) over an interval (usually
10 days) where we treat the layer as invariant. Equation (2)
can be rewritten in terms of our mascon parameter, H(?):

ACjm (1) = Hy(t)* {%

ASin(t) = Hi(1)* [%

] J Pr(sin @) cos mA 69
] [ P (sind) sin mA 6Q.
3)

H(?) is the mascon parameter of the jth region at time, ¢, and
it is a scalar. It is also possible to create a global height
function associated with the jth mascon region at time, ¢,
from the delta Stokes coefficients computed in equation (3).
Equation (4) has been modified slightly from Wahr et al.
[1998] to express mass per unit area in terms of a layer of
water in centimeters:

Hy(9Ar) = {401‘7?132} " i Gli kl/) i

1=0 m=0
« Py (sin®)*[ACj cos mA + ASjy sin mA]. (4)
If equation (4) is evaluated to a sufficient degree and order,
then, Hy(0, A, f) becomes a step function with:

H;(9, A, t) = H;(¢) if (9.)) is in region j
sand
H;(9, A, t) = 0 if (9.)) is not in region j.

From equation (3), it is clear that there is a strictly linear
relationship between the height of a uniform layer of water
over a region (in other words, a mascon parameter) and the
resulting change it induces in each and every Stokes
coefficient. Also from equation (4), it should be clear that
each mascon parameter can be represented as a scale factor
applied to a set of precomputed (as given by equation (3)

with H(f) set to unity) “delta” Stokes coefficients. Of
course, there are various ways to relate orbital motions to
mascons, but equation (4) shows that any mascon
parameter, regardless of the method used for upward
continuation, is equivalent to a scale factor on a set of
precomputed Stokes coefficients. Also, each partial deriva-
tive of the KBRR tracking observation with respect to a
mascon parameter is a linear combination of the partials of
the tracking measurements with respect to standard Stokes
coefficients. The multipliers in the linear combination are
the Stokes coefficients in the base set of differential
coefficients [Rowlands et al., 2005].

[10] From equations (3) and (4), it should also be clear
that there can be only two differences between any pair of
representations of gravity through mascons: the regions
chosen (size, shape, and location) for the mascons and the
degree to which mass is represented as a step function (for
the Stokes coefficient representation of mascons, this cor-
responds to the maximum degree used in the set of “delta”
coefficients). Although the maximum degree used for sets
of precomputed Stokes coefficients is a factor in differen-
tiating between mascon representations, for the purpose of
most GRACE modeling, there is not much difference above
degree 60. For example, the Stokes coefficients above
degree 60 in a 4° x 4° mascon block do not contribute
significantly to modeled GRACE intersatellite range rate
measurements nor to the estimation of mascon parameters
from GRACE intersatellite range-rate measurements (see
Figure 1). All mascons described in this study are based on
Stokes coefficients computed to degree 60.

[11] A mascon-based technique for gravity recovery from
tracking data depends not only on the representation used
for surface mascons, but also on the least squares estimation
scheme used to estimate the parameters and in some cases,
on postsolution smoothing. Mascon parameters are partic-
ularly easy to use with various types of constraint equations.
Therefore, despite commonality among mascon representa-
tions, there is a wide variety of mascon-based techniques for
gravity estimation differing mainly in the use of smoothing
techniques. Gaussian smoothing applied after the gravity
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solution is probably the most common type of smoothing in
use, but in this study we also explore smoothing through the
use of constraint equations embedded in the gravity solu-
tion. In this study, we will compare solutions for global
mascons which have been estimated with and without the
use of embedded constraint equations, to solutions for
standard Stokes coefficients through degree 60. All the
solutions in the study use the same fundamental processing
of GRACE intersatellite KBRR data as described in Luthcke
et al. [2006b].

[12] The fundamental processing occurs in two steps with
the calibration of the GRACE accelerometers taking place
in preliminary solutions. In these preliminary solutions,
GRACE KBRR data and GRACE precise ephemeris data
(the GNV1B data product) are reduced simultaneously in
daily arcs to estimate the full initial state (12 parameters) of
the two GRACE satellites along with 28 accelerometer
biases for each of the two GRACE satellites. For each
satellite, a X (along track) bias, a Z (radial) bias, and a
1-cycle per revolution X bias are estimated every 3 h while
a Y (cross track) bias and a scale bias for each axis are
estimated every 24 h. The second run reduces only GRACE
KBRR data and estimates only 3 of the 12 GRACE initial
state vector elements expressed as baseline parameters as in
Rowlands et al. [2002] while holding the accelerometer
biases fixed to the values determined in the first run. When
the solution for the initial state is converged, a file is written
that contains observation residuals and partial derivatives of
the computed KBRR observations with respect to parame-
ters of the initial state and of Stokes coefficients through
degree 60. This file is used in later steps to generate normal
equations for Stokes coefficients and also for mascons. This
ensures that the fundamental processing is the same for both
types of gravity parameters. In all of the fundamental
processing, mean gravity is modeled with the GGMO02C
gravity field [Tapley et al., 2005]. Gravity variations from
the atmosphere are modeled to degree and order 90 at 3 hour
intervals derived from European Centre for Medium-Range
Weather Forecasts (ECMWF) operational pressure grids.
Ocean tides are modeled with the GOT4.7 tide model [Ray,
1999; Ray and Ponte, 2003]. The nonbarotrophic response
of the ocean to atmospheric pressure loading (derived from
6 hourly ECMWF atmospheric pressure and winds), is
modeled to degree and order 90 using MOG2D [Carrere
and Lyard, 2003]. Finally, it should be mentioned that all of
the gravity solutions presented in this paper co-estimate the
same set of nongravitational parameters. These are three
GRACE initial state baseline parameters for each day.

3. Mascons Versus Stokes Coefficients

[13] Given the fact that mascons are essentially scale
factors on sets of precomputed Stokes “delta” coefficients,
it is natural to wonder if there is any difference between the
estimation of mascon parameters and the estimation of
individual Stokes coefficients in the recovery of gravity
from satellite tracking data. One obvious difference is that
mascon parameters can be used to estimate regional solu-
tions, while individual Stokes coefficients are global in
nature. However, when mascons are estimated over the
entire Earth (as global mascons), a set of global Stokes
coefficients is also being estimated, not as individual
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parameters, but as linear combinations of sets of precom-
puted “delta” Stokes coefficients. This is evidence that
unconstrained global mascon solutions are not so different
from unconstrained solutions for a global representation of
the gravity field using Stokes coefficients. It also makes the
comparison of global mascon solutions to solutions based
on standard Stokes coefficients very convenient.

[14] The first set of mascon solutions in this study use a
global grid of equal area cells on which each cell has an area
nearly equal to a 4° rectangle at the equator. The grid is
composed of rectangles in 4° latitude bands everywhere
except for a 2° spherical cap at each pole. Each solution
based on this grid estimates 2586 mascons, each of which
uses Stokes coefficients computed through degree 60. Each
of these 2586 mascon parameters is a scale factor on a
function describing the thickness of surface mass (having
the density of water) over the sphere. These 2586 surface
mass functions form a linearly independent set of functions.
Each of these functions is in turn a linear combination of the
3720 spherical harmonic functions through degree 60. Of
course, each individual spherical harmonic function also
describes surface mass, and the collection of these through
degree 60 also forms a linearly independent set of functions.
It is clear that the functional space spanned by the 3720
spherical harmonic functions maps onto (a subset of it
describes perfectly) the functional space spanned by the
2586 surface mass functions associated with the global
mascon parameters. It is also clear that the space spanned
by the 2586 mascon functions maps into (but not entirely
onto) the functional space spanned by the 3720 spherical
harmonic functions. In other words, the set of solutions
available through mascon parameters based on the grid
described above is a proper subset of the solutions available
through the estimation of individual Stokes coefficients
through degree 60.

[15] The above comparison could be altered so that the
mascon parameters occupy the same grid points but are
represented using Stokes coefficients only through degree
50. One would expect that any unconstrained solution based
on these parameters would closely resemble a solution for
individually estimated Stokes coefficients through degree
50. In this case the number of linearly independent func-
tions on which each solution is based is nearly the same
(2586 versus 2600). As above, it is not only that the
dimensions of the functional vector spaces are close, but
also every function described by a mascon solution is
exactly equivalent to a linear combination of spherical
harmonics. Even though this “50-50” comparison has
the best chance for equivalence, our study compares mas-
cons computed with coefficients through degree 60 to
monthly solutions for standard Stokes coefficients estimated
through degree 60. These are the most common types of
gravity solutions found in the GRACE literature.

4. A Direct Comparison of Gravity Solutions:
4° Equal Area Global Mascons Versus Stokes
Coefficients

[16] In this section, we compare time series of monthly
global gravity solutions estimated from GRACE intersatel-
lite tracking data. Each time series is composed of 13 months
from July 2003 through July 2004, and all of the individual
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Figure 2. Power spectra of changes with respect to the GGMO02C gravity field and forward models of
the unconstrained standard spherical harmonic solution and the unconstrained 4° mascon solution (both
from the same GRACE KBRR data) compared to the GLDAS surface hydrology model. The blue curve
represents the coefficients of the standard solution, the red curve represents the delta Stokes coefficients
of the global mascons, and the green represents the coefficients of the GLDAS surface hydrology model.
Given that atmospheric pressure and tidal mass flux signals are forward modeled in these solutions, the
expected spectra of the gravity fields should be similar to the spectrum of global hydrology.

monthly solutions use the same GRACE observation pro-
cessing scheme which is described in Luthcke et al. [2006b].
The key point about the comparisons described in this
section is that the normal equations for any monthly
solution in one series were formed using exactly the same
observation residuals as the normal equations for the same
month in any other series. Our first comparison will be
between two time series of unconstrained and unsmoothed
solutions, one estimating mascons and the other directly
estimating individual Stokes coefficients, each series using
the same GRACE KBRR data. Because the fundamental
processing is the same in each series, any differences,
especially in the lower degrees and orders of the estimated
gravity fields can be attributed directly to the type of
parameters being estimated and to a lesser extent the exact
number of parameters being estimated in each solution
(2856 mascons versus 3720 Stokes coefficients). After this
first comparison, we will compare the time series when
various smoothing techniques, including constraint equa-
tions, have been applied.

[17] We will look at several aspects of each time series of
monthly global gravity solutions: (1) Stokes coefficient
values (whether directly estimated or reconstructed from
mascon parameters) at degree 2 and at degree and order 15,
(2) the degree variances of the Stokes coefficients, and
(3) the geographical distribution of the standard deviation of
the derived mass signal. Coefficients are compared at degree
2 as a measure of the agreement among time series at long
wavelength. The resonance terms at degree and order 15 for
the GRACE satellites are well known as a source of aliasing
problems in GRACE gravity time series [cf. Swenson and

Wahr, 2006; Luthcke et al., 2006b], so a comparison of
these coefficients is especially relevant. Because hydrology
is a major component of global mass flux sensed by
GRACE [Chen et al., 2006], the degree variances of each
gravity time series will be compared to the degree variances
of the time series of Stokes coefficients of the GLDAS
hydrology model [Rodell et al., 2004]. One would expect
that the signal from global time variable gravity has more
power at every degree than the signal from hydrology alone,
but the power spectrum from a time series of gravity
solutions should not deviate greatly from that of hydrology
(tides and atmospheric pressure variations were forward
modeled). As will be seen below, constraint equations and
smoothing techniques can be used to “tune” the power
spectrum of a gravity time series as well as to smooth the
geographical distribution of the standard deviation of the
derived mass signal. However, it is not necessarily true that
the optimization of one criterion will benefit the other. For
each time series, we will examine the compatibility of the
power spectrum with the spatial distribution of the standard
deviation of the mass signal.

[18] Figure 2 gives strong evidence that the two uncon-
strained global solutions (mascons and Stokes coefficients)
are very similar. The power spectra of the two solutions are
almost identical through degree 30 and very similar through
degree 40. Figures 3a through 3e show that individual
coefficients at degree 2 and at degree and order 15 are
nearly identical. In other words, the solutions are the same
at long wavelength and have the same problem at this
resonance degree and order. To demonstrate the severity
of the problem at this resonance degree and order, the time

50f 19



B01403

ROWLANDS ET AL.: GLOBAL MASS FLUX SOLUTIONS FROM GRACE

(A) 13 Month Time Series of C(2,0) from Standard Spherical Harmonic
Solution and Spherical Harmonics Ge nerated from Global MASCON
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Figure 3. Spherical harmonic coefficients estimated individually in a standard unconstrained solution
and the spherical harmonics given by an unconstrained global 4° mascon solution. The longest
wavelength terms, (a) C(2, 0), (b) C(2, 1) and (c) S(2, 1). (d) C(15,15) and (e) S(15,15) coefficients,
which are the dominant resonance terms. These are obtained from unconstrained solutions. In Figures 3d
and 3e, the GLDAS coefficients have been plotted in green to demonstrate the nongeophysical behavior
of the resonance terms from month to month.
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@) 13 Honth Time Series of C{13,15 from Standard Sphe rical Hamonic Solution and
Spherical Harmonics Generated from Global MASCON Solutions
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Figure 3.

series of the GLDAS hydrology coefficients are also plotted
in Figures 3d and 3e. Both solutions need some type of
smoothing before the geographical distribution of the stan-
dard deviation of the derived mass signal shows reasonable
patterns. The smallest Gaussian smoothing radius which
produces a reasonable pattern for either solution is roughly
500 km. Figures 4 and 5 show the geographical distribution
of the standard deviation of the derived mass signal for each
solution using Gaussian smoothing at 500 km. There is not
much difference. Although the distribution of mass signal
for these solutions looks reasonable, Figure 6 shows that the
power spectra of both smoothed solutions are reasonable in
comparison to GLDAS hydrology until only about degree
30, after which the signal begins to fall off rapidly.

[19] In order to keep the GRACE solutions’ power
spectra above hydrology at all degrees through 60, it is
necessary to decrease the Gaussian smoothing radius to
about 400 km (even at 400 km the mascon power spectrum
dips below hydrology at the upper degrees). When the
solutions are Gaussian smoothed with a radius of 400 km,
the power spectra shown in Figure 7 more closely resemble

Apr-04 Aug-04

(continued)

the GLDAS power spectrum, although the solution spectra
are fairly high relative to GLDAS at mid-degrees. We could
further seek the optimal smoothing radius to dampen the
power at mid-degrees, but then the power would be signif-
icantly reduced at the higher degrees as seen in our previous
example using a smoothing radius equal to 500 km.
Furthermore, Figures 8 and 9 show that smoothing with a
radius of 400 km does not take care of the dominant
resonance errors. Figures 8 and 9 reveal streaks in the
oceans and in the desert areas like the Arabian Peninsula
and interior Australia. Comparing Figures 3d and 3e with
Figure 10 shows that Gaussian smoothing does not signif-
icantly reduce the nongeophysical nature of the time series
of the degree 15 and order 15 resonance. The smoothed time
series of this resonance is very similar to the unsmoothed
time series. The smoothed time series of this resonance are
dampened a bit, but continue to show too much variation
from month to month. There is an incompatibility between
power and mass distribution that Gaussian smoothing
cannot resolve because it cannot reduce the variance at
the resonance degrees and orders while preserving the
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Figure 4. The standard deviation of surface mass (expressed as standing water height) obtained from
13 monthly solutions directly estimating a 60 x 60 standard gravity field from the GRACE KBRR data.
Atmospheric pressure and tidal mass flux have been forward modeled. These monthly solutions are
unconstrained, but have been Gaussian smoothed with a radius of 500 km.

power at the higher degrees. Previous studies have sought to
mitigate this problem using filtering methods applied to
each spectral coefficient time series after the gravity esti-
mation process and without connection to the GRACE
KBRR data [Swenson and Wahr, 2006]. We will show that
mascon constraint equations provide a method to effectively

solve this problem within the time variable gravity
estimation process while minimizing the GRACE KBRR
residuals.

[20] We now examine the above global mascon solution
with the addition of spatial constraint equations. Some
mascon solutions such as described by Rowlands et al.

] cm of water

T T

14 16 18 20 22 24

Figure 5. The standard deviation of surface mass (expressed in standing water height) obtained from
13 monthly solutions estimating 4° mascons from GRACE KBRR data. The delta coefficients have been
reconstituted through degree and order 60. Atmospheric pressure and tidal mass flux have been forward
modeled. These monthly solutions are unconstrained, but have been Gaussian smoothed with a radius of

500 km.
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Figure 6. Power spectra of changes with respect to the GGMO02C gravity field and forward models of
the unconstrained standard spherical harmonic solution and the unconstrained 4° MASCON solution
(both from the same GRACE KBRR data) compared to the GLDAS surface hydrology model. Both
solutions have been postprocessed through Gaussian smoothing using a cap radius of 500 km. The blue
curve represents the coefficients of the standard solution, the red curve represents the delta Stokes
coefficients of the global mascons, and the green curve represents the coefficients of the GLDAS surface
hydrology model (no smoothing). Given that atmospheric pressure and tidal mass flux signals are forward
modeled in these solutions, the expected spectra of the gravity fields would be similar to the spectrum of
the global hydrology. Gaussian smoothing has reduced the power of the high degree terms to unrealistic
levels above degree 35.
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Figure 7. Same comparison as in Figure 6 except that postprocessing using Gaussian smoothing has
been applied with a 400 km radius for the GRACE solutions. The blue curve represents the coefficients of
the standard solution, the red curve represents the delta Stokes coefficients of the global 4° mascons, and
the green curve represents the coefficients of the GLDAS surface hydrology model (no smoothing).
Given that atmospheric pressure and tidal mass flux signals are forward modeled in these solutions, the
expected spectra of the gravity fields would be similar to the spectrum of the global hydrology. These
smoothed solutions have excess power in the middle degrees with the power rapidly falling off at the
highest degrees.
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Figure 8. The standard deviation of surface mass (expressed in standing water height) obtained from
13 monthly solutions for the standard 60 x 60 unconstrained direct solution for Stokes coefficients.
Atmospheric pressure and tidal mass flux have been forward modeled. The solution has been
postprocessed using Gaussian smoothing with a radius of 400 km.

[2005] and Luthcke et al. [2008] are estimated every
10 days and employ temporal constraint equations in
addition to spatial constraint equations. However, we are
examining monthly solutions, and these do not require
temporal constraint.

[21] Our mascon constraint equations are quite simple
and very easy to implement. In a solution with N mascon
parameters, there are (N* — N)/2 distinct pairs of mascon
parameters and one constraint equation is written for each of
these distinct pairs. For the pairing of mascon parameters

| cm of water
1

22 24

Figure 9. The standard deviation of surface mass (expressed in standing water height) obtained from
13 monthly solutions for the unconstrained 4° global mascon solution. Atmospheric pressure and tidal
mass flux have been forward modeled. The solution has been postprocessed using Gaussian smoothing

with a radius of 400 km.
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Figure 10. The resonance terms [C(15, 15) and S(15, 15)] from the GRACE standard unconstrained
spherical harmonic solution and from the GLDAS hydrology model. The coefficients from the GRACE
solution have been Gaussian smoothed with a radius of 500 km and also with a radius of 400 km.

with numbers 7 and J ({ is not equal to J and both 7 and J are
greater than zero and less than N), the constraint equation
takes the form:

P, —P;=0. (5)
To consider how equation (5) is added to (or summed into)
our least squares normal equations, it is instructive to
consider how each GRACE KBRR observation equation is
summed into the normal equations. To sum a GRACE
KBRR observation equation, four categories of items are
required: an observation value, a theoretical (or computed)
observation value (a residual is formed from the difference
of the actual observation and the theoretical), partial
derivatives of the theoretical observation with respect to
all estimated parameters, and a weight for the equation. The
tracking data analysis software computes theoretical
observations and the associated partial derivatives. Each
GRACE KBRR observation has a theoretical precision of
107 m/s, so we use a weight of 10'? (the reciprocal of the
theoretical precision of the observation squared) for each
KBRR observation equation.

[22] We treat our constraint equations almost exactly as
the KBRR observation equations with the following three
modifications: (1) the observed value is always zero, (2) the
theoretical value is the left hand side of equation (5), and (3)
the weight varies among the constraint equations and is
determined by the relationship in time and space of the
parameter pair for which the constraint equation is being
written. The partial derivatives of each constraint equation

are trivial to compute. The partials of all parameters except
P; and P, are zero, and the partials of parameters P; and P
are one and negative one, respectively.

[23] The constraint equations are intended to produce a
solution in which the difference between estimated values of
pairs of neighboring (neighbors in space) mascon parame-
ters is small. For spatial constraints, this is accomplished by
the weighting of the constraint equations as given by
equation (6).

WT]J =85 X exp(l — di/'/D), (6)
where WTj; is the weight given to the constraint equation
for mascon parameters P; and Pj; dj is the distance in
kilometers between the centers of the regions corresponding
to mascon parameters P; and Py D is the correlation
distance; and S is a scale factor chosen for the constraint
equations.

[24] In practice, we create one set of least squares normal
equations from the GRACE KBRR data and another set of
normal equations from the constraint equations and then
form a single set of normal equations by adding the two sets
together. The scale factor, S, in equation (6) is chosen so
that the diagonals of the normal matrix of the constraint
equations are never more than 10% of the diagonals of the
normal matrix of the KBRR observation equations. Typi-
cally, S is less than 0.001. The correlation distance, D, is
usually chosen to be the length of a block (400 km for the
solution currently being described). It should be noted that
in this section we are describing a mascon time series
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consisting of 13 individual monthly solutions. Therefore in
this discussion, N (the number of mascon parameters) is
2856 with 13 separate solutions being made and not 13 x
2856 (as in one big solution over all 13 months).

[25] Figures 11a, 11b and 11c demonstrate that the spatial
constraints with a correlation distance of 400 km have no
influence on the long-wavelength aspect of the solution.
Figure 12 shows that the constrained global mascon solu-
tion appears much more reasonable at degree and order 15
than the unconstrained versions shown in Figures 3d and 3e
and the smoothed versions shown in Figure 10. The time
series of these resonance terms from the embedded con-
straint are coherent and agree generally with GLDAS
hydrology. Figures 13 and 14 show that in the global
mascon solution with embedded constraints, a reasonable
power spectrum is compatible with a reasonable distribution
of mass signal.

[26] The constrained global mascon solution is a substan-
tial improvement over either unconstrained solution, even
after Gaussian smoothing has been applied. Apparently, the
improvement is not gained because of the type of parameter
being estimated, but by the fact that the smoothing is
accomplished with constraint equations in the parameter
estimation. With a single type of constraint equation applied
between every distinct pair of mascon parameters within a
monthly solution, we obtain reasonable smoothing, a rea-
sonable power spectrum, and a sensible time series of
resonance coefficients. In the next section, we will show
how this global mascon solution can be improved.

5. The 2° Equal Area Global Mascons

[27] Although the constrained global mascon solution
presented in the above section is an improvement over
unconstrained solutions for both mascons and Stokes coef-
ficients, it does not take full advantage of constraint
equations. Monthly gravity solutions are degraded by grav-
ity signal with variations that cannot be captured by
parameters that are static over 30 days. Although the
forward models used in these solutions mitigate this prob-
lem somewhat, it is helpful to estimate time variable gravity
more frequently than once a month. Mascons are easy to use
with time constraint equations that facilitate 10 day solu-
tions (where each parameter is estimated from 10 days of
KBRR data). The mascon solutions presented in the previ-
ous section were 30 day solutions to facilitate a comparison
with standard monthly solutions for Stokes coefficients. The
global mascon solutions presented in this section are esti-
mated every 10 days and employ time constraint equations
with a correlation time of 10 days.

[28] Each mascon parameter is assigned a time tag that is
epoch at the center of the period (in this case, a 10 day
period) with which it associated. The addition of the aspect
of time to the constraint equations can be accomplished with
two modifications to the procedure for implementation of
spatial constraints discussed in the previous section. First,
equation (6) is modified:

WTy :Sxexp(Z—d,-j/D—ti,-/T), (7)

where WTj; is the weight given to the constraint equation
for mascon parameters P; and Pj; dj; is the distance in
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kilometers between the centers of the regions corresponding
to mascon parameters P; and P, D is the correlation
distance; ¢; is the difference in time tags (in days) of the
mascon parameters P; and Pj; T is the correlation time in
days; and S is a scale factor chosen for the constraint
equations.

[290] Similar to the correlation distance D, the correlation
time, 7 is usually chosen to be the length of one block (in
units of time, in this case 10 days). The second modification
caused by the addition of the aspect of time is the grouping
together of all mascon parameters from all time periods into
one large inversion. As a practical matter this makes N, the
number of mascon parameters in a single solution, much
larger than when only spatial constraints are being applied
and the number of constraint equations, (N> — N)/2, larger
still (of course the number of solutions goes down to one).
We are investigating a means to make such a large single
inversion (405,444 mascon parameters), but our current
algorithms and resources force us to make 13 individual
solutions with three-time correlated periods within each of
the solutions, but no time correlation between solutions.

[30] In this section, we hope to improve our mascon time
series of by adding the aspect of time to the constraint
equations. Although this requires one large inversion for the
entire time series, a relationship between parameters at
different time steps is established. We also hope to improve
the estimated time series by withholding constraint equa-
tions that correspond to certain pairs of mascon parameters.
The spatial constraints used in the previous section were
suboptimal. Those constraint equations equate every block
with every neighboring block. Over homogeneous areas,
such as river basins or oceans, this is a useful constraint.
Inevitably, though, land blocks are tied to adjacent ocean
blocks and land blocks without glaciers are tied to blocks
with glaciers. In other words, ties are made between regions
that have different time variable gravity characteristics.

[31] The global mascon solution presented in this section
divides the Earth into 25 regions including 6 ocean or inland
sea areas and 19 land or land-ice areas. Table 1 lists the
constraint regions.

[32] Within each region, the time variable gravity should
be driven by similar hydrological, ocean, or ice phenomena.
In the constrained global mascon solution of the previous
section, there is a separate constraint equation corresponding
to every distinct pair of blocks on the grid. In the solution
described in this section, a constraint equation is written for
a pair of distinct blocks, only if both blocks belong to the
same region. This type of strategy is easier to implement
when blocks are smaller because small blocks are more
easily classified into regions. The mascons in this section
are on a grid similar to the one of the previous section,
except the spherical caps are 1° (not 2°) and the latitude
bands are 2° (not 4°). This results in the estimation of
10,396 mascon parameters every 10 days.

[33] As before, each mascon block is represented by a set
of spherical harmonic functions through degree 60. As
explained in section 3, the vector space described by any
set of mascons represented as spherical harmonics to degree
60 is completely described by 3720 linearly independent
functions. Therefore, without the addition of spatial con-
straint equations any normal matrix formed for the 10,396
2° global mascons is rank deficient by a large margin.

12 of 19



B01403

ROWLANDS ET AL.: GLOBAL MASS FLUX SOLUTIONS FROM GRACE

(A) 13 Month Time Series of C(2,0) from Unconstrained
and Constrained MASCOHN solutions
AE-1D
SEE10 J
ZOE-1D 4
E; MEAE /" 'l] -: Eh:mm
T OLEAD ]
S FE-11 \ r"’ \ i‘ I'
JE-11 4 \’ . ‘
ORED ”’-
L.0E-11 1 v T ¥
Maw03 Jun-03 Oct-03 Jan04 Apr-04 Aug04
Date
(B} 13 Month Time Series of C(2,1) from Unconstraned
and Constrained MASCOHN solutions
S0E-11 ;
&0E-11 4 )\ |
LE-11 - s
'2 Z0E-10 4 \'-..-__.\" == Coratrained
= GOEHD | |= Ur onvstrairad
T s )
O |
4 (E-11 4
HE-1T \‘
S0E11 —_—
May03 Jun-03 Oct-03 Jan04 Apr-04 Aug04
Date
(C) 13 Month Teme Series of S5(2,1) from Unconstrained
and Constrained MASCOH solutions
@OE-11
CE-11 4
LOE-11 4 \
AOE-11 4
] tti-:: | 1""\
T e ‘. =i~ ’-"u:::'""
“= ODE0 4 - Hraad
2 LE-T 4
© e | l"'"
A0ENT ]
L 0E-11
L0E-11 . . .
May03 Jun-03 Oct-03 Jan04 Apr-04 Aug04
Date

Figure 11. Spherical harmonic coefficients at degree 2 from two 4° global mascon solutions. One solution
is unconstrained, and the other uses an embedded constraint (spatial constraint only). The constraint has
almost no discernable effect on the long wavelength gravity model reconstituted from mascons.
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Figure 12. Spherical harmonic coefficients at the primary resonance of GRACE (degree 15 and order 15)
from two 4° global mascon solutions and also from GLDAS hydrology. One of the GRACE solutions is
unconstrained, and the other uses an embedded constraint (spatial constraint only). The constraint yields far
more reasonable time variation for the resonance term revealing a near annual variation and much better
agreement with GLDAS hydrology than both the unconstrained solution and the Gaussian smoothed

solutions shown in Figure 10.

[34] Figure 15 shows that the 2° mascon solution captures
a mass flux signal at a much higher resolution than either of
the solutions in the previous section. For example, areas that
are known to have significant mass flux signal such as
coastal southwest and southeast Greenland, the Red Sea and
the Caspian Sea are clearly isolated in Figure 15, but not in
Figures 4, 5, 8, 9, and 13. In addition, Figure 16 shows that

the power spectrum of the 2° solution is very reasonable
when compared to that of global hydrology.

[35] Plotting the mass distribution from a mascon solution
(as in Figure 15) brings up an interesting point that is related
to Figure 1 and to the use of averaging kernels. Figure 1
demonstrates that a GRACE intersatellite KBRR observa-
tion cannot differentiate between two representations (one at
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Figure 13. The standard deviation of surface mass (expressed in standing water height) obtained from
13 monthly 4° global mascon solutions estimated directly from the GRACE KBRR and using embedded
spatial constraints in the estimation process.

degree 60 and the other at degree 120) of a reasonably sized an area larger than the original definition of the block.
mascon. The total surface mass is the same in these two  Although Figure 1 demonstrates the GRACE KBRR data
representations, but at degree 60 the mass is spread out over are relatively insensitive to the exact boundaries of the
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Figure 14. Power spectrum of changes with respect to the GGMO02C gravity field and forward models
from the constrained 4° global mascon solution compared to the GLDAS surface hydrology model. The
red curve represents the delta Stokes coefficients of the global mascons, and the green curve represents
the coefficients of the GLDAS surface hydrology model. Given that atmospheric pressure and tidal mass
flux signals are forward modeled in these solutions, the expected spectrum of the mascon solution would
be that arising from global hydrology. The constrained mascon solution has overall good agreement with
the hydrological signal.
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Table 1. Constraint Regions

Regions
Ocean and Mediterranean Sea, Black Sea, Hudson Bay,
Inland Sea Caspian Sea, Global Ocean, and Red Sea
Land North America, South America, West Eurasia,

Africa, Australia, Madagascar, Japan,

New Zealand, Philippines, Borneo, New Guinea,
East Eurasia (including Sumatra), India,

coastal Greenland, inland Greenland,

costal Antarctica, inland Antarctica,

Alaska glaciers, and various large

Arctic islands north of Canada

mascon block, it does demonstrate that KBRR data detect
the location of the center of the block quite well (the plot
has perfect symmetry about the center of the mascon).
During the reduction of KBRR data, we represent our
mascons to (only) degree 60 because it is computationally
convenient, but we attribute the mass implied by estimated
mascon scale factor to the confines of its associated block
(as if the mascon had been represented to degree 120).
When we made the plot for Figure 15, we simply evaluated
equation (4) at a dense set of points with the Stokes
coefficients from the 2° global mascons reconstituted to
degree 120. If the mass distribution is plotted using an
expansion reconstituted to (only) degree 60, the estimated
mass signal between adjacent mascon cells mixes. A repre-
sentation of the mascons to degree 120 retains the original
definition of each block much better than a representation to
degree 60. Figures 17 and 18 show the mass flux signal of
the 2° mascon solution over Greenland represented to
degree 120 (Figure 17) and also to degree 60 (Figure 18).
In the degree 120 representation, the signal stays mainly
along the coastline with signal extending much less distance
into the ocean and into the interior than the in the degree 60
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representation. In the degree 120 representation, the largest
signal is clearly concentrated on the locations of specific
mascon cells on the southwestern and southeastern coasts.
These are areas that are known to have significant mass flux
[Luthcke et al., 2006a]. In the degree 60 representation, the
signal from these areas extends much further into the ocean.

[36] The situation described just above is very similar to
the reason that averaging kernels with (postsolution) esti-
mated scale factors are often used when computing mass
flux from standard monthly Stokes coefficients. Monthly
Stokes coefficients are often computed to at most degree 60.
At this resolution, a significant portion of the computed
mass flux from an area such as Greenland spills out onto
adjacent areas, especially after Gaussian smoothing has
been applied. A simulation is often performed to estimate
the amount of mass flux that the computations have lost.
The simulation gives an estimate of a scale factor that can
be applied to the mass flux computations to compensate for
the loss [Swenson and Wahr, 2002]. This averaging kernel
scale factor is very much similar to a mascon parameter
(which is also a scale factor); however, the mascon scale
factor is estimated directly from the GRACE KBRR track-
ing data. As a parameter estimated directly from the
fundamental observation, it introduces less uncertainty than
a scale factor computed from simulations. The estimation of
global mascons gives a means for producing Stokes coef-
ficients that do not require Gaussian smoothing and do not
need averaging kernels with scale factors in order to be used
in mass flux computations.

6. Summary

[37] We have demonstrated that in unconstrained global
gravity solutions derived from GRACE KBRR data, there is
almost no difference between global mascon-based and

l | em of water

14 16 18 20 22 24

Figure 15. The standard deviation of surface mass (expressed in standing water height) obtained from
39 10 day 2° global mascon solutions from GRACE KBRR data. The solution uses both spatial and
temporal constraints to estimate 10,396 2° mascons every 10 days.
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Figure 16. Power spectrum of changes with respect to the GGMO02C gravity field and forward models
of the constrained global 2° mascon solution compared to the GLDAS surface hydrology model. The red
curve represents the delta Stokes coefficients of the global 2° mascons, and the green curve represents the
coefficients of the GLDAS surface hydrology model. Given that atmospheric pressure and tidal mass flux
signals are forward modeled in these solutions, the expected spectrum of the mascon solution would be
that arising from global hydrology. The constrained 2° mascon solution has good overall agreement with
the hydrological signal.
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Figure 17. The standard deviation of surface mass (expressed in standing water height) over Greenland
from the 2° mascon solution. Figure 17 differs from Figure 15 in that it is enlarged over Greenland and
has been rescaled to show more detail (both Figures 15 and 17 are computed to degree 120).
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Figure 18. The standard deviation of surface mass (expressed in standing water height) over Greenland
from the 2° mascon solution. Figure 18 differs from Figure 17 in that it is computed to only degree 60

(Figures 15 and 17 are computed to degree 120).

Stokes coefficient based approaches. We have also demon-
strated that for mascons, smoothing using constraint equa-
tions embedded in the tracking data solution has advantages
over Gaussian smoothing done after the tracking data
solution. Smoothing done on mascons at the tracking data
solution stage results in less signal loss. Presumably, the
same would hold true in standard solutions for Stokes
coefficients if the appropriate type of constraint equations
would be applied. However, different equations at each
degree and order would most likely be required. The high
resolution of the mass flux derivations from mascons of
Luthcke et al. [2006a] for Greenland and Luthcke et al.
[2008] for Alaska as compared to other derivations in these
areas that were based on Stokes coefficients can most likely
be attributed to differences in smoothing techniques.

[38] We have also demonstrated that the estimation of
Stokes coefficients through mascons (or as scale factors on
sets of lumped Stokes coefficients) gives a way to produce
gravity fields that are suitable for mass flux computations
without the use of averaging kernels and postsolution scale
factors. Finally, we have presented a preliminary solution
for 2° equal area global mascons that is estimated every 10
days. We intend to continue work on this solution by
identifying more regions in which homogenous forcing
occurs while extending the globally constrained time series.
We will also pursue the use of more complete forward
modeling.
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NASA through the GRACE Science team. We gratefully acknowledge
the quality of GRACE Level 1B products produced by our colleagues at the
Jet Propulsion Laboratory. We would like to thank Shin-Chan Han (UMBC
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