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ABSTRACT

Langland and Baker introduced an approach to assess the impact of observations on the forecasts. In

that approach, a state-space aspect of the forecast is defined and a procedure is derived ultimately relating

changes in the aspect with changes in the observing system. Some features of the state-space approach are to

be noted: the typical choice of forecast aspect is rather subjective and leads to incomplete assessment of the

observing system, it requires availability of a verification state that is in practice correlated with the forecast,

and it involves the adjoint operator of the entire data assimilation system and is thus constrained by the

validity of this operator. This article revisits the topic of observation impacts from the perspective of esti-

mation theory. An observation-space metric is used to allow inferring observation impact on the forecasts

without the limitations just mentioned. Using differences of observation-minus-forecast residuals obtained

from consecutive forecasts leads to the following advantages: (i) it suggests a rather natural choice of forecast

aspect that directly links to the data assimilation procedure, (ii) it avoids introducing undesirable correlations

in the forecast aspect since verification is done against the observations, and (iii) it does not involve linear-

ization and use of adjoints. The observation-space approach has the additional advantage of being nearly cost

free and very simple to implement. In its simplest form it reduces to evaluating the statistics of observation-

minus-background and observation-minus-analysis residuals with traditional methods. Illustrations com-

paring the approaches are given using the NASA Goddard Earth Observing System.

1. Introduction

Langland and Baker (2004, hereafter LB04) introduce

a technique to examine the impact of observations on

the short-range forecast. In that technique, an aspect

of the forecast is defined and changes to the aspect are

then associated to changes in the observing system.

LB04 derive an expression to calculate observation im-

pacts using the sensitivity (adjoint) operators of both the

underlying forecast model and that of the analysis sys-

tem. Errico (2007, hereafter E07) rederives the expres-

sion of LB04, as well as introduces other expressions,

using a Taylor series expansion of the forecast aspect

when the initial conditions are subject to infinitesimal

changes. Gelaro et al. (2007, hereafter GZE07) use an

early version of the National Aeronautics and Space

Administration (NASA) fifth-generation Goddard Earth

Observing System (GEOS-5), together with the adjoint

of the GEOS-5 general circulation model (GCM), and

the line-by-line adjoint of the gridpoint statistical in-

terpolation (GSI) analysis system of Zhu and Gelaro

(2008), to examine in detail the various approxima-

tions in E07. More recently, Daescu and Todling (2009,

hereafter DT09) show that the expressions in E07, and

higher-order accurate ones, can also be derived using

a parametric approach in conjunction with numerical

quadrature methods.

When the technique of LB04, E07, and DT09 is used

to assess the impact of the observing system on the fore-

cast one must keep in mind the assumptions and limita-

tions of the method. First, the definition of the forecast

aspect reflects whatever measure one judges to be rele-

vant to describe features of interest. Much of the work

done in this area has thus far focused on the impact of

observations in the 24-h forecasts. The forecast aspect

has typically been chosen to measure the 24-h forecast

error, as defined by a linearized total energy norm. In

addition, the works of LB04, GZE07, and DT09 have

applied a projection operator to the forecast error mea-

sure that intentionally excludes errors, roughly, above

100 hPa. Other works have used very specific projection
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operators as they are aimed at evaluating targeted ob-

servations (Langland 2005; Buizza et al. 2007; Cardinali

et al. 2007; Kelly et al. 2007; Rabier et al. 2008). Un-

deniably, use of such measures restrict conclusions drawn

about the observing system and its impact on forecasts

in general.

Second, a further complication associated with the

definition of typical forecast aspects is the need to use

a verifying state. It is common practice to evaluate the

quality of forecasts with respect to underlying analyses,

as for example when calculating forecast skill scores.

However, one must recognize the limitations of such a

practice since correlations between the forecasts and

the verifying analyses introduce unknown features to the

results, particularly when relatively short-range forecasts

are involved.

Third, the approximate observation impact formulas

of LB04, E07, and DT09, are limited by the validity of the

adjoint models they invoke. In particular, the validity of

the underlying general circulation model adjoint restricts

the studies of observation impact to those related to

short-range forecasts only, though there are currently

attempts to extend the validity of adjoints by defining

optimal trajectories (see Barkmeijer and Stappers 2011).

Lack of proper representation of full nonlinear pro-

cesses introduces yet another uncertainty factor (e.g.,

some adjoints have poor or no representation of con-

vective processes). Furthermore, the nonlinearity of many

analysis systems (Trémolet 2007, 2008) introduces an-

other layer of complexity and limitation to the adjoint-

based approach. The ability to use adjoint-free diagnostics

is advantageous, at least from the practical point of

view. Liu and Kalnay (2008) have recently introduced

an ensemble-based observation impact technique that,

by construction, avoids the need for adjoints (see also

Liu et al. 2009). Still, the work of Liu and Kalnay is

based on a rather subjective forecast aspect, and con-

tinues to rely on the availability of verification states.

More generally, it is not necessarily clear how using

information derived from observation impact evalua-

tions can aid the development and enhancement of data

assimilation systems. Since observation impact results

tangle the use of observations through the data assim-

ilation process with errors in the short-range forecast

that are not part of the data assimilation process, it is

hard to disentangle the information provided by ob-

servation impact studies to make sound decisions about

the use of observations. It is thus the main point of

the present work to argue that one might as well stick

with traditional methods of evaluating the statistics

of observation-minus-background (OMB) and, to some

extent, observation-minus-analysis (OMA) residuals to

allow one to infer the required information to improve

upon the cycling data assimilation scheme and the use

of observations (e.g., Hollingsworth and Lönnberg 1989;

Daley 1992; Dee and da Silva 1999; Desroziers et al.

2005a,b; Chapnik et al. 2006; Lupu et al. 2011).

To build toward the main goal here, the present work

examines the impact of observations on the forecasts by

introducing measures based on weighted observation-

minus-forecast (OMF) residuals directly. The weighted

difference of the squared OMF residuals calculated

from two forecasts issued from two consecutive analyses

serves as a means to evaluate the impact of observa-

tions on forecasts. The limiting case in this approach is

one in which the forecast is reduced to be the very

short-range background, thus leading back to the more

traditional residual-based techniques cited above. The

advantages of this approach are: (i) it still allows for a

complete assessment of the observing system; (ii) it

avoids introducing undesirable corrections to the fore-

cast aspect; (iii) it involves no approximations to the

model and analysis operators, avoiding adjoints and

consequently being devoid of their limitations; and fi-

nally, (iv) it requires only straightforward calculations

involving quantities readily available in most practical

data assimilation systems.

Arguing from the perspective of estimation theory,

we examine the statistics of the various approaches to

observation impact. It becomes evident that the state-

space approach is, in principle, more encompassing than

the observation-space approach. It is shown that, under

idealized conditions, it is possible to choose a state-

space measure that obtains the same expected obser-

vation impact as that obtained with a corresponding

observation-space measure. It is further shown that op-

timality of the data assimilation system implies that the

expected observation impacts are always negative in the

expected mean sense, that is, assimilation of observa-

tions always amounts to improvements in the forecast.

The analytic evaluation then goes on to examine the

consequences of having to replace the unknown truth

with an arbitrary verifying state, and the consequences

resulting from when the verifying state is chosen to be

the analysis. At this point it becomes rather clear that

the observation-space approach is preferable over the

state-space approach since the former uses the obser-

vations for verification and therefore does not introduce

spurious correlation factors as does the latter. Ulti-

mately, it is argued that if the objective of calculating

observation impacts is to aid the underlying data assimi-

lation procedure and help decide how best to use the

available observations, employment of the observation-

space approach, with the additional simplification of tak-

ing the fields involved in the measures difference to be

the analysis and the background, suffices.
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Illustration of the various points raised along the text

is given by using GEOS-5. The dependency of the ap-

proaches on the definition of the forecast aspect is given

by calculating observation impacts on the 24-h forecasts

using three distinct measures based on (i) the tropo-

spheric, linearized total energy norm used in LB04 and

other works; (ii) a modified version of the linearized

total energy norm that more evenly weighs the vertical

(e.g., Errico et al. 2007); and (iii) the inverse of the ob-

servation error covariances used by the analysis system,

projected onto state space. There are important differ-

ences among results obtained with these different mea-

sures. Though most differences can be well understood,

the clear message is that the ranking of the observing

system that almost naturally follows from these studies is

a rather subjective matter. The theoretical consider-

ations of section 2 suggest that the observation-space

approach can be used in practice to try to assess the

consequences of verifying forecasts against analyses. The

experiments with GEOS-5 indicate these verifications

tend to overestimate the impact of the observations.

This is even more so when the state-space approach is

used. Last, given the implicit subjectivity of the various

measures of observation impacts some illustration is

given to enforce the view that one might as well rely on

the, readily available, usual OMB and OMA residuals

to try to assess how observations are used in the as-

similation process and what can be done with this in-

formation to make system improvements.

In what follows, section 2 compares the state- and

observation-space approaches from the perspective of

estimation theory. Section 3 shows results comparing

observation impacts on the forecasts obtained using var-

ious measures and linking to the results of section 2.

Closing remarks appear in section 4.

2. Measures of observation impact

a. Background

Let us write the expression describing a forecasting

model as

x
f
kjk2m115mk,k2m11(x

a
k2m11jk2m11) , (1)

where here, borrowing from the notation of estimation

theory (e.g., see Cohn et al. 1994), the n-vector forecast

state x f
kjk2m11, at time tk, is derived by integration of

the model m, from time tk2m11 to time tk, starting from

an analysis state xak2m11jk2m11 calculated at time tk2m11.

The subscript notation i j j indicates that the estimate at

time ti is obtained by using observations up to and in-

cluding observations at time tj, for j # i. In the linear

case, this notation is associated with the more profound

statement that the minimum variance estimate is the

conditional mean (e.g., Cohn 1997). In the nonlinear

case considered here caution must be exercised with

this interpretation, but the notation is still informative.

In data assimilation, the analysis is an estimate that

combines a model background field,

xbk2m11jk2m [ x
f
k2m11jk2m 5mk2m11,k2m(x

a
k2mjk2m) ,

(2)

with the pk2m11-vector of observations y
o
k2m11, at time

tk2m11, and can conveniently be written in the follow-

ing form:

xak2m11jk2m115 xbk2m11jk2m 1 ~Kk2m11jk2m

3 [yok2m112 hk2m11(x
b
k2m11jk2m)] ,

(3)

where hk2m11 is the pk2m11 observation operator that

transforms model states into observables: ~Kk2m11jk2m is

a general, not necessarily optimal, n 3 pk2m11 matrix of

weights used to update the background state given ob-

servations at time tk2m11; and dk2m11jk2m [ yok2m11 2
hk2m11(x

b
k2m11jk2m) is the pk2m11-vector of residuals

representing the difference between the actual and

the model-predicted observations. The analysis expres-

sion (3) is representative of a three-dimensional varia-

tional formulation; for convenience, it is written here

at time tk2m11 rather than at the usual time tk; taking

(k 2 m 1 1) / k converts it into its familiar form.

Studies of observation impact on the forecast in-

troduce a scalar functional to measure the quality of

the forecast and establish a common means to evaluate

the effect of observations on the forecast. A typical

quadratic scalar measure takes the following form:

ekj‘[ (x
f
kj‘2 xtk)

TTk(x
f
kj‘2 xtk) , (4)

where the n 3 n symmetric positive semidefinite matrix

Tk stands for the weight given to the forecast error

�
f
kj‘ [ x f

kj‘ 2 xtk, evaluated at time tk, for ‘, k. In practice,

one cannot calculate the weighted forecast error in (4)

since it involves the unknown true state xtk. Instead,

a verification state xyk is used, so that the forecast error

becomes �ykj‘ [ x f
kj‘ 2 xyk, and the scalar measure (4) is

replaced with

eykj‘[ (x
f
kj‘2 xyk)

TTk(x
f
kj‘2 xyk) . (5)

Naturally, the verification state is usually taken to be

an analysis, the consequences of which are discussed in

what follows.
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The impact of observations on the forecast can be

evaluated by studying how the forecast error measure

(5) changes with respect to changes in the initial condi-

tion in (1). These changes can be thought to be a result

of changes due to the assimilation of observations. As-

suming the changes to be infinitesimal, E07 and DT09

derive various approximations to the corresponding

change in the forecast error measure. Relevant to the

present work are the following first- and second-order

(per DT09) accurate formulas:

dey,1k 5 dTk2m11jk2m
~Kk2m11jk2m
T $xbe

y
kjk2m , (6a)

dey,2k 5
1

2
dTk2m11jk2m

~Kk2m11jk2m
T

3 [$xbe
y
kjk2m 1$xae

y
kjk2m11] , (6b)

where the gradient vectors above can be written as

$xg e
y
kj‘ 5 2MT

g;k,k2m11Tk[x
f
kj‘ 2 xyk] , (7)

with the n 3 n matrix,

Mg;k,k2m115
›mk,k2m11(x)

›x

�����
x5xg

, (8)

standing for the Jacobian of the model m in (1) in-

tegrated from time tk2m11 to tk, and linearized about

integrations started from either the background xg 5
m(xbk2m11jk2m), indexed g 5 b, or the analysis xg 5
m(xak2m11jk2m11), indexed g 5 a, respectively; in (7),

‘ 5 k 2 m or ‘ 5 k 2 m 1 1, depending whether the

error (5) is evaluated for a forecast started from a back-

ground or an analysis, respectively. Equation (6b) first

appeared in LB04. Figure 1 gives a schematic represen-

tation of the various relevant times involved in the cal-

culation of the formulas above.

A proxy for the infinitesimal error change deyk of the

forecast error measure (5) is simply the difference be-

tween the error measure calculated for forecasts issued

from two consecutive analyses:

deyk [ eykjk2m112 eykjk2m . (9)

This proxy is used, for example, in the work of Liu and

Kalnay (2008) to derive an expression for observation

impact that can be more readily calculated in the con-

text of ensemble data assimilation procedures. Simi-

larly, the present work relies on the argument that much

of what is obtained with approximations such as those in

(6) can be obtained using differences such as in (9). In-

deed, in many respects the error difference (9) is more

revealing than its infinitesimal counterpart exactly be-

cause the former is capable of describing what finite-size

changes in the initial conditions, due to the assimilation

of observations, imply to the forecast.

The approximations in (6) express the change in

forecast error in the form of an inner product be-

tween a ‘‘sensitivity’’ vector and the observation-minus-

background residual vector, dk2m11jk2m. Consequently,

it is possible to break down the inner product into its

many elements—corresponding to the contributions

from the various components of the observing system

to the error change. These individual contributions de-

fine the corresponding individual observation impacts.

b. A simple alternative forecast error measure

In observation-space, we replace the state-space fore-

cast error measure (5) with the observation-space fore-

cast error defined as the weighted difference between

the model-predicted observations hk(x
f
kj‘) and the ob-

servation vector yok, at time tk, for ‘ , k, that is,

e
y
kj‘[ [hk(x

f
kj‘)2 yok]

TCk[hk(x
f
kj‘)2 yok]5 dTkj‘Ckdkj‘ ,

(10)

where Ck is a pk 3 pk positive semidefinite suitable

weighting matrix, and the forecast error is calculated

for a forecast started at time t‘ , tk. The first equality in

the expression above is written to emphasize the anal-

ogy between this error expression and that in (4) or (5),

suggesting that now the verification state is simply re-

placed with the observations.

The observation-space counterpart of the error dif-

ference in (9) is now

de
y
k [ e

y
kjk2m112 e

y
kjk2m . (11)

The error-change de
y
k is a scalar that can be calculated

for any portion of the observing system. Error differ-

ences such as (9) and (11) identify the improvement (or

degradation) in the prediction at time tk from a forecast

started at time tk2m11 over that started at time tk2m. In

FIG. 1. Schematic representation of time line and the relevant

forecast error definitions.
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other words, these differences are a measure of the im-

pact that assimilating observations at time tk2m has on

the forecast at time tk. Partitioning the impacts into in-

dividual contributions from the various components of

the observing system is straightforward since (10) and

(11) are calculated directly in observation space. On the

other hand, when the error measure is defined in state

space, as in (5), one must use approximate expressions

such as those in (6) to be able to partition the impacts as

desired. As long as the verifying observations amount

to a robust set, such as being relatively homogenous in

time, one should be able to derive statistically reliable

observation impacts using the observation-space ap-

proach. The same comment applies to observation im-

pacts derived with the state-space approach.

However, in the observation-space measure the ob-

servations are taken at verification time (by construc-

tion), rather than at initial time, as in the state-space

measure. It is the view of the present work that, as long

as the observing system is relatively homogenous when

comparing the initial and verification times, this is not

a serious issue since any statement based on residuals

can only be made on the basis of statistics; the statistics

must be robust for there to be any confidence in the

results. For typical evaluations of, say, observation im-

pact on the 24-h forecasts the verification times are

aligned with the initial times and no issues are at stake;

if impacts on the 18-h forecasts were to be calculated in-

stead, the observing network differences between initial

and verification time would be something to watch for.

A relationship between the error changes (6) and (11)

can easily be established. If one expands the forecast

error vectors in (10) following similar arguments to those

used to derive (6), the residual-based forecast error

change (11) can be approximated to first- and second-

order accuracy as

de
y
k ’ de

y,1
k 52dTk2m11jk2m

~Kk2m11jk2m
T $xbe

y
kjk2m ,

(12a)

de
y
k ’ de

y,2
k 52

1

2
dTk2m11jk2m

~Kk2m11jk2m
T

3 [$xbe
y
kjk2m 1$xae

y
kjk2m11] , (12b)

respectively, where the gradients are calculated as

$xge
y
kj‘522MT

g;k,k2m11H
T
kj‘Ckdkj‘ , (13)

for Hkj‘ representing the pk 3 n Jacobian matrix,

Hkj‘5
›hk(x)

›x

����
x5xg

kj‘
, (14)

of the nonlinear observation operator hk linearized

about the state xgkj‘, for ‘ 5 k 2 m 1 1 when g 5 b, and

‘ 5 k 2 m when g 5 a. Higher-order expressions can

be derived following the procedures in E07 or DT09.

The approximations in (12) are useful to highlight the

fact that both the state-space and observation-space ap-

proaches refer to the same initial perturbation to the

forecast, that is, the transpose of the analysis increment

vector dxak2m11jk2m 5 ~Kk2m11jk2mdk2m11jk2m. When us-

ing (11) to calculate observation impacts this initial

perturbation appears only implicitly. Indeed, the dif-

ference being these approximations comes from the

gradient vector representing how initial perturbations

propagate within the time window starting at tk2m and

ending at the verification time tk. For example, in the

first-order approximation in (6a) the gradient vector

is $xbe
y
kj‘ 5 2MT

g;k,k2m11Tk�
y
kj‘, whereas in (12a) the gra-

dient vector $xbe
y
kj‘ 522MT

g;k,k2m11H
T
kj‘Ckdkj‘. This is

simply a consequence of the choice of error measures;

the negative sign appears simply because dkj‘ is a re-

sidual defined as observation-minus-field instead of

a typical error defined as field-minus-observation.

c. Relationship between the state- and
observation-space error measures

To more accurately establish a relationship between

the state-space- and observation-space-based error mea-

sures we consider now the definition of the error mea-

sures introduced above in a probabilistic sense by referring

to their expected values. This goes along with the think-

ing that any statement made in data assimilation must

have a statistical basis. For the sake of argument, we

simplify matters by considering the linear case, when

the matrices Mg;k,‘, ~Kkj‘ and Hkj‘ become state inde-

pendent and can be written more compactly asMk,k2m,
~Kk and Hk, respectively. Taking the linear version of the

analysis equation (3) at time tk2m and substituting into

the linear version of (2), the forecast error of a forecast

issued from the analysis at time ta 5 tk2m11, and valid at

time t 5 tk, can be expressed as

�
f
kjk2m115 �

f
kjk2m 1Mk,k2m11

~Kk2m11dk2m11jk2m ,

(15)

which also holds to first-order accuracy for the non-

linear case. The expression relates error in the forecasts

valid at the same time, but issued from analyses one

cycle apart. Since the only difference between forecasts

issued from two consecutive analyses, at times tb5 tk2m

and ta 5 tk2m11, is the observations assimilated in the

more recent analysis, the error in the forecasts differ by

how much the incremental difference introduced by the
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assimilated data propagates in time, that is, by how the

term dxak2m11jk2m evolves under the dynamicsMk,k2m11.

Taking the expected mean of the true state-space

measure introduced in (4) gives

hekjk2mi[ h(� fkjk2m)
TTk(�

f
kjk2m)i

5TrfTk[h(� fkjk2m)(�
f
kjk2m)

Ti]g
5TrfTkP

f
kjk2mg , (16)

where P
f
kjk2m [ h� fkjk2m(�

f
kjk2m)

Ti is the forecast error

covariancematrix, with h � i representing the expectation
operator, Tr(�) stands for the trace operator, and we

used the trace property Tr(ATTB) 5 Tr(TBAT) for ar-

bitrary matrices A and B of dimension n3 p. Therefore,

the expected mean of the forecast error change calcu-

lated for forecasts from two consecutive analyses is

hdeki5TrfTkDP
f
kg , (17)

whereDP f
k [P

f
kjk2m11 2P

f
kjk2m is the difference between

the two forecast error covariances corresponding to the

two lagged forecasts.

As suggested above, the impact of observations can

also be evaluated by examining the expectation of the

observation-space measure, that is,

heykjk2mi[ h(dkjk2m)
TCk(dkjk2m)i

5TrfCk[h(dkjk2m)(dkjk2m)
Ti]g

5TrfCkGkjk2mg , (18)

where we introduce the pk3 pk residual error covariance

matrix:

Gkjk2m [ hdkjk2md
T
kjk2mi5HkP

f
kjk2mH

T
k 1Rk . (19)

Using this observation-space measure the change in

forecast error due to the assimilation of observations

becomes

hdeyki5TrfHT
kCkHkDP

f
kg , (20)

for de
y
k [ de

y
kjk2m11 2 de

y
kjk2m.

After some algebra, the difference between the two

forecast error covariances defining DPf
k is shown in ap-

pendix A to be

DP
f
k5Mk,k2m11(P

a
k2m11jk2m112P

f
k2m11jk2m)M

T
k,k2m11 ,

(21)

with no assumptions made on optimality and model

error. Furthermore, recall that at any time tk, the anal-

ysis error covariance can be written as [e.g., see Cohn

et al. (1994), their Eq. (2.33)]:

Pa
kjk5 (I2KkHk)P

f
kjk211DPa

kjk , (22)

where the increment matrix DPa
kjk 5DKkGkDK

T
k in-

corporates all the suboptimality in the analysis error

covariance, with DKk [ ~Kk 2Kk being the difference be-

tween a general gain matrix ~Kk and the optimal Kalman

gain matrix Kk, with

Kk 5P
f
kjk21H

T
kG

21
k . (23)

From (22) it follows that,

Pa
kjk 2P

f
kjk2152KkGkK

T
k 1DPa

kjk , (24)

is negative semidefinite in the optimal case, when

DPa
kjk 5

opt
0, and therefore so is the forecast error co-

variance difference in (21), DP f
k , 0. Applying this re-

sult at time tk2m11 and combining it with (17) and (21)

shows that in the optimal case the expected forecast

error change hdeki is guaranteed to be nonpositive,

hdeki 5
opt

2TrfTkMk,k2m11Kk2m11Gk2m11

3KT
k2m11M

T
k,k2m11g #

opt
0 , (25)

since the kernel inside the trace operator is positive

semidefinite, with equality holding when Tk 5 0. In the

optimal case, and in the expected mean sense, assimi-

lation of observations is guaranteed to reduce forecast

errors.

Similarly, since in the optimal case DP f
k , 0, the

observation-space-expected forecast error change in

(20) is also nonpositive,

hdeyki 5
opt

2TrfHT
kCkHkMk,k2m11Kk2m11Gk2m11

3KT
k2m11M

T
k,k2m11g#

opt
0, (26)

corroborating again that, in the expected mean sense,

assimilation of observations leads to forecast error re-

duction.

A particular choice of weighting matrix Tk, namely

Tk 5HT
kCkHk, leads to

hdek(Tk5Tk)i 5
opt hdeyki , (27)

that is, in the linear optimal case one can choose the

forecast error measure in state space to obtain the same
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total expected error as that obtained in observation

space. Conversely, since the observation space is nor-

mally smaller than the state space, one cannot choose

Ck to obtain the same total expected forecast error as

obtained in state space.

d. The role of the verification

One can also inquire about the relationship between

the change in the true expected forecast error hdeki and
that defined with respect to a verification state hdeyki.
Sticking with the linear, but not necessarily optimal, case

we show in appendix B that the relationship between

these expected errors can be written as

hdeyki5hdeki2 2Tr[~Kk2m11
T

MT
k,k2m11Tkh�ykdTk2m11jk2mi] ,

(28)

where �yk [ xyk 2 xtk is the true error in the verification

state. Replacement of the truth with a verification state

results in a term involving the correlation between the

error in the verification and the background residuals.

More specifically, when the verification state is taken

to be the analysis, xyk 5 xakjk, a typical choice in practical

applications, the expression above can be worked out

in more detail to give

dey5a
k 5 hdeki2 2Tr

"
~Kk2m11
T

MT
k,k2m11Tk

3

 
Mk,k2m11DKk2m11Gk2m11

1 �
m22

j50

Mk,k2j
~Kk2jhdk2jjk2j21d

T
k2m11jk2mi

!#
.

(29)

This relates the perceived error change, calculated us-

ing the analysis for verification, with the actual error

change. To arrive at this result (see appendix C) one

requires typical assumptions of linear filtering theory

(e.g., Jazwinski 1970, chapter 7): that model errors be

uncorrelated with observation errors, and that forecast

errors be uncorrelated with observation errors for all

times larger than the time the forecast begins. Two terms

prevent the perceived error change hdey5a
k i from equal-

ing the actual error change. One is the first term in the

trace expression involving the difference DKk2m11 be-

tween the suboptimal and optimal gains. The other is

the second term in the trace expression involving the

cross covariances of the various observation-minus-

background residuals between the analysis time tk2m12

and all times up to the verification time tk. It is only in

the optimal case that both these terms vanish: the first,

for obvious reasons, DKk 5 0; the second, because the

sequence of observation-minus-background residuals,

fdkjk21g, becomes the sequence of innovations, which

is white in time, and with all the time cross covariances

becoming zero1 (Kailath 1968; Daley 1992; see also

Anderson and Moore 1979, their section 5.3). There-

fore, in the optimal case and in the expected mean sense,

verifying against the analysis is the same as verifying

against the truth when it comes to evaluating the ex-

pected forecast error change under consideration.

Of more practical interest is the question of what

happens when, using the observation-spacemeasure (10),

the observation vector is replaced with a verification

state xyk projected onto the observation space by the

observation operator, that is, when yok is replaced with

hk(x
y
k), or in the linear case, Hkx

y
k. Following similar

steps to those taken in appendix B to derive (28), but

now applying the rational to the observation-space mea-

sure, it can be shown that the observation-space error

measure change takes the following form:

hdey5y
k i5 hdeyk i2 2Tr[~Kk2m11

T
MT

k,k2m11H
T
kCkHk

3h�ykdTk2m11jk2mi] , (30)

when a verification state replaces the observations. As

before, the perceived expected observation error change

hdey5y
k i differs from the actual expected error change

hdeyki by a similar term to that found when examining

this relationship in state space, that is, the cross correla-

tion between the verification error and the observation-

minus-background error. Analogously, as one might

expect, when the verification is taken to be the under-

lying analysis, this relationship becomes

hdey5a
k i5 hdeyki2 2Tr

"
~Kk2m11
T

MT
k,k2m11H

T
kCkHk

3

 
Mk,k2m11DKk2m11Gk2m11

1 �
m22

j50

Mk,k2j
~Kk2jhdk2jjk2j21d

T
k2m11jk2mi

!#

(31)

(this can be derived following the rational of appendix

C). Analogously to (29), equality here only holds in

the optimal case, when DKk 5 0 and the sequence of

observation-minus-background residuals becomes the in-

novation sequence. Unlike the expressions (28) and (29),

1 Note that the cross variances, the cross terms calculated for the

same time, are not zero, but they also do not appear inside the

summation sign.
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the observation-space expressions (30) and (31) can, in

principle, be verified in practice. Still, one thing to notice

related to expression (30) is that it assumes the verifying

observations to be fully independent of the analyses.

In many practical data assimilation applications this

assumption is violated because of procedures to perform

observation bias correction.

e. General remarks

Both the state- and observation-space measures con-

sidered above involve what are in principle arbitrary

weighting matrices Tk and Ck, respectively. One partic-

ular choice has special meaning: when they become the

inverse error covariance matrices of the corresponding

underlying error. That is,

Tk 5 [P
f
kjk2m]

21 , (32a)

Ck5 [Hkjk2mP
f
kjk2mH

T
kjk2m 1Rk]

21 . (32b)

When Tk is defined as in (32a), the forecast error (4)

becomes a measure of the accuracy of the fit of the

forecasts to the truth. In particular, when m 5 1, the

forecast error covariance becomes the background error

covariance, B[P
f
kjk21, and the forecast error measure

(4) becomes the background error term present in the

cost function of variational data assimilation methods

(e.g.: Courtier and Talagrand 1987; Lewis et al. 2006,

their chapter 20).

Similarly, when Ck is defined as in (32b), the forecast

error (10) becomes a measure of the accuracy of the fit

of the model-predicted observations to the actual ob-

servations. When m 5 1, the weight matrix Ck becomes

the inverse of the familiar residual (‘‘innovation’’) error

covariance matrix used in, say, observation-space-based

analysis procedures (e.g., Cohn et al. 1998). In practice,

this weighting factor can come from prescribed statistics

or from an estimate obtained directly from sample error

covariances constructed from the observation residuals

themselves; similar to, say, the treatment of consistent or

inconsistent error statistics of Lupu et al. (2011).

The casem5 1 is important, and it is the only measure

that can directly be associated with the data assimilation

cycle. In this case, the observation-space measure in (10)

reduces to

de
y
k 5 e

y
kjk 2 e

y
kjk21

5 [hk(x
a
kjk)2 yok]

TCk[hk(x
a
kjk)2 yok]

2 [hk(x
b
kjk21)2 yok]

TCk[hk(x
b
kjk21)2 yok] , (33)

where x f
kjk21 5 xbkjk21 and x

f
kjk 5 xakjk. Thus, the expression

above is simply the difference between the weighted

OMA squared residual with the corresponding OMB

residual. This quantity is readily available in any analysis

system. The particularly convenient choice,

Ck 5R21
k , (34)

turns the difference above into the difference between

the final and initial ‘‘Jo’’ term of the typical variational

assimilation problem.

Furthermore, simple algebra shows that the expected

mean of the measure in (33), with weights from (34),

relates to a version of the degrees of freedom for signal

(DFS) diagnostic that uses residuals based on posterior

estimates (analysis residuals). That is,

hdeyk i’2fk 2 h[hk(xakjk)2 hk(x
b
kjk21)]

TR21
k [yok 2hk(x

b
kjk21)]i

’2fk 2 hdTkjk21(G
21
kjk21Hkjk21P

f
kjk21H

T
kjk21R

21
k )dkjk21i1O(DKkjk21)

5
opt

2fk 2Tr(Hkjk21P
f
kjk21H

T
kjk21R

21
k ) , (35)

where

fk [ h[hk(xakjk)2 hk(x
b
kjk21)]

TR21
k [yok 2 hk(x

a
kjk)]i (36)

is the DFS as derived in Lupu et al. (2011) [see Eq. (10)

in that work]; the second approximate expression in

(35) follows from noticing that hk(x
a
kjk)2 hk(x

b
kjk21)’

Hkjk21
~Kkjk21[y

o
k 2 hk(x

b
kjk21)]; and the third equality fol-

lows from applying the trace operator and invoking op-

timality, when DKkjk21 5 0. Thus, the observation-space

measure for m 5 1 is directly related to a DFS-like

diagnostic for a suitable choice of Ck. This is not very

surprising: one should expect various diagnostics in-

volving the same quantities (i.e., OMBs andOMAs), to

provide similar information. Further insight is gained

by examining the last equality, optimal expression, in

(35). Since the second term on the right-hand side is

positive, we see that when the overall impact under the

observation-space measure indicates that a set of ob-

servations degrades the forecasts, that is when hdeyki is
positive, the correspondingDFSwill have a negative sign;

observations with negative hdeyk i, shown to contribute to
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improve the forecast under the observation-space mea-

sure, may have DFS of either sign. In other words, if the

sign of the measure is used to define impact, both mea-

sures agree when observations degrade the forecasts, but

they might disagree on which observations contribute to

improve forecasts. This apparent contradiction relates

to the uncertainty associated in these statistical measures.

If we accept both measures in question as reasonable

ways of determining the impact of observations, then the

degree to which their results can be trusted is measured

by the second term on the right-hand side of (35). Es-

sentially, the term Tr(Hkjk21P
f
kjk21H

T
kjk21R

21
k ) provides

an error bar for the reliability of impacts calculated with

either method; impacts within the error bar can be con-

sidered neutral.

As hinted above, it is the view of this author that the

only measures of observation impact that have direct

implications to data assimilation are those calculated

from (33) or, analogously, from (36). It is hard to see

how general measures such as those in (9) and (11), for

m. 1, can be used to aid the cycling of data assimilation

procedures. The sensitivities of the forecasting model

beyond the integration time window of a typical assim-

ilation cycle do not participate in the formulation of data

assimilation procedures. It is a basic fact of data assimi-

lation, and generally estimation theory, that the statistics

of the background- and analysis-observation residuals

teach us what can be learned of the behavior of the data

assimilation system and how it uses the observations.

This is the reason why maximum likelihood procedures

(e.g., Dee and da Silva 1999) and chi-square-based mea-

sures (e.g., Ménard et al. 2000) are solely based on these

residuals (e.g., Desroziers et al. 2005b). This is not to say

there is nothing to be learned from what has become

known as ‘‘observation impacts’’; it is just that it is un-

clear how information obtained from such diagnostics

relates to the cycling of data assimilation. Indeed, if we

were to identify components of the observing system

leading to particularly undesirable features to, say, the

24-h forecasts and a decision was made to change the

manner in which these components are handled during

the assimilation cycle, it is certain that such changes

would lead to unpredictable results in the cycle. In other

words, one would not be able to tell in advance if the

changes would lead to improvement or degradation to

the quality of the assimilation cycle, much less to the

quality of future 24-h forecasts.

3. Illustrative results

This section presents a brief illustration of the main

points made in the previous section. GEOS-5 (Rienecker

et al. 2008) is used for this purpose. GEOS-5 assimilates

observations using the incremental analysis update tech-

nique of Bloom et al. (1996). It consists of a global at-

mospheric model developed at Goddard and an analysis

system developed jointly by the National Oceanic and

Atmospheric Administration (NOAA) National Cen-

ters for Environmental Prediction (NCEP) and the

NASA Global Modeling and Assimilation Office. The

GEOS-5 GCM retains an updated version of the finite-

volume hydrostatic dynamical core (Lin 2004) from its

predecessor GEOS-4. The GEOS-5 GCM is built un-

der the infrastructure of the Earth System Modeling

Framework (Collins et al. 2005) used to couple together

various physics packages including a modified version

of the Relaxed Arakawa–Schubert convective param-

eterization scheme of Moorthi and Suarez (1992), the

catchment-based hydrological model of Koster et al.

(2000), the multilayer snow model of Stieglitz et al.

(2001), and the radiative transfer model of Chou and

Suarez (1999). Furthermore, the GCM is accompanied

by its adjoint model (ADM), which is essentially the

ADM of the finite-volume dynamical core of GEOS-4

(Giering et al. 2005), with added vertical diffusion and

a polar filter (Errico et al. 2007).

The GEOS-5 analysis component consists of the GSI

system. The GSI implements a three-dimensional varia-

tional data assimilation (3D-Var) using the incremental

approach of Courtier et al. (1994) for minimization and

the preconditioning strategy ofDerber andRosati (1989).

The background error covariance is implemented as a

series of recursive filters producing nearly Gaussian and

isotropic correlation functions (Wu et al. 2002). Satellite

radiances are processed using the Community Radiative

Transfer Model (CRTM; Kleespies et al. 2004) and the

online bias-correction procedure of Derber and Wu

(1998). Furthermore, the version of GSI used in the ex-

periments here includes the adjoint capability of Trémolet

(2007, 2008). This adjoint differs from its previous in-

carnation in Zhu and Gelaro (2008) in that it is not

a line-by-line adjoint, but rather it is derived from

a swap of operations used in the forward GSI. Com-

bining the GSI adjoint with the GCM adjoint, GEOS-5

has all the ingredients necessary to calculate the adjoint-

based approximations to observation impacts discussed

earlier (see also Gelaro et al. 2010).

The main experiment period considered here is the

same as that considered to obtain some of the results

in DT09. Similarly to other related works, we study

mainly the impact of observations on the 24-h forecasts.

Twenty-four-hour forecasts and 30-h forecasts are issued

for all 0000 and 1800 UTC times, respectively, for the

month of August 2007, and second-order accurate ob-

servation impacts are calculated over 0000 UTC times.

The assimilation, forecasts and, when applicable, adjoint
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integrations, are performed on a horizontal grid of

2.58 3 28 resolution, with 72 hybrid vertical levels.

Todling and Trémolet (2008) have shown that the rel-

ative impact among the various observing systems is

largely independent of resolution, rendering conclusions

from the experiments here general.

a. Role of norm

1) STATE-SPACE APPROACH

To illustrate the role played by the choice of weight

matrices in the forecast error measures of the previous

section, we consider three choices of norms when using

the state-space approach. The first two are total energy

measures. Following Errico et al. (2007), the inner

product between two vectors, x1 and x2, involving per-

turbations in the zonal andmeridional components of the

wind, temperature, and surface pressure, is calculated

using either one of the following expressions:

et [ xT1Ttx25
1

2
�
i,j,k

DHi, jDsi,j,k

3

�
u01u

0
21 y01y

0
21

cp

Tr

T 0
1T

0
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RTr

p2r
p0s1p

0
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�
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,

(37a)

ey [ xT1 Tyx25
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i,j,k

DHi, jDzi,j,k
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�
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0
21

cp

Tr
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0
21

RTr

p2r
p0s1p

0
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�
i, j,k

,

(37b)

where DHi,j is a horizontal gridbox weight and the dis-

tinction between the two norms is in how they weight

the fields in the vertical, with Dsi,j,k and Dzi,jk being

fractional weights, respectively, defined as

Dsi, j,k5
Dpi, j,k

ps,i, j 2 pt
, (38a)

Dzi, j,k 5
D lnpi, j,k

lnps,i, j 2 lnpt
. (38b)

For consistencywith Errico et al. (2007), we refer to (37a)

and (37b) as the ET-norm and EV-norm, respectively.

The physical scaling coefficients cp 5 1004.6 J kg21 K21,

R5 287.04 J kg21 K 21,Tr 5 280 K, and pr 5 1000 hPa,

are the specific heat at constant pressure, the gas con-

stant of dry air, and a reference temperature and pressure,

respectively. Detailed discussions of the applicability of

these two flavors of the total energy norm appear in

Lewis et al. (2001) and in Errico et al. (2007). Here, we

simply note that the energy in perturbations in the tro-

posphere are emphasized when the fractional mass

weights in (38a) are used; whereas the energy of per-

turbations mainly concentrated in the midtroposphere

and stratosphere are emphasized when the fractional

distance weights in (38b) are used instead. This is illus-

trated in Fig. 2 where the weights in (38) are displayed

as a function of the 72 vertical levels of GEOS-5 for

a grid point where ps 5 1000 hPa. The thin curve is for

the fractional mass weight (38a), and the thick curve is

for the fractional distance weight (38b). In the former,

the weights have a stepwise increase in the troposphere

up to 300 hPa, above which level they decrease rapidly.

The opposite happens in case of the latter fractional

weights, where they are comparatively small in the tro-

posphere and increase rapidly in the stratosphere and

mesosphere.

The works of LB04, E07, GZE07, and DT09 all use

the ET-norm to calculate observation impacts. More-

over, as mentioned in the introduction, these works also

use a projection operator that is unit for all grid points

roughly below 100 hPa, and zero above that. We have

FIG. 2. The fractional vertical weights Ds (thin curve) and Dz
(thick curve) used for calculating the ET- and EV-norms, respec-

tively. The dotted vertical line indicates the model levels. All cal-

culated at a point where ps 5 1000 hPa; the model-top pressure is

0.01 hPa. [Similar to Fig. 1 of Errico et al. (2007)].
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compared state-space observation impacts using the ET-

norm with and without this projection operator. The

impacts change somewhat, but as expected, given that

the ET-norm weights decay rapidly above the top of the

projection operator box, 100 hPa, the differences in

observation impact are not significant (not shown). In

the present work we use a projection operator that only

amounts to excluding the five top layers, mainly to avoid

letting the EV-norm include anything too close to the

model top, knowing that this changes essentially nothing

when using the ET-norm.

The third norm considered when calculating obser-

vation impacts with the state-space approach follows

from our considerations regarding the observation-space

approach. That is, (6b) is evaluated for weighting matri-

ces Tk of the following form:

Tk 5HT
kR

21
k Hk . (39)

Contrary to the ET- and EV-norms, this amounts to a

time-dependent choice of weights. We have no indication

that this affects in any significant way the conclusions

drawn from the study that follows, and time dependency

is consistent with the arguments of the previous section.

This choice of norm is a simple attempt to have the state-

space and the observation-space approaches use a simi-

lar weighting factor, when the latter employs (34).

Notice that using the weight matrices in (37) lead to

observation impacts that have units of energy, while

using the weights in (39) or, as we will consider later,

those in (34), lead to nondimensional impacts. To fa-

cilitate comparing the various norms and approaches

we mostly show results as, nondimensional, fractional

observation impacts. The fractional impact dem%(i) of the

ith observation set, in the measure m, is defined by

dem%(i)5 1003
dem(i)

�
i
dem(i)

, (40)

where the summation runs over all observing sets in

the figure under consideration.

Figure 3 shows fractional observation impacts for

each measure of interest and various observing systems:

(Fig. 3a) the state-space ET-norm, (Fig. 3b) the state-

space EVnorm, (Fig. 3c) the state-spaceHTR21Hweights

(labeled R-norm), and (Fig. 3d) the observation-space

R21 weights (labeled R-omf). The breakdown of the

observing system used during the period of the experi-

ment is described in the figure caption. A preliminary

version of the results in this figure appeared in Todling

(2009). Let us concentrate first on Figs. 3a–c. These

provide a direct assessment of the effect of the choice of

norm in the ‘‘traditional’’ state-space observation im-

pact calculation. Between Figs. 3a,b, the most striking

difference shows in the role played by the radiosonde

(RaobDsnd) and satellite observations: under the ET-

norm radiosondes visibly have a comparable role to that

played by the Advanced Microwave Sounding Unit-A

(AMSU-A) and the Atmospheric Infrared Sounder

(AIRS), whereas under the EV-norm AMSU-A domi-

nates, while the role of radiosondes and AIRS becomes

comparable. The fractional impact of the High Resolu-

tion Infrared Radiation Sounder (HIRS) and the air-

craft is flipped under these two norms, with the aircraft

being significant in a largely tropospheric measure and

HIRS becoming more dominate under a stratospheric

measure. When the weights are based on the inverse of

the observation error covariance matrix (Fig. 3c), the

global fractional impacts seem to resemble more closely

those obtained with the tropospheric ET-norm, though

there are differences: aircraft observations show as be-

ing slightly more significant than AMSU-A and AIRS,

and almost comparable to radiosondes.

Interestingly, the seemingly negligible fractional im-

pact of AMSU-B when using either the ET- or EV-

norms, is no longer so under the R-norm. This is at-

tributed to the fact that both the ET- and EV-norms in

(37) are dry measures and consequently provide a zero

input gradient in specific humidity to the adjoint (fore-

cast) sensitivity integration. The lack of any convective

parameterization in the model adjoint results in the in-

tegrated sensitivity to remain zero. Therefore, the tiny

fractional impact appearing in Figs. 3a,b for AMSU-B

are simply a result of how sensitive the moist channels are

to changes in the temperature field within the analysis

itself. On the other hand, under the R-norm, the input

gradient to the forecast model adjoint is no longer zero in

its specific humidity term; the model adjoint simply

advects the initial gradient 24 h backward and gener-

ates a nonzero forecast sensitivity in specific humidity

that is then fed into the analysis adjoint; this, in turn,

results in a nonnegligible contribution from the

AMSU-B, moist-sensitive, channels (Fig. 3c).

These three measures of observation impact on the

24-h forecasts corroborate the, not surprising, signifi-

cance ofAMSU-A found elsewhere (LB04; E07; GZE07;

Gelaro et al. 2010). Though we stress that the aim of

the present work is not to evaluate and rank the ob-

serving system, it is still instructive to look more closely

at AMSU-A to see exactly where, for example, the dra-

matic increase in fractional impact comes from when

using the EV-norm. Figure 4 shows the breakdown of

the fractional impacts for this instrument under the var-

ious norms. Results include accumulated impacts from

NOAA-15, -16, and -18, as well as from Aqua. With the
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EV-norms (Fig. 4b) the stratospheric channels 13 and

14 have a very large fractional impact, and contribute

considerably to the large accumulated fractional impact

of AMSU-A seen in Fig. 3b. We should not be deceived

by the seemingly small fractional impacts of the mid-

tropospheric channels implied in Fig. 4b; the contribu-

tion from these channels is still rather significant under

this norm (see below). Examination of Fig. 4c, showing

results when the R-norm is employed seem to indicate

the use of the stratosphere-peaking channels to be

significant, though results for the troposphere-peaking

channels are comparable to when the ET-norm is used.

To stress the point that when using the EV-norm the

impact of channels peaking in the midtroposphere is

similar to the impact seen by other norms, we show in

Fig. 5 the fractional impact on the 24-h forecasts of

channel 6 on NOAA-18, summed over all 0000 UTC

analyses of August 2007. Results for all measures are

displayed in the figure. Neutral fractional impacts are

shaded gray, with red indicating regions of positive

FIG. 3. The fractional observation impact (%) for various instruments for all 31, 24-h forecasts of GEOS-5 valid at

0000 UTC August 2007. The fractions are calculated with respect to total 31-day impact as defined in each case: (a)

adjoint-based, total tropospheric energy norm; (b) adjoint-based, total stratospheric energy norm; (c) adjoint-based

with forecast errors normalized with inverse of observation error covariance; and (d) OMF-based approach. Results

from (a) and (b) first appeared in Todling (2009). The abbreviations along the vertical axis stand for observations of

ships and buoy temperature, winds specific humidity, and near-surface pressure (Ship); cloud-drift winds (SatWind);

Special Sensor Microwave Imager wind speeds (SSMIspd); Backscatter Ultraviolet Instrument total column ozone

(SBUV2); radiosonde and dropsonde temperature, winds, specific humidity (RaobDsnd); Scatterometer winds (Qscat);

Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky and water vapor winds; land observations

of temperature, winds, surface pressure, and specific humidity (LandSfc); radiances from the High Resolution

Infrared Radiation Sounder (HIRS) in (3) fromNOAA-16 and -17; radiances from the Geostationary Operational

Environmental Satellites (GOESND); aircraft temperature and winds (Aircraft); radiances from the Advanced

Microwave Sounding Unit-A (AMSU-A) on the NOAA-15, -16, and -18; Advanced Microwave Sounding Unit-B

(ANSU-B) from NOAA-15, -16, and -17, as well as on Aqua; and NASA Aqua, Atmospheric Infrared Sounders

radiances (AIRS).
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impact and blue the regions where impact is negative.

Figures 5a–c light up similar areas of the globe: the

eastern Pacific Ocean is a particular area where all three

measures agree about the significance of the observa-

tions. There are also areas of disagreement, such as the

southwestern Pacific Ocean, which the EV-norm indi-

cates the observations to not be doing so well whereas

results seem quite neutral when evaluated with either

the ET- or R-norm. Clearly, there is a level of arbitrar-

iness in what we choose to highlight in the plots, which is

another way of saying that when comparing different

measures of observation impacts there is considerable

uncertainty involved until statistical significance is as-

signed to the results (left for future work).

2) OBSERVATION-SPACE APPROACH

We now turn our attention to the observation-space

approach and impact calculations based on (11) when

using weighting factors defined by the inverse of the

observation error covariance matrix, as in (34). Results

of observation impacts on the 24-h forecast are seen

in Figs. 3d, 4d, and 5d.

Looking again at the summary plots in Fig. 3 and

focusing on how the ‘‘traditional’’ state-space ET-

normalized observation impacts (Fig. 3a) compare with

the observation-space impacts (Fig. 3d), the most no-

ticeable difference is in the fractional impact of radio-

sondes. With the observation-space measure radiosondes

seem much less significant, whereas aircraft, AMSU-A,

and AIRS, seem to show roughly similar results in both

approaches and norms, though their ranking changes.

The reduced fractional impact of radiosondes measured

with the observation-space approach is compensated for

by the increased fractional impacts of AMSU-A and

AIRS. A more direct comparison follows by contrasting

Figs. 3c,d, since the norms in these two cases are closely

related, and the comparison more faithfully addresses

the difference in approaches rather than norms. How-

ever, given the similarity between results with the ET-

norm and those with the R-norm the same conclusions

FIG. 4. As in Fig. 3, but for each of the 15 channels of AMSU-A on the NOAA-15, -16, -18 and on the NASA Aqua

satellites; fractions are now calculated with respect to total 31-day impact of all AMSU-A channels for each case.
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follow: the dominant observing systems under the

observation-space measure are aircraft, AIRS, and

AMSU-A. The reduced role of the radiosonde observa-

tions can be understood by recalling that the observation-

space-based measure compares how the 30- and 24-h

forecasts fit the observations 30 and 24 h later, respec-

tively. This measure does not explicitly incorporate the

sensitivities of forecasts; it simply compares the quality

of the forecasts directly. For the case of observation

impacts on the 0000 UTC forecasts, the observation-

space measure is saying that the forecasts from 1800 UTC

are not as bad in predicting the radiosonde observations

6 h later as one might be inclined to think. Taking the

difference in (9) as a proxy for the difference in forecast

quality, one would be led to think the 30- and 24-h fore-

casts do not predict the radiosondes as well when evalu-

ation is done with the state-space measures. Indeed, what

this measure is saying is that there are larger sensitivities

in the 30-h forecasts than in the 24-h forecasts when

predicting the radiosonde observations (due to the con-

siderable difference in the radiosonde network between

0000 and 1800 UTC). Unfortunately, this is not infor-

mation the cycling analysis system can make use of.

Examining the results for the various channels of

AMSU-A displayed in Fig. 4, we see the fractional im-

pacts from the observation-space measure (Fig. 4d) re-

semble more closely those obtained with the state-space

approach when it uses the EV-norm (Fig. 4b). The

stratospheric channels, 12–14, have a large role. Here

again, we emphasize that this should not lead us to think

that the role of the troposphere-peaking channels is not

significant; it is simply that 6 h is enough time for the

model stratosphere to reset its own errors, stressing the

relevance of radiance assimilation at these levels. This

is not unreasonable since there are plenty of other data

in the troposphere and only those few channels in the

stratosphere. Still the relevance of assimilating radiances

in the troposphere is noticeable in the observation-space

measure. This can be seen in Fig. 5d, where similar re-

gions of significant impact from channel-6 brightness

temperatures are highlighted when compared with other

measures.

FIG. 5. Fractional impacts on the 24-h forecasts from channel 6 of AMSU on NOAA-18 for the state-space approach using (a) the

ET-norm, (b) the EV-norm, and (c) the R-norm, and (d) the observation-space approach using the R-norm.
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b. Role of verification

Let us now turn our attention to the role of the veri-

fication in light of the discussion in section 2d. As we

saw, the observation-space approach provides a way to

examine the matter by explicitly calculating, for exam-

ple, the first term on the right-hand side of (31) and the

left-hand side of the same equation. Using the GEOS-5

illustration considered here, Fig. 6 displays the time se-

ries of total observation impacts, for each 0000 UTC

analysis of August 2007 calculated in observation space

using the weights in (34), but when the verification is

taken to be (i) the observations [first term on right-hand

side of (31), dey; blue curve]; and (ii) the analyses con-

verted to observation locations [left-hand side of (31),

dey5a; green curve]. Note that the sum of all observation

impacts used to calculate the fractional impacts Fig. 3d

amounts to the sum of all impacts included in the time

series displayed by the blue curve in the current figure.

As a whole, it seems that the nearness of the blue and

green curves is confirmation of the hope that it is rea-

sonable to verify against the analysis, even at such short

ranges as 1 day. Also, from the discussion in section 2d,

the proximity of the curves is indication that the system

is not so far from optimality—the last term in (31) does

not appear to be very dominant—although there are

exceptions, such as seen on day 29 of the time series in

Fig. 6.2

These conclusions, however, cannot be taken too far.

Another, closer, look at the differences between veri-

fying against the observations versus verifying against

the analysis is presented in Fig. 7, where the total ob-

servation impact for the 0000 UTC analyses of August

2007 is partitioned into the different components of the

observing system. The blue bars are for when verifying

against the observations and the magenta bars are for

when the projected analyses are used for verification.

Verification against the analysis provides an overestimate

of the impacts for each observing system.

As pointed out in section 2d, similar calculations

cannot easily be done in state space, but we can employ

approximations such as those in (6). In practice, cal-

culations from these approximations automatically in-

volve verifying against the analysis. The red curve in

Fig. 6 shows the time series of total impact per analysis

time when the weights in (39) and the state-space-based

second-order formula in (6b) are used. The state-space

approach seems to overestimate the impact of the ob-

servations in the 1-day forecasts beyond what one gets

with the observation-space approach. Even when the

norms in the two approaches are made to resemble each

other, it is still the case that their corresponding errors

live in largely different spaces resulting in considerably

different total impacts.

c. OMB-based observation impacts

Though there are some clear similarities among re-

sults obtained with the state- and observation-space ap-

proaches and various norms, the truth is that the closer

one looks, the more differences one finds. These dif-

ferences become rather hard to reconcile with the idea

that results from observation impact on the forecasts are

to aid our ability to make improvements in the under-

lying data assimilation system. As pointed out at the

end of section 2, it is the opinion of this author that

measures directly linked to the data assimilation cycle

can naturally reduce some of the redundancy that

FIG. 6. Time series of total forecast error reduction calculated

from the state-space approach in (6b), with the norm in (39) (red

curve); the observation state approach using (11), with the weighting

matrix in (34), and verified against the observations (blue curve) or

against the analysis (green curve).

FIG. 7. Breakdown of observation impacts on the 24-h forecasts

calculated with the observation-space approach. The blue bars

show impacts when observations are used for verification; the

magenta are for when the analyses are used for verification. A

preliminary version of this result appeared in Todling (2009).

2 It is important not to forget that here, as in most works, the

expectation operator in expressions such as (31) is replaced with

a simple summation (average) as only a single realization is avail-

able in practice.
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norm-dependent approaches bring. Fortunately, the by-

products of any data assimilation system already provide

most of what is needed to diagnose its own reliability,

including how effectively various components of the

observing system are used. The statistics of the time

series of observation-minus-background (OMB) and

observation-minus-analysis (OMA) residuals provide

all needed information to allow such investigation to

take place. This is not to say the task is easy. There is

plenty of redundant information in the observing sys-

tem (and therefore in the OMBs and OMAs), there are

also observation and model biases that interfere with

the robustness of these statistics, and there are spatial

and temporal gaps in the observing system that make

the problems quite arduous. What we know from esti-

mation theory is that most of the information is found

in these residuals.

In this final section we then turn to the straightfor-

ward calculation indicated in section 2e, resulting from

considering the observation-space approach with m 5 1.

We construct so-called observation impacts from simply

the differences of normalized squared OMA and OMB,

as in (33). These are essentially the impact of observa-

tions on the analyses (referred to below as ‘‘0 h’’ impact).

The panels in Fig. 8 show results analogous to those in

Figs. 3 and 4, but here the 0-h fractional impacts are

evaluated in observation space. Concentrating first on

the summary plot of Fig. 8a we see considerable re-

semblance to the observation-space-based impacts on

the 24-h forecasts shown in Fig. 3d. A noticeable differ-

ence being that radiosondes and aircraft seem to play

a relatively larger role affecting the analysis cycle than

the 24-h forecasts; the roles of AMSU-A andAIRS seem

to be more dominant in impacting the 24-h forecast as

compared to radiosondes and aircraft. Turning to Fig. 8b,

the breakdown of fractional impacts for AMSU-A shows

a slightly dominant contribution coming from the largely

tropospheric channels 5–9. When comparing with the

24-h observation-space fractional impacts in Fig. 3d,

the stratospheric channels show less impact affecting

the cycling data assimilation than affecting the 24-h

forecasts. This is consistent with the view that when set

free the model tends to go back to the stratosphere it

likes, while during the assimilation cycle the model does

not have the opportunity to restore its stratospheric be-

havior (e.g., Bloom et al. 1996).

To provide further corroboration for the results

above, an experiment covering the more recent period

of December 2011 is briefly examined. The experiment

now takes the analysis to be at its present full 0.6258 3
0.58 horizontal resolution, and uses a more recent ver-

sion of GEOS-5 capable of handling the latest compo-

nents of the observing system, such as refractivity derived

from radio occultation observations from various plat-

forms of the Global Positioning System (GPSRO), the

Microwave Humidity Sounder (MHS), the Infrared At-

mospheric Sounding Interferometer (IASI), and the Ad-

vanced Scatterometer (ASCAT) on board the European

Meteorological Operational (MetOp-A) satellite. As be-

fore, observation impacts are only shown for 0000 UTC.

The comparison that follows is not meant to be exhaus-

tive. It is simply aimed at adding to the main points of

the present contribution.

Figure 9, is similar to Fig. 3, but now for December

2011, and it shows summaries of observation impacts

on the 24-h forecasts derived with the state-space

FIG. 8. Observations impacts on the 0-h forecast (analysis) calculated with the observation-space approach, when

weighting is based on the inverse of the observation error covariances. (a) A summary similar to those appearing in

Fig. 3; and (b) similar to those appearing in Fig. 4, and provides a breakdown of result for all platforms carrying

AMSU-A instruments in August 2007.
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approach using the ET-norm (Fig. 9a), and observation

impacts on the analyses derived with the observation-

space approach combining (33) with the weight in (34).

To avoid being repetitive, results from other norms and

approaches are not considered here. Caution should be

exercised when comparing results from Figs. 3a and 9a.

The first figure covers a summer month while the second

covers a winter month. And, more importantly, some

major components of the observing system change quite

dramatically. Beyond the new instrument types already

mentioned above, we also point out that NOAA-16 avail-

able in August 2007 is no longer available in December

2011, while NOAA-19 is only available during this latter

period; AMSU-B has basically been replaced with MHS;

and a decision was made not to use window channels of

AMSU-A in this more recent version of GEOS-5. This

is not a comprehensive list of changes in the observing

system, but cites the most important for the present

work. Even with all these differences, there are clear

similarities between the two time periods in terms of

which observing systems dominate. AMSU-A, radio-

sondes, and aircrafts are still the ones impacting most

the 24-h forecasts (see Fig. 9a). Next to them, AIRS is

quite dominant, too, but now shares the role with IASI

and the satellite winds; the lesser role played by the

satellite winds in the August 2007 experiment might be

associated with the considerably lower analysis reso-

lution in that experiment.

The most relevant comparison for the present work is

made by looking at the two panels in Fig. 9. When it

comes to influencing the analysis cycle (Fig. 9b), the role

of AMSU-A is not as dramatic as indicated by the 24-h

impact results (this is similar to what is found for August

2007; see discussion of results for Fig. 8). However, in

December 2011 the role of radiosonde is markedly larger

than that of AMSU-A. This reduced impact of AMSU-A

on the analysis is seen here as due to the addition of

IASI and GPSRO to the present period. In a sense these

new data types ‘‘steal’’ from the influence of AMSU-A;

indeed, even AIRS, which in August 2007 was seen as

a major contributor to the 0-h impact, has its role down-

played now, likely due to the same reason. Such com-

pensatory interplay among the various components of

the observing system has been noticed in the observing

system experiments of Gelaro and Zhu (2009). Compar-

ing the 24- and 0-h impacts, we also see some ranking

differences among the various observing systems. One of

the most noticeable changes is seen for GPSRO: 24-h

impacts lead us to thinkGPSROcontributes little, but the

role of GPSRO in aiding the analyses is undeniable. This

significant contribution of GPSRO to the analysis is

consistent with results from the work of Cucurull (2010).

Last, we look at the percentage of observations con-

tributing positively to the observation impacts. These

are calculated by simply counting the number of ob-

servations whose impacts are negative (beneficial) for

each instrument of interest, then dividing each result

by the corresponding total number of observations for

that instrument type, and multiplying the result by 100.

Figure 10 shows results for both the state-space- and

observation-space-based impacts on the 24- and 0-h

forecasts, respectively, as displayed in Fig. 9. The panel

on the right is analogous to the result shown by Gelaro

et al. (2010, their Fig. 5), though for a different time

period and observing system selection here. Gelaro et al.

(2010) remind us that scalar theoretical analysis in ide-

alized settings (M. Fisher 2006, personal communica-

tion; Ehrendorfer 2007) indicate that roughly 60%–65%

of the observations should contribute positively to the

background when the accuracy of both backgrounds

FIG. 9. (a) State-space, ET-norm, observation impact on the 24-h forecast and (b) observation-space,

R-norm, observation impact on the 0-h forecast (analysis); as in (a) in Figs. 3 and 8, respectively, but for

December 2011.
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and observations are comparable. Results such as the

one in Fig. 10a, suggesting that only roughly 50% of the

observations lead to positive impact on the 24-h fore-

cast, has led Gelaro et al. (2010) to the conclusion that

operational systems cannot be expected to perform at

theoretical levels. Results displayed in Fig. 10b state

otherwise: operational systems do corroborate the scalar

theoretical analysis. The bulk of the observing system

contributes at exactly the expected theoretical range,

that is, 60%–65% of the assimilated observations con-

tribute positively. This is further corroboration of what

was concluded while examining the result of Fig. 6,

that is, global measures indicate that current operational

data assimilation systems run near optimality. This is

not to say further improvements are not needed or pos-

sible. As results from Fig. 7 have indicated, there is still

plenty of room for improvements when we start looking

more closely. Similarly, results from Fig. 10 suggest work

needs to be done to bring performance of some ob-

serving systems to theoretical levels.

4. Conclusions

Studies of observation impact on the forecast have

relied on the approach put forward by Langland and

Baker (2004). A number of works have followed since.

The present work is a contribution that provides insight

on basic issues behind the technique. A few limitations

and difficulties associated with the basic approach have

been highlighted here, namely: (i) the need to rely on

a norm not directly linked to the underlying data as-

similation cycle; (ii) the need to rely on a verifying state;

(iii) the need to rely on the model adjoint; and last, (iv)

the added computational expense. Though (iii) has been

tackled in the work of Liu and Kalnay (2008) by gen-

eralizing the approach of Langland and Baker to work

within the context of ensemble data assimilation pro-

cedures, the other issues still remain. More complex is

the idea of using observation impacts derived from these

available techniques as an aid to improve on the use of

observations in the corresponding cycling data assimi-

lation system.

The present work identifies two approaches to ob-

servation impacts. The ‘‘traditional’’ method works in

state space, while an alternative is to define measures

of observation impact directly in observation space.

Arguing that results from observation impact studies

must be interpreted statistically, the present work re-

casts the problem in the language of estimation theory.

This allows studying more closely the assumptions in-

volved in the methodology. In particular, it becomes

clear that a state-space approach is more encompassing

than an observation-space approach, simply because ob-

servations span a smaller space than the full state space.

But this advantage quickly disappears when realizing

that the state-space approach requires a verification

state normally not available in practice. Under certain

conditions, the consequences of choosing the analysis

for verification are investigated, showing explicitly how

the corresponding observation impacts carry undesir-

able correlations with the verification. The observation-

space approach, on the other hand, allows verification to

be made against the observations therefore, in principle,

avoiding such undesirable correlations. Furthermore, the

observation-space approach permits evaluating what is

obtained when the analyses, instead of the observations,

are used for verification. It is shown that only under op-

timality can a system be indifferent to whether verifica-

tion is done against the observations or the analyses. It

is recognized in the present work that some of this ad-

vantage disappears in practice since observations are

usually bias corrected, thus making the observations also

FIG. 10. As in Fig. 9, but showing percentage of observations contributing positively to the (a) 24- and (b) 0-h

forecasts. The vertical line in both panels indicates the 50% beneficial mark for reference.
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correlated with the analysis. The effect of observation

bias correction on impacts derived from observation-

space approaches remains to be studied in future work.

The fifth generation of the Goddard Earth Observing

System (GEOS-5) is used to illustrate the main points of

the theoretical part of the present work. First, the role of

the norm used to defined the forecast aspect of interest

is investigated. Results from the, usual, largely tropo-

spheric measure are compared with those from when

the norm weighs the vertical evenly. Observation-space

considerations suggest investigating results from a third

norm based on the inverse of the observation error co-

variances projected onto state space. This is later compared

with a similar norm, but directly defined in observa-

tion space. Observation impacts on the 24-h forecasts

obtained with these different norms show considerable

similarities, but also show differences that might be dif-

ficult to sort out if results are to be used to try to revisit

the observing system used in the data assimilation sys-

tem to try to improve its cycled performance.

Second, GEOS-5 is also used to investigate the role of

the verification, and in particular the effect of using the

analysis for verification. Within the observation-space

approach, using the analysis instead of the observations

for verification seems to make only a small difference,

at least when it comes to the impact of the entire ob-

serving system on the 24-h forecasts. From the theoret-

ical discussion, this result is interpreted as indicative

of the assimilation system operating near optimality.

However, it is also shown that this interpretation cannot

be pushed too far. A closer look at the observation im-

pact for the individual components of the observing

system indicates impacts tend to be overestimated when

verification is done against the analysis. Moreover, when

the state-space approach uses a similar norm to calculate

observation impacts on the 24-h forecasts, the impacts

are an even larger overestimate than when derived in

observation space.

Ultimately, an argument is made that observation

impacts might as well be defined on the basis of the

time series of the readily available observation-minus-

background and observation-minus-analysis residuals.

The argument follows directly from theoretical consid-

erations. The main advantage of using these residuals to

define observation impacts is that whatever is learned

from them is immediately related to the cycling data

assimilation system. They reflect how observations af-

fect the analyses. They relate directly to the traditional

use of residuals going back to the works ofKailath (1968),

and largely explored by many works in the meteoro-

logical and oceanic data assimilation literature. It is

even shown that our present data assimilation systems

corroborate back-of-the-envelope calculations for how

much the assimilation of observations should in prin-

ciple, positively, impact the backgrounds.

The observation-space approach definition of obser-

vation impact used in the present work, namely the

difference between an observation-space error mea-

sure calculated for two consecutive analyses, was simply

employed for convenience of the mathematical analysis

and to facilitate comparison with the state-space ap-

proach. Evaluation of the impact of observations through

methods based on information content and degrees

of freedom for signal should be just as well suitable

(e.g., Chapnik et al. 2006; Lupu et al. 2011). The main

point being that observation-space approaches rely-

ing on observation-minus-background and observation-

minus-analysis residuals are the only ones directly

relating the effectiveness of the observations to the

quality of the data assimilation cycle.
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APPENDIX A

Proof of Equation (21)

In this appendix we derive expression (21), for linear

dynamics, making use of the typical assumption of time-

uncorrelated model errors. We start by making use of

the following recursion:

�
f
kjk2m 5Mk,k2m�

a
k2mjk2m2 �

m21

j50

Mk,k2j�
q
k2j , (A1)

expressing the forecast error at time tk initialized from

an analysis obtained at time tk2m, where �qk represents

the n-vector model error. Consequently, the expected

value of the outer product of this error vector with itself

defines the forecast error covariance:
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where the first equality is obtained by noticing that the

analysis error at time tk2m is uncorrelated with model

errors in its future, that is, for tk . tk2m, and the second

equality makes use of the fact that model errors are

uncorrelated in time and assumed to have covariance

Qk 5 h�qk(�qk)Ti.
Therefore, the forecast error difference DPk

becomes,

DPk[P
f
kjk2m112P

f
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k2m11jk2m)M

T
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where the last equality is obtained after application of

the usual one-time forecast error covariance propaga-

tion expression:

P
f
k2m11jk2m 5Mk2m11,k2mP

a
k2mjk2mM

T
k2m11,k2m

1Qk2m11 , (A4)

at tk2m11. This completes proof of (21).

APPENDIX B

Proof of Equation (28)

To derive an expression relating the perceived

and actual forecast error changes notice first that by

adding and subtracting the true state at time tk from

(5), the expected perceived error can decomposed

into

heykj‘i5 h(� fkj‘2 �yk)
TTk(�

f
kj‘ 2 �yk)i5Tr[Tk(P

f
kj‘1Py

k)]

2 2h(�yk)TTk�
f
kj‘i , (B1)

where �yk [ xyk 2 xtk is the error in the verification xyk,

and Py
k [ h�yk(�yk)Ti is its corresponding error covariance.

Inserting this in expression (9), the expected perceived

error change becomes

hdeyki5Tr[Tk(P
f
kjk2m111Py

k)]2 2h(�yk)TTk�
f
kjk2m11i2Tr[Tk(P

f
kjk2m 1Py

k)]1 2h(�yk)TTk�
f
kjk2mi

5Tr[TkDP
f
k]2 2h(�yk)TTk(�

f
kjk2m112 �

f
kjk2m)i

5 hdeki2 2h�ykTkMk,k2m11
~Kk2m11d

T
k2m11jk2mi

5 hdeki2 2Tr[~Kk2m11
T MT

k,k2m11Tkh�ykdTk2m11jk2mi] , (B2)

where the equality before last is obtained after using

(15) and (17), and we remind the reader again that

though the notation i j j resembles the estimation

theory notation for conditional means, the use here

is symbolic—this is the reason why the matrices in

the expression above can be moved outside of the

expectation operation h � i . This completes the proof

of (28).

APPENDIX C

Proof of Equation (29)

When the verification is chosen to be the underlying

analysis, that is, xyk 5 xakjk, the relationship between the

expected perceived and actual errors derived in appen-

dix B can be explored farther. In this case, the error
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cross-covariance matrix inside the trace term on the right-

hand side of (28) involves the analysis error �yk 5 �akjk.
To evaluate this cross covariance we notice first that

the residual vector dkj‘ can be approximated to first

order as

dkj‘5 yok 2 hk(x
f
kj‘)5 �ok 1 hk(x

t
k)2 hk(x

f
kj‘)

’ �ok 2Hkj‘�
f
kj‘ . (C1)

Furthermore, assuming the forecast error propa-

gates nearly linearly as in the propagation of analy-

sis error from time tk2m11 to time tk follows the

recursion:

�akjk5Mk,k2m11�
a
k2m11jk2m11

1 �
m22

j50

Mk,k2j(
~Kk2jdk2j,k2j212 �

q
k2j) , (C2)

and relates the analysis error at time tkwith the analysis

error from time tk2m11 all the way to time tk, plus a term

that amounts to the propagation of analysis increments

from all times between times tk2m12 to tk, and the prop-

agated contribution from all model error components,

�qk2j for j 5 0, . . . , m 2 2. This recursion is applicable

within the validity of piecewise linearizations of the vari-

ous time intervals between the times tk2m11 and tk.

Substituting (C2) in the cross-covariance term

in (28), and using that «ak2m11jk2m11 5 «
f
k2m11jk2m 1

~Kk2m11dk2m11jk2m, it follows that

D
�y5a
k dTk2m11jk2m

E
5 [Mk,k2m11�

f
k2m11jk2m 1Mk,k2m11

~Kk2m11dk2m11,k2m

D

1 �
m22

j50

Mk,k2j(
~Kk2jdk2j,k2j212 �

q
k2j)]d

T
k2m11jk2m

E
,

5Mk,k2m11(2P
f
k2m11jk2mH

T
k2m11jk2m 1 ~Kk2m11Gk2m11)

1 �
m22

j50

Mk,k2j
~Kk2j

D
dk2j,k2j21d

T
k2m11jk2m

E
5Mk,k2m11DKk2jGk2m11

1 �
m22

j50

Mk,k2j
~Kk2j

D
dk2j,k2j21d

T
k2m11jk2m

E
, (C3)

for observations yok 5 hk(x
t
k)1 �ok, and noticing that the

observation error �ok is uncorrelatedwith themodel error

�qk, for all times tk and t‘, as well as it is uncorrelated with

all forecast errors �
f
kj‘ calculated for forecasts issue for

‘ , k. This concludes the proof of (29).
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