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ABSTRACT

Assimilation of remotely sensed precipitation observations into numerical weather prediction models can

improve precipitation forecasts and extend prediction capabilities in hydrological applications. This paper

presents a new regional ensemble data assimilation system that assimilates precipitation-affected microwave

radiances into theWeather Research and Forecasting Model (WRF). To meet the challenges in satellite data

assimilation involving cloud and precipitation processes, hydrometeors produced by the cloud-resolving

model are included as control variables and ensemble forecasts are used to estimate flow-dependent back-

ground error covariance. Two assimilation experiments have been conducted using precipitation-affected

radiances frompassivemicrowave sensors: one for a tropical storm after landfall and the other for a heavy rain

event in the southeastern United States. The experiments examined the propagation of information in

observed radiances via flow-dependent background error auto- and cross covariance, as well as the error

statistics of observational radiance. The results show that ensemble assimilation of precipitation-affected

radiances improves the quality of precipitation analyses in terms of spatial distribution and intensity in ac-

cumulated surface rainfall, as verified by independent ground-based precipitation observations.

1. Introduction

Precipitation is a crucial component in the hydrolog-

ical cycle of the earth and has a profound influence on

the weather and climate at global and regional scales. In

recent decades observations of precipitation with global

coverage have become available from spaceborne in-

struments. Spaceborne microwave sensors have the

capability to observe precipitation via interaction of

hydrometeors in the atmosphere with the radiation field.

Following the success of the Tropical Rainfall Measuring

Mission (TRMM; Simpson et al. 1996), the Global Pre-

cipitation Measurement (GPM) mission, led by the Na-

tional Aeronautics and Space Administration (NASA)

and the Japan Aerospace Exploration Agency (JAXA),

will be launched in 2014 and provide the next generation

of precipitation observations from a constellation of re-

search and operational microwave sensors covering all

parts of the world every 2–4 h (Hou et al. 2008).

With the vast amount of satellite precipitation ob-

servations becoming available, it is important to make

effective use of these data in numerical weather pre-

diction (NWP) and hydrological applications to improve

the quality of model precipitation analyses and fore-

casts. However, the assimilation of precipitation obser-

vations into the NWP system has significant challenges.
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In operational global or regional data assimilation sys-

tems, satellite observations in cloudy and precipitating

regions are often not used due to difficulties that arise

when incorporating complex cloud and precipitation

processes into data assimilation algorithms. Data as-

similation is an estimation procedure of combining in-

formation from model forecasts, observations, and

statistical descriptions of their uncertainties. When cloud

and precipitation are present, model forecasts have er-

rors with large variability in spatial and temporal scales,

and remotely sensed observations have more compli-

cated nonlinear sensitivity to model state variables. For

instance, a variational assimilation algorithm such as

three- or four-dimensional variational data assimilation

(3DVAR or 4DVAR) requires a tangent linear model

and its adjoint for nonlinear moist physics parameteri-

zation and radiative transfer with the presence of hy-

drometeors. Since cloud and precipitation processes have

a flow-dependent nonlinear relationship to the model

state variables in NWP, even careful linearization and

simplification to the model physics parameterization

may sometimes fail to yield an optimal solution for

solving the analysis equation, as discussed in Lopez

(2007) and Errico et al. (2007). In practice, operational

systems have adopted various pragmatic strategies such

as strict data quality control and relinearization of non-

linear model physics between low-resolution minimiza-

tions (Bauer et al. 2010). Furthermore, a background

error covariance needs to adequately characterize errors

associated with cloud and precipitation processes. But

precipitation and clouds are inherently highly variable in

space and time. It is difficult to represent their error

distributions with a prescribed static and isotropic back-

ground error covariance, as has been commonly used in

operational variational analyses. Montmerle and Berre

(2010) used an ensemble-based method to investigate

the variations of background error covariance between

precipitating and nonprecipitating regions, and introduced

a two-term approach for a heterogeneous background

error covariance with specific error representations for

precipitating areas. When considering all-sky radiance

assimilation, clouds and precipitation also cause larger

discrepancies between model-simulated and observed

radiances, particularly where the forecast and observa-

tions disagree over clear- or cloudy-sky conditions (Geer

and Bauer 2011).

Over the last decade, various approaches have been

developed and tested. Retrieved surface rain rates from

satellite observations have been assimilated into the

National Centers for Environment Prediction (NCEP)

3DVAR system (Treadon et al. 2002). Global precip-

itation analyses have been produced by assimilating

satellite rainfall retrievals into the Goddard Earth

Observing System (GEOS) global Data Assimilation

System (DAS) using a variational methodology with

the model moist physics as a weak constraint (Hou

et al. 2004; Hou and Zhang 2007). The European Centre

for Medium-Range Weather Forecasts (ECMWF) pio-

neered the direct assimilation of microwave radiance

affected by precipitation, first in a 1 1 4DVAR assimi-

lation approach (Bauer et al. 2006a,b) and, later, in an

implementation of all-sky radiance assimilation in the

operational 4DVAR system (Bauer et al. 2010; Geer

et al. 2010).

With the increase in computational power in recent

decades, there have been considerable research activi-

ties in ensemble data assimilation techniques and high-

resolution numerical modeling. Significant progress has

been made in the development and tests on ensemble

data assimilation systems. At global scales, ensemble

Kalman filter schemes have been developed and tested

with operational NWP systems using real atmospheric

observations (Buehner et al. 2010a,b; Whitaker et al.

2008; Tong and Xue 2008a,b). At mesoscales, Meng and

Zhang (2008) developed an ensemble Kalman filter for

mesoscale data assimilation and conducted performance

comparisons to a 3DVAR system. Dowell et al. (2011)

assimilated ground-based radar reflectivity observations

in an ensemble Kalman filter to investigate the bias er-

rors in predicted rain mixing ratio and size distribution

from microphysics in the prediction model. Their as-

similation experiment of a city supercell also demon-

strated a positive data impact on the storm-scale analysis.

New developments at major operational centers have

incorporated ensemble assimilation methodologies, such

as a hybrid variational-ensemble data assimilation scheme

atNCEP (Kleist 2010) and an ensemble of low-resolution

4DVAR data assimilation systems being introduced at

ECMWF (Isaksen et al. 2010). However, most of the

development and progress have been limited to using

clear-sky radiance and conventional data, or all-sky ra-

diances over ocean surfaces only. Little progress has

been reported in using radiance observations under

cloudy and precipitating conditions over land, where

improvement is particularly needed for hydrological

applications.

The immediate appeal of ensemble methods for pre-

cipitation assimilation is that the flow-dependent error

covariance dynamically reflects the up-to-date occur-

rence of rain events and storms, and the ensemble of

nonlinear forward model operations projects informa-

tion between control variables and observables for pre-

cipitation processes. To test the feasibility of using an

ensemble approach for assimilating cloud and precipi-

tation observations at cloud-resolving scales, a prototype

ensemble assimilation system using Weather Research
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and Forecasting Model (WRF) has been developed to

downscale satellite precipitation data, as previously

reported in Zupanski et al. (2011). In this paper we

present further details of the NASA regional WRF

Ensemble Data Assimilation System (WRF-EDAS) and

experimental results of assimilating spaceborne obser-

vations of precipitation. For the first time since utilizing

direct assimilation of precipitation-affected radiance

into a high-resolution NWP system, several new ap-

proaches are developed in the WRF-EDAS: (i) flow-

dependent background error covariance, (ii) a nonlinear

cloud physics and all-sky radiative transfer to link the

control variables and observations, (iii) prognostic hy-

drometeors from cloud-resolvingmodel physics as a part

of the control variables in addition to dynamical vari-

ables, and (iv) spaceborne observations of precipitation

over land. The ultimate aim of this research is to bring

together the information from cloud-resolving model

simulations and observations frommultiple platforms to

produce a dynamically consistent precipitation analysis

at the scale suitable for hydrological applications.

In the following sections we give an overview on the

system configuration and the assimilation algorithm.We

present two assimilation experiments using precipitation-

affected radiance data over land: a case from Tropical

StormErin, to examine the estimation of flow-dependent

background error covariance, and a case from a south-

eastern U.S. heavy rain event, to investigate error statis-

tics in observational radiance space and to evaluate the

system’s performance in bringing observation impact to

precipitation forecasts. The last section gives conclusions

and future research directions.

2. System overview

The NASA regional WRF-EDAS is an ensemble as-

similation system designed to assimilate precipitation-

affected radiances along with conventional observations

into WRF at cloud-resolving scales. A prototype of the

system described in Zupanski et al. (2011) provides the

baseline for the current system configuration.

The Advanced Research core of the WRF (ARW)

with the microphysics schemes of the Goddard Cumulus

Ensemble (Tao 2003; Zeng et al. 2008) provides en-

semble forecasts for the flow-dependent background

covariance estimation and the first-guess fields. The

model domains can be configured as nested grids with

decreasing horizontal resolutions. Figure 1 shows the

model domain configurations that are used in the two

assimilation experiments. There are 31 vertical levels

and the top level is set at 50 hPa. An ensemble of

forecasts is constructed by applying perturbations to the

model state variables at the initial time of the WRF 3-h

forecasts. The perturbations are generated according to

the error statistical characteristics described by the

analysis error covariance. Parameters at lateral domain

boundaries and at the land surface are unperturbed. The

perturbations represent errors in the initial model state,

and forecast errors evolve and propagate through the

short-term forecast in each ensemble member. In addi-

tion to the ensemble, an unperturbed forecast is pro-

duced as the central forecast. The ensemble spread is

calculated at the end of the 3-h forecast time from the

difference between each ensemble member and the

central forecast, and is used as a base for the estima-

tion of the background error covariance and as the

ensemble inputs to observation operators.

The Goddard Satellite Data Simulator Unit (Matsui

et al. 2009) is incorporated into the forward observation

operators for satellite precipitation-affected radiances.

A delta-Eddington two-stream radiative transfer with

slant path view (Kummerow et al. 1996) calculates the

microwave brightness temperature with a given back-

ground environmental and hydrometeor state at the

model resolution. The radiative transfer model is used in

FIG. 1.WRF domain configurations: (a) Tropical StormErin and

(b) the southeasternU.S. heavy rain event. Resolutions are at 9 and

3 km for the outer and inner domains, respectively.
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TRMMoperational retrieval products and its accuracies

are evaluated using independent precipitation mea-

surements (Lin and Hou 2008). To simulate the bright-

ness temperatures as what would be observed by a

spaceborne instrument, the instrument field of view

(FOV) is taken into account for each sensor. A collec-

tion of simulated brightness temperatures within an

observation FOV is convoluted with a Gaussian weight-

ing to obtain one first-guess brightness temperature cor-

responding to the sampling location. For instance, for

an observation FOV of 4 km 3 7 km (85-GHz TRMM

Microwave Imager) with the center at a specific latitude

and longitude location, there are up to six model grid

boxes within the FOV area. The simulated first-guess

brightness temperatures in these model grid boxes are

convolved to produce the first guess to compare with the

observation. For the simulation under cloudy and pre-

cipitating condition, Mie spheres are assumed for all

hydrometeors. Microphysical assumptions such as drop

size distribution and ice-particle characteristics are built

into the Mie calculation. Lookup tables containing ex-

tinction and scattering cross sections are precomputed

to save computing time during the assimilation cycling.

Dielectric properties of frozen hydrometeors are cal-

culated based on the Maxwell–Garnett mixing theory

for ice and air mixtures. Land surface emissivity is simu-

lated as a function of polarization and surface parameters.

With the focus on cloud–precipitation data assimila-

tion, WRF-EDAS extends its control variables to in-

clude microphysical variables (prognostic mixing ratio

of rain, snow, cloud water, cloud ice, and graupel). The

system uses an ensemble of nonlinear forward model

simulations to link the model space and observed space,

obviating the need for a tangent linear model and its

adjoint for nonlinear cloud and precipitation processes.

The assimilation algorithm is based on an ensemble

maximum likelihood filter (Zupanski 2005; Zupanski

et al. 2008), which combines ensemble-based forecast

error covariance propagation and the maximum likeli-

hood estimate to obtain an optimal analysis solution.

The maximum likelihood ensemble filter algorithm

seeks the maximum of a posterior probability density

function, which is achieved by an iterative minimization

of a cost function:

J(x)5
1

2
(x2 xb)

TP21
f (x2 xb)

1
1

2
[y2H(x)]TR21[y2H(x)] , (1)

where x is the best estimate of the atmospheric state

represented here by the control variables including wind,

temperature, moisture, and five types of hydrometeors;

xb represents the model forecast for the estimation

problem; Pf is the forecast error covariance; y is the

observation vector; H denotes the observation opera-

tors, which are nonlinear for satellite radiance obser-

vations; and R is the observation error covariance.

Different from traditional variational approaches with

prescribed Pf , and a tangent linear model with an ad-

joint forH, the maximum likelihood ensemble filter uses

a control variable transformation to solve the analysis

equation in ensemble space. Hessian preconditioning is

defined by the following variable transformation:

x2 xb5P1/2
f fI1 [z(xb)]

TZ(xb)g21/2j , (2)

where j is the control variable in the ensemble space and

the transformation matrix is equal to the inverse of the

square root Hessian of the cost function (1). The matrix

Z consists of column vectors that represent the differ-

ence between the perturbed and central first-guess fields

in observation space. The square root analysis error

covariance is obtained by the inverse of the square root

Hessian via minimization. The column vectors of the

square root analysis error covariance are used as per-

turbations for the next assimilation cycle ensemble

forecasts. The algorithm belongs to the category of en-

semble square root filters. If the state vector dimension

is NS, and the ensemble size is NE, the square root

forecast error covariance is an NS 3 NE matrix. For the

practical reason of computing resources, the ensemble

size is typically set at 32 in our experiments. To filter

the noise due to a relatively small ensemble size, a lo-

calization scheme is implemented similar to the weight-

interpolation method (Yang et al. 2009). The basic

strategy is to partition the model domain into smaller

local domains. A compactly supported covariance func-

tion of Gaspari and Cohn (1999) is employed to ensure

smooth transitions between local domains. The inter-

polation is applied after the control variables are trans-

formed into ensemble space, and the iterative nonlinear

minimization is performed locally.

3. Tropical Storm Erin case study

a. Experiment setup

Tropical StormErin was formed in theGulf ofMexico

in August 2007. This tropical storm was especially dif-

ficult to predict, because after landfall it reintensified

over Oklahoma on 19 August 2007, producing hurricane

strength winds and heavy precipitation (Arndt et al.

2009). The case was used in a test on the prototype of the

regional WRF-EDAS for evaluating the system’s per-

formance in assimilating the operational conventional
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and clear-sky satellite radiances, as well as the viability

of direct radiance assimilation in the system (Zupanski

et al. 2011). With its compact storm structure and rapid

temporal evolution, Erin provides a good case for studying

the flow-dependent background error covariance esti-

mated from ensemble forecasts, and the influence of

assimilating precipitation-affected radiance observa-

tions on model-predicted precipitation.

In this experiment setting, the WRF forecasts are

configured with an outer domain and an inner domain,

with horizontal grid spacings of 9 and 3 km, respectively.

The domain position and area are shown in Fig. 1a. The

assimilation is performed every 3 h, with an ensemble

size of 32. The assimilation cycling is from 1200 UTC

17 August to 1200 UTC 19 August 2007. The initial anal-

ysis covariance is constructed from 32 lagged WRF fore-

casts, and is used to apply perturbations to the ensemble

forecasts in the first cycle. The conventional data and

clear-sky radiances in selected channels of the Advanced

Microwave Sounding Unit (AMSU-A, AMSU-B) and

High-Resolution Infrared Radiation Sounder (HIRS)

are assimilated when available in the experiment do-

main. Precipitation-affected radiances from theAdvanced

Microwave Scanning Radiometer for the Earth Ob-

serving System (AMSR-E) are assimilated at 0900 UTC

19 August 2007.

b. Forecast error covariance

Within the context of ensemble assimilation of pre-

cipitation observations, the evolution of hydrometeors

from a cloud-resolving model and its associated errors

are estimated using perturbed ensemble forecasts and

available observations. The ensemble-estimated back-

ground error covariance is heterogeneous and flow de-

pendent. An example is shown in Fig. 2, depicting the

contrast in background error variances in precipitating

and nonprecipitating regions in the case of Tropical

Storm Erin. Using simulated radar reflectivity as a pre-

cipitating region mask (minimum reflectivity detection

of 10 dBZ) at analysis times, the error variances of the

hydrometeors and water vapor are collected at each

model level and horizontally averaged in precipitating

and nonprecipitating areas, respectively. It is evident

that the background state uncertainty is significantly

larger in the storm region; not only in hydrometeors, but

also in the water vapor and temperature fields. This in-

formation will potentially allow more corrections from

available observations in the area during the data as-

similation procedure. Figure 3 illustrates the temporal

evolution pattern of the background errors represented

in the flow-dependent background error covariance.

The top panels in Fig. 3 show the error standard de-

viations of the rainwater and water vapor at the 850-hPa

model level when the storm was just moving into the

inner domain. The errors in the background variables

are propagated by the flow; the horizontal structure of

the error standard deviations is changed and moved

along the storm track as shown in the bottom panels of

Fig. 3.

The off-diagonal elements in the multivariate error

covariance represent the underlying relationship be-

tween errors of different variables or at different loca-

tions. Through the auto- and cross covariance, the

information from an observation at one location can

spread to nearby locations and to other variables as well.

In the ensemble-based estimation of background error

covariance, these relationships are mainly determined

by the error growth associated with the dynamics and

physics in forecasts. For instance, in assimilations of

precipitation-affected microwave radiance over land,

we rely on the scattering signals from ice or snow hy-

drometeors at themidlevelmore than rainwater at lower

levels in the atmosphere. To illustrate how error co-

variance responds to an isolated unit perturbation, we

take a look at two variables, Z and S, from an ensemble

of size NE, and the corresponding error covariance can

be represented as a block matrix:

P5P1/2PT/25

�
Z Q

QT S

�
, (3)

where Z and S represent the error autocovariance, with

diagonal elements as error variance and the off-diagonal

elements as the error covariance between different lo-

cations. Here, Q represents the error cross covariance

between the two variables, with diagonal elements for

the same locations and off-diagonal ones for different

locations. When an observation generates an analysis

perturbation on one variable at one location, a corre-

sponding portion of the Z, S, and Q can be plotted in

model coordinates to illustrate the analysis response

to the isolated unit perturbation. For example, if there

is a microwave radiance observation sensitive to snow

scattering at a location (34.48N, 99.98W), an analysis

perturbation on the snow profile at the corresponding

model grid at level 17 is generated. By plotting the

corresponding portion of the background error cross

covariance in the model grid space, Fig. 4 (top left)

shows the vertical error cross covariance between this

snow perturbation and the rainwater perturbation in

a vertical cross section. It depicts the strong vertical

correlation between forecast errors in snow content and

rainwater in this storm environment. In other words, if

a radiance observation senses scattering from the snow

content at one location, this information will be ex-

tended to generate an analysis response in the rainwater
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in the column below and, therefore, influences the sur-

face rainfall. Figure 4 (bottom left) shows the horizontal

error cross covariance of snow and rainwater (at 850 hPa),

with localized correlation length. The error cross co-

variance of the snow and graupel shown in Fig. 4 (top

and bottom right) indicates a positive error correlation

between the two microphysical variables. There are

flow-dependent structures of error cross covariance be-

tween hydrometeor variables and dynamical variables,

which provide a means for the observation information

on hydrometeors to influence the dynamical fields as

well. In this storm case, the horizontal error cross co-

variance between the snow perturbation and the wind

indicates a vortex strengthening (not shown).

The background error covariance and control vari-

ables are crucial components of the data assimilation

system. With the ensemble assimilation approach, ob-

servation information influences both the initial states

and the perturbations to the ensembles. The storm dis-

placement problem sometimes occurs in model forecasts.

FIG. 2. Domain-averaged profiles of the background error standard deviations for precipitating (black) and

nonprecipitating (gray) regions at 0300 UTC 19 Aug 2007. As labeled, the mixing ratio of rainwater, mixing ratio of

snow, mixing ratio of water vapor, and graupel (all in g kg21).
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This can significantly affect the accuracy of the error

covariance estimation, and the effectiveness of extract-

ing information from observations located in the storm

region. Though beyond the scope of this paper, there are

ongoing research efforts to expand the ensemble spread

accounting for phase errors of storms, which will be

reported upon in the future.

c. Impact of radiance observations to precipitation
forecast

From a precipitation perspective, passive microwave

sensors provide measurements of the hydrometeor dis-

tribution in the atmosphere. AMSR-E is a 12-channel,

six-frequency passive microwave radiometer system. It

measures horizontally and vertically polarized bright-

ness temperatures at 6.9, 10.7, 18.7, 23.8, 36.5, and

89.0 GHz. In this case study one swath of level 1b

AMSR-E radiance data is available in the storm region

around the peak time of the reintensification, as shown

in Fig. 5a. A pair of assimilation runs is conducted using

the regional WRF-EDAS for one assimilation cycle at

0900 UTC 19 August 2007. Starting from the same

background, one assimilates all-sky radiance from

AMSR-E at 89.0 GHz, and the other without using

AMSR-E data. The observation error standard deviation

for this channel is prescribed at 20 K. After the mini-

mization the first-guess departures in 89 GHz are re-

duced, as shown in Fig. 5b. The error standard deviation

is reduced by 31%. The impact on the surface precip-

itation forecast of using AMSR-E is examined by com-

paring the accumulated surface precipitation from two

3-hWRF forecasts issued from the analyses at 0900 UTC

(with and without AMSR-E). Both forecast are in the

inner domain at 3-km resolution. The ground-based stage

IV surface rain observations (Lin andMitchell 2005) are

used as independent verification data, shown in Fig. 5c.

The assimilation of AMSR-E in the storm region has an

evident impact on the short-term precipitation forecast.

The surface rain intensity distributions of two forecasts

are quite different in the modest and high rain regimes,

as illustrated by the histograms shown in Fig. 5d. The

assimilation of the AMSR-E radiance enhanced the

FIG. 3. The evolution of the background error standard deviation represented in the flow-dependent back-

ground error covariance at the 850-hPa model level, during Erin’s reintensification period (18–19 Aug 2007).

(top) The error standard deviations at 0600 UTC 18 Aug 2007 for (left) rainwater (g kg21) and (right) water

vapor (g kg21). (bottom) The error standard deviations at 0300 UTC 19 Aug 2007 for (left) rainwater and (right)

water vapor.
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storm strength by promoting more intense precipitation,

with a better level of agreement in the heavy rain bins

with the distribution of verification data. There is deg-

radation in the 40–80-mm bin, likely because analysis

increments increase rain intensity only where moderate

rain already exists, but fail to generate moderate surface

precipitation from nonraining regimes. The precipitation

forecast error standard deviation using a point-to-point

comparison does not show statistically significant im-

provement (10.2 versus 10.3 mm for 3-h accumulation).

These results illustrate the complexity encountered when

transferring information in precipitation-affected radi-

ance to subsequent surface precipitation prediction.

Nevertheless, the data assimilation framework is viable

for this task.

4. Experiment involving a southeastern U.S. heavy
rain event

a. Experiment design

In September 2009 a persistent low pressure system

settled over the Mississippi River valley, causing

a week of heavy rain that dumped more than 10 in.

across northern and central Georgia, including more

than 13 in. in the Atlanta metropolitan area. It was

reported that the resulting floods broke several high-

water marks that dated back to 1919.We chose this case

to carry out the experiment with a relatively long cy-

cling period to collect error statistics in precipitation-

affected radiance over land, and to investigate if the

regional WRF-EDAS is capable of effectively using

FIG. 4. Background error cross covariance, illustrated by plotting a portion of the error covariance corresponding

to a single observation perturbation on the snow mixing ratio at model level 17 (600 hPa), 34.48N, 99.98W, vali-

dated at 0300 UTC 19 Aug 2007. (top left) Vertical error cross covariance of snow and rainwater (at 34.48N),

(bottom left) horizontal error cross covariance of snow and rainwater (at 850 hPa), (top right) vertical error cross

covariance of snow and graupel (34.48N), and (bottom right) horizontal error cross covariance of snow and graupel

(at 700 hPa).
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precipitation-affected radiance data to reduce errors in

WRF precipitation.

The WRF forecast is configured with two domains in

the southeasternUnited States (Fig. 1), with 9- and 3-km

grid spacing, respectively. The cycling period starts at

1200 UTC 12 September 2009, and runs for 80 cycles

total with a 3-h assimilation interval. The ensemble size

is 32. In the first cycle, the initial perturbations to the

ensemble forecasts are generated from a covariance

of 32 lagged forecasts, and the global analysis is inter-

polated into the resolution of the outer domain as the

initial conditions. It takes about four cycles to spin up

the ensemble systemwith dynamical state updates in the

background error covariance. We use the entire cycling

period for monitoring the overall system performance,

and we use the heavy rain event in Georgia from 15 to

22 September 2009 for statistics of radiance innovations

and accumulated precipitation.

Parallel to the WRF-EDAS assimilation cycling, a

WRF gridpoint statistical interpolation 3DVAR run is

carried out as a reference control experiment (WRF-

GSI-CNTR). The differences in this control experiment

and the ensemble assimilation system are summarized in

Table 1. The contrast between the reference control and

the ensemble assimilation emphasizes the new features

of the regional WRF-EDAS, so that comparisons of the

results in analyses and precipitation forecasts provide an

evaluation of the performance of the regional WRF-

EDAS and its capability to use precipitation-affected

radiance data.

In addition to the two assimilation runs mentioned

above, a data denial experiment (WRF-EADS-CNTR)

is also performed to focus on the precipitation-affected

radiance data impact upon the WRF ensemble assimi-

lation system. It is configured in the same way as the

WRF-EDAS run, but without using observations of

precipitation-affected radiances.

All experiments use a common set of conventional

data and clear-sky radiances from selected AMSU-A

and Atmospheric Infrared Sounder (AIRS) channels.

The quality control and bias correction on these data are

applied using the schemes from the operational GSI sys-

tem. In addition, the WRF-EDAS run uses precipitation-

affected radiances fromAMSR-E andTRMMMicrowave

FIG. 5. Precipitation from Tropical Storm Erin. (a) Observed brightness temperature depression from the

AMSR-E 89-GHz V channel at 0900 UTC 19 Aug 2007. (b) Comparison of observed 89-GHz V-channel brightness

temperature with simulated brightness temperature from the first guess (blue) and the analysis (red), with a 31%

reduction in the error standard deviation. (c) Stage IV surface precipitation during 0900–1200 UTC 19 Aug 2007.

(d) Precipitation distribution during 0900–1200 UTC 19 Aug 2007: black, Stage IV observations; red, WRF forecast

with AMSR-E assimilation; and blue, WRF forecast without AMSR-E assimilation.
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Imager (TMI) level 1b data. TMI provides channels

from 10 to 85 GHz, with vertical and horizontal polari-

zation (V or H): 10V/H, 19V/H, 22V, 37V/H, and 85V/H,

with FOV sizes of 60 km 3 36 km, 30 km 3 18 km,

27 km 3 16 km, 16 km 3 10 km, and 7 km 3 4 km,

respectively.

b. Observational errors and data selection

In direct radiance assimilation, the departure of a

model-simulated radiance from observations is expressed

as the radiance innovation [y 2 H(x)], where y is the

brightness temperature observed by the microwave in-

strument and H(x) is the simulated radiance through

a nonlinear observation operator, consisting of a spa-

tiotemporal matching and a radiative transfer model.

All of the observations within 90 min of the current

analysis time are included. Each observed radiance pixel

centered at a geophysical location is collocated with

a model grid point using a nearest-point scheme. Then,

the model grid point is used as the center point of the

FOV of the beam convolution for the simulated radi-

ance. Finally, the radiance innovation is calculated at

each collocated grid point.

The choice of the channels is based on the surface

type. Over land, the scattering signature from the frozen

precipitation aloft is the dominant information source

for inferring precipitation reaching the surface. In this

experiment the high-frequency 89-GHz AMSR-E and

85-GHz TMI channels are selected for their sensitivity

in registering scattering signals. The rest of the channels

are not assimilated due to the difficulty in distinguishing

emission signatures of liquid water content in the at-

mosphere from the highly variable land surface.

The data selection for precipitation-sensitive radiance

considers three scenarios at each observed location:

1) the observation detects precipitation, but the first

guess indicates no precipitation; 2) the first guess shows

precipitation, but the observation is not able to detect

precipitation; and 3) both the observation and the first

guess agree on the precipitating conditions. The obser-

vations at locations fitting these scenarios are selected

into the assimilation procedure. For our targeted ap-

plication of assimilating precipitation-affected radiance

over land, a screening approach following Wilheit et al.

(2003) is adapted from precipitation retrievals over land.

At each observation location, a scattering index for land

(SIL) is calculated as a measure of depression due to

scattering by precipitation:

SIL5 451:92 0:44Tb19V2 1:775Tb21V

1 0:005 75Tb221V2Tb85V . (4)

A location is identified as in the precipitating region if

the SIL value is greater than 10 K. At each location two

SIL values are calculated: one from the observed radi-

ance and one from the simulated radiance. The values of

the two SIL results determine to which scenario, as de-

scribed above, the current location will belong. An ex-

ample of using SIL to identify precipitating region is

given in Fig. 6. The top panel shows the ground obser-

vations of surface rain from stage IV data. The middle

panel in Fig. 6 shows the brightness temperatures from

the TMI 85-GHz V channel, with significant brightness

temperature depression. The SILvalues based on signals

from three TMI channels are plotted in the bottom

panel of Fig. 6, where the area of SIL values greater than

10 K shows high correlation with the precipitating re-

gion as indicated in the ground observations.

With the data selection described above, radiance

innovations are sampled from observations and simu-

lations to generate observation error statistics. Figure 7

shows the histograms of radiance innovation of the TMI

85-GHz V channel, sampled from the sustained precip-

itation event (15–22 September 2009). Unlike clear-sky

radiance observations, the precipitation-affected radi-

ance innovation distributions have different bias char-

acteristics that depend on the precipitation condition at

sampling locations. For instance, the top panel in Fig. 7

shows a 6-K bias sampled over where both the first guess

and the observation agree there is precipitation. The

middle panel in Fig. 7 shows a collection of samples

TABLE 1. Experiment system comparison: WRF-EDAS and WRF-GSI for the case of the southeastern U.S. heavy rain event.

Experiment system Regional WRF-EDAS Regional WRF-GSI

Control variable U, V, P, Q, T, U, V, P, Q, T

Rain, snow, graupel, cloud water, cloud ice

Background error covariance Flow dependent Prescribed

Observations Conventional data Conventional data

Clear-sky AMSU-A AIRS Clear-sky AMSU-A, AIRS

Precipitation-affected AMSR-E, TMI

Radiance simulator Clear-sky radiance transfer model for AMSU-A, AIRS Clear-sky radiance transfer model for

AMSU-A, AIRSAll-sky radiance transfer model for AMSR-E, TMI
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where the first guess indicates no precipitation, but the

observations detect rain; therefore, the distribution ex-

hibits a negative mean (observations show a brightness

temperature depression, while first guesses have typical

clear-sky brightness temperatures). The bottom panel in

Fig. 7 shows an opposite bias sampled over where the

first guess indicates precipitation while the observations

indicate no rain. This phenomenon poses a challenge

for developing an effective bias correction method for

precipitation-affected radiance. The predictors chosen

for clear-sky conditions are no longer suitable, and new

predictors need to reflect the precipitation conditions

represented both in the first guess and the observations.

In the current implementation, no online bias correc-

tion is applied to the radiance observations under pre-

cipitation conditions. The observation error standard

deviations are defined with consideration taken of dif-

ferent scenarios, particularly over where the observa-

tions and model simulations disagree on precipitation

conditions. In this experiment the radiance observation

error standard deviations for 85-GHz TMI data are

FIG. 6. Observed precipitation in the southeastern United States

at 1800 UTC 19 Sep 2009: (top) surface rainfall from stage IV data

(mm h21), (middle) TMI 85-GHz V radiance observations (K),

and (bottom) SIL results based on signals from TMI 19-GHz V,

21-GHz V, and 85-GHz V channels (K).

FIG. 7. Histograms of radiance innovation from the TMI 85-GHz

V channel, sampled from the WRF-EDAS experiment of the

southeastern U.S. heavy rain event (15–22 Sep 2009): blue, first-

guess departure; red, analysis departure. Samples taken where

(top) both the first guess and the observation indicate precipitation,

(middle) the first guess indicates no precipitation but the obser-

vation detects rain, and (bottom) the first guess indicates pre-

cipitation but the observation indicates no rain.

764 MONTHLY WEATHER REV IEW VOLUME 141



prescribed at 15 K for scenario 1 and 20 K for scenarios

2 and 3. The observation errors are assumed to be spa-

tially uncorrelated. A similar procedure is performed for

AMSR-E data, with error standard deviations of 18 K

for scenario 1 and 20 K for scenarios 2 and 3. The cur-

rent quality control process rejects an observation where

the innovation is larger than 3 times the observation

error standard deviation in any of the scenarios. A new

predictor using observation-based and simulation-based

SIL is being developed for bias correction and quality

control, with an approach similar to the symmetric cloud

amount method proposed in Geer and Bauer (2011).

It should be noted that the microwave observations

at high frequency have low sensitivity to shallow warm

precipitation. There are cases in which the observations

do not detect precipitation where warm rain is present

at lower levels. This can cause a positive bias in radiance

innovations in light, warm rain regions. In the current

system this issue is not yet addressed, and there are plans

to develop a bias correction scheme to overcome this

problem using information from low-frequency signals

and observation-based land surface emissivity estimation.

c. Analysis performance

The WRF-EDAS assimilates the observations men-

tioned above and a minimization procedure is carried

out at each analysis time in ensemble space. The result

is projected in observation space as minimized depar-

tures between the observed and estimated radiances.

As shown in Fig. 7 comparing the first-guess departure

(blue) and the analysis departure (red), the discrep-

ancies between the observed and model-simulated ra-

diances in precipitation regions are reduced, with the

analysis error variance smaller than that of the first

guess. The radiance departures for the first guess and

analysis are sampled at observation locations. This dem-

onstrates the capability of the ensemble assimilation

system in making corrections to hydrometeors and

other precipitation-related state variables via minimi-

zation of the discrepancy between model-simulated and

instrument-observed radiances in precipitating regions.

The error covariance of the least squares estimates

can be expressed in terms of the error covariance of the

data. We define r as normalized innovations after the

analysis solution is obtained and weighting the data as

described in the cost function (1):

r5 (R1HPHT)21/2[y2H(xa)] . (5)

The statistical properties of the a posteriori residual

rTr are a function of the observation and background

errors. The x2 property (Tarantola 1987, section 4.3.6)

states that if observation and background errors are

uncorrelated and with a correct estimation of their co-

variance, the a posteriori residual has the x2 distribution

withm degrees of freedom, wherem is the total number

of observations. Therefore, the expected value of the

residual should equal m; in other words, the following

expected quantity should be close to unity:

E

�
rTr

m

�
5 1. (6)

A deviation of the residual from the expected value can be

used to evaluate the validity of the ensemble-estimated

background error covariance and the prescribed ob-

servation error covariance. Figure 8 presents the time

series of residual expectations as defined in (6) calculated

FIG. 8. The time series of the a posteriori residual x2 expectation calculated from all

observations assimilated at each analysis time during 80 assimilation cycles (1200 UTC 12 Sep–

1200 UTC 22 Sep 2009).
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from all observations used at each analysis time. It is

observed that during the spinup of the assimilation cy-

cling the expected value of the residual divided by m

is much less than unity, indicating a significant over-

estimate of background errors during the initial period.

Then, the quantity stabilizes around a mean value of 0.5

through the rest of the assimilation cycling period, im-

plying that the ensemble-estimated background error

covariance becomes more realistic without signs of filter

divergence. In themeantime, the prescribed observation

error covariance may need to be reexamined and tuned

to better represent the underlying errors reflected in the

residual statistics.

The assimilation of precipitation-affected radiance

produces analysis increments on all control variables.

The most directly related examples are hydrometeors.

In Fig. 9 the standard deviations of the hydrometeor

analysis increments in the domain are illustrated as

time-vertical profiles, calculated as horizontally aver-

aged in the domain and recorded during the assimilation

cycling period. The vertical structure of the increments

is largely determined by the cloud-resolving model

physics and the sensitivities of simulated radiance to the

changes of hydrometeor distributions in the atmosphere,

and the data information is spread by the background

error auto- and cross covariances between variables. In

assimilation of microwave radiance of high frequencies

over land, the sensitivity concentrates on frozen hydro-

meteors such as snow mixing ratio (the standard de-

viation shown in the bottom panel of Fig. 9). Nevertheless,

the observation information gets propagated onto rain-

water increments (the standard deviation shown in the

top panel of Fig. 9). Since the precipitation-affected

microwave radiancesmainly respond to the total column

of hydrometeors in the atmosphere, we show the dis-

tributions of hydrometeor analysis increments in the

form of total water path in Fig. 10 in rainwater, snow,

cloud water, and water vapor. There are no significant

biases in the distributions, and the standard deviations

are comparable to the analysis error statistics.

d. Impact to WRF forecasts

To examine the impact of ensemble assimilation of

precipitation-affected radiance on the short-term fore-

casts, in particular the surface precipitation, quantitative

precipitation forecasts are carried out and initialized

by the analyses from the WRF-EDAS assimilation,

and WRF-GSI-CNTR and WRF-EDAS-CNTR, as de-

scribed in the experiment configuration. Stage IV sur-

face rain observations are used as the independent

verification data. The forecasts are initialized by the

analyses at 3-h intervals, and surface precipitation accu-

mulations are summed for the period 15–22 September

2009. Figure 11 shows the accumulated surface rain

during the flooding period, with stage IV observations,

WRF-EDAS initialized results, WRF-GSI-CNTR ini-

tialized results, and WRF-EDAS-CNTR initialized re-

sults. All data in the comparisons are at 3-km resolution,

with verification data remapped from 4- to 3-km grids.

WRF-EDAS assimilation results show a better level of

agreement with the observed verification in the reported

flooding region of northern Georgia. WRF-EDAS re-

sults have a smaller bias of 24 mm comparingwith 41 mm

for WRF-GSI-CNTR, and a bias that is slightly bigger

FIG. 9. Time–vertical profiles of standard deviation of hydrometeor analysis increments

horizontally averaged during the assimilation cycling period of the WRF-EDAS experiment

(g kg21): (a) rainwater and (b) snow water mixing ratio increments.
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than 21 mm forWRF-EDAS-CNTR, as well as a smaller

error standard deviation of 48 mm versus 55 and 53 mm

in the WRF-GSI-CNTR and WRF-EDAS-CNTR re-

sults, respectively. These results demonstrate that the

ensemble assimilation of satellite precipitation obser-

vations brings more information about precipitation pro-

cesses to the analysis, which in turn improves the accuracy

of the quantitative precipitation forecasts. The com-

parison between WRF-EDAS and WRF-EDAS-CNTR

further illustrates the data impact within the ensem-

ble assimilation framework, with enhanced rainfall

in Georgia and reduced precipitation in Tennessee.

There is a negligible impact in Alabama, where the ra-

diance assimilation fails to promote substantial rainfall

comparing to the verification data. The first guess in this

region is dry in WRF-EDAS, and the magnitude of

the ensemble perturbations to the hydrometeor control

variables is relatively small. These conditions limit the

analysis solution without significant corrections to the

precipitation process in the region being necessary. It is

also observed that the scattering signals in microwave

observations in this region are weak compared with

those in Georgia, indicating a warm rain system ob-

served by ground-based data, but not well observed

by microwave high-frequency channels.

The precipitation assimilation impact on high-resolution

precipitation forecasts at different spatial scales and differ-

ent rain intensities is also examined using a neighborhood

verification method fractions skill score (FSS; Roberts

and Lean 2008). FSS evaluates high-resolution precip-

itation forecasts by comparing the fractional coverage of

events in windows surrounding the observed and fore-

cast rain events:

FSS5 12

1

N
�
N

(Sfcst 2 Sobs)
2

1

N

�
�
N

(Sfcst)
22 �

N

(Sobs)
2

� , (7)

where Sfcst and Sobs are the fractional coverages of the

forecast and observed grid box rain events, respectively,

in each of theN windows in the domain. The spatial size

of the window can be varied from one grid box per

window (point-to-point evaluation), to all grid boxes in

one window (full-domain comparison). This verification

approach considers the characteristics of high-resolution

quantitative precipitation forecasts by assessing the de-

gree of closeness in terms of the scale-dependent and

intensity-dependent performance (Ebert 2009). Table 2

displays the array of FSS values for a 24-h accumulated

surface rain forecast in the domain with 3-km grid

spacing, from 0000 UTC 19 September to 0000 UTC

20 September 2009. In Table 2 (top) the forecast is ini-

tialized by WRF-EDAS analysis assimilated TMI and

AMSR-E radiances, while in Table 2 (bottom) the fore-

cast is initialized by WRF-GSI-CNTR analysis without

assimilating precipitation-affected radiances. The FSS

FIG. 10. Histograms of hydrometeor analysis increments (integrated vertically as the total-columnwater path, g m22), sampled from the

WRF-EDAS experiment during 15–22 Sep 2009, for the (a) rainwater path, (b) snow water path, (c) graupel water path, (d) cloud water

path, (e) cloud ice water path, and (f) total-column water vapor.
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scores are calculated against the verification data of

stage IV surface rain observations with the original 4-km

resolution interpolated toWRF 3-km grid spacing in the

domain. The verifications are segregated into different

spatial scales from 3 to 195 km that determine the sizes

of the local neighborhoods, and different rain intensities

from 0.1 to 50 mm day21. It is observed that the level

of precipitation forecast skill improves with increasing

spatial scale and decreasing rain intensity. A comparison

of the scores from two forecasts shows that the assimi-

lation of TMI and AMSR-E observations has a positive

impact on the forecasts in the category of moderate to

high rainfall at all spatial scales. Overall, the skill of the

precipitation forecasts at high resolution needs further

improvement to be considered ‘‘useful’’ for operational

forecasts, which is often evaluated according to the

target criterion that the FSS score is higher than 0.5 plus

half of the fraction of the observed grid-box events in

the full domain, as is indicated by the boldfaced entries

in Table 2.

The model physics and dynamics interact during the

forecasts. The assimilation of precipitation observations

also has an impact on the dynamical fields. The RMS

errors of the 3-h forecasts are verified against the avail-

able conventional in situ data during the assimilation

cycling period. As shown in Fig. 12, the forecast errors of

WRF-EDAS are mostly smaller or comparable to those

of WRF-GSI-CNTR for wind, temperature, and mois-

ture, an indication of the benefits of using precipitation

information from radiances and ensemble-based forecast

error covariance.

5. Conclusions

An ensemble data assimilation system, the NASA

regional WRF-EDAS, has been developed to assimilate

FIG. 11. Surface rainfall accumulated during 15–22 Sep 2009 (mm), with 3-km spatial resolution: (a) stage IV

verification data, (b) forecasts initialized every 3 h by the analysis of WRF-EDAS assimilating TMI and AMSR-E,

(c) forecasts initialized by the analysis of WRF-GSI without assimilating TMI and AMSR-E radiances, and

(d) forecasts initialized by the analysis of WRF-EDAS without assimilating TMI and AMSR-E.
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spaceborne microwave radiances affected by clouds and

precipitation. With an emphasis on hydrological ap-

plications such as the dynamical downscaling of satellite

observations of precipitation processes, the technical

implementation of the system pays special attention to the

issues unique to direct radiance assimilation with cloud

and precipitation information: 1) the choice of including

hydrometeors among the control variables for their direct

linkages to cloud and precipitation physics and the sensi-

tivity of radiance under precipitation conditions, 2) the

choice of cloud-resolving resolution in ensemble model

forecasts for simulating radiance with spatial representa-

tions comparable to those of the observations, 3) the use of

ensemble forecasts for estimating the flow-dependent

background error covariance, and 4) the use of ensemble

perturbation-based covariance to project information

between the observation space and the model space,

bypassing explicit linearization and the adjoint of non-

linear cloud physics and the radiative transfer.

This paper has described how the flow-dependent

background error covariance is estimated and updated

in the assimilation procedure, and how the information

in a radiance observation is propagated via background

error auto- and cross covariance to impact the entire

analysis state. This paper also presents an error statis-

tical description in observational radiance space, and the

data quality control procedure specified for using radi-

ance observations over land. The system performance is

evaluated via experiments assimilating AMSR-E and

TRMM TMI radiance observations during a tropical

storm (Erin) reintensification over land during August

2007 and a heavy rain event in the southeastern United

States during September 2009.

Compared with the WRF-GSI scheme, a 3DVAR

clear-sky radiance data assimilation system with a static

background error covariance, WRF-EDAS more ef-

fectively utilizes precipitation-affected radiance data to

correct forecast errors in the region with clouds and

precipitation. Due to the ambiguity in signals of low-

frequency channels caused by variations in the land

surface emissivity, only the high-frequency channels of

85 GHz (TMI) and 89 GHz (AMSR-E) are assimilated

over land. Several low-frequency channels are used in

the calculation of the scattering index that serves as

a criterion for identifying the presence of precipitation

for data selection and observation error specification.

The case study of Tropical Storm Erin (August 2007)

illustrates the flow dependency of the background error

covariance in WRF-EDAS. The background error var-

iance evolves along with the storm track and intensity.

The error cross covariance among the control variables,

particularly between frozen and liquid hydrometeors,

plays an important role in propagating information from

high-frequency channel radiance observations, which

influence the precipitation analysis. A comparison of

observed and simulated radiances in conjunction with

ground-based rain observations indicates that the hy-

drometeor distributionsmodified by analysis increments

from radiance assimilation are improved in representing

the precipitation process in the atmosphere. Using in-

dependent ground-based measurements of surface rain-

fall as verification, the southeasternU.S. heavy rain event

(September 2009) experiment demonstrates that pre-

cipitation-sensitive radiance assimilation inWRF-EDAS

improves the spatial distribution and intensity in the

accumulated surface rainfall and achieves better short-

term quantitative precipitation forecasts, as evaluated

by the fraction skill score. In addition, the precipitation

data’s impact within the WRF ensemble data assimila-

tion framework is examined by use of a data denial exper-

iment, and the results provide evidence that information

in precipitation-affected radiance observations provides

a positive impact on the WRF precipitation in regions

with adequate magnitudes of background error covariance.

The experience of the WRF-EDAS development and

assimilation experiments has not only highlighted the

potential of the current system in utilizing precipitation-

affected radiances, but also revealed issues requiring

further development and investigation. First, because

TABLE 2. FSS for 24-h accumulated surface rain forecast in

the inner domain at 3-km resolution, from 0000 UTC 19 Sep to

0000 UTC 20 Sep 2009. (top) Forecast initialized from WRF-

EDAS analysis with TMI and AMSR-E radiances assimilated.

(bottom) Forecast initialized from WRF-GSI analysis without as-

similating TMI and AMSR-E radiances. The scores are calculated

against the stage IV surface rain observation data at 4-km resolu-

tion, interpolated tomodel 3-km grid. The boldface entries indicate

the scores that meet the target criterion for operational forecasts.

Spatial scale (km)

Rain threshold (mm day21)

0.1 0.5 1.0 2.0 5.0 10.0 20.0 50.0

195 0.94 0.92 0.91 0.88 0.82 0.75 0.72 0.42

99 0.91 0.88 0.85 0.81 0.76 0.69 0.66 0.32

51 0.90 0.85 0.81 0.76 0.68 0.61 0.58 0.32

27 0.88 0.83 0.78 0.73 0.64 0.56 0.53 0.27

15 0.87 0.81 0.76 0.70 0.60 0.53 0.49 0.25

9 0.86 0.80 0.75 0.68 0.58 0.50 0.46 0.23

3 0.83 0.76 0.70 0.63 0.52 0.44 0.40 0.20

Spatial scale (km)

Rain threshold (mm day21)

0.1 0.5 1.0 2.0 5.0 10.0 20.0 50.0

195 0.94 0.92 0.90 0.84 0.70 0.57 0.49 0.48

99 0.91 0.89 0.85 0.78 0.63 0.49 0.36 0.22

51 0.90 0.87 0.83 0.76 0.60 0.43 0.29 0.12

27 0.88 0.85 0.80 0.73 0.56 0.40 0.24 0.10

15 0.87 0.83 0.78 0.71 0.53 0.37 0.21 0.07

9 0.86 0.82 0.77 0.69 0.52 0.35 0.19 0.06

3 0.84 0.79 0.74 0.65 0.47 0.31 0.16 0.04
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the ensemble WRF forecasts play a crucial role not only

in providing the first guess, but also in estimating the

flow-dependent background error covariance. Certain

types of model errors such as systematic precipitation

system displacement, combined with insufficient en-

semble size, will have a profound impact on the ef-

fectiveness and quality of the precipitation radiance

assimilation. Further research and development aimed

at addressing these issues are under way, for instance,

expanding the forecast ensemble and developing a hy-

brid approach to account for displacement errors where

ensemble forecasts fail to predict clouds and precip-

itation. Second, the high-frequency channel radiance

tends to be ‘‘blind’’ to warm rain processes over land,

and this lack of sensitivity can lead to a misinterpreta-

tion of radiance innovations by the assimilation system,

which may erroneously reduce or remove warm pre-

cipitation presented in the first guess. There is a de-

velopment plan for including more microwave sounder

observations and radar observations for better detecting

warm rain over land. The issue of an effective cycling

length is unique to a data assimilation system with lim-

ited-area model forecasts. More research and experi-

ments need to be done to gain an insight into the optimal

cycling length for effectively propagating the background

error covariance, for retaining microphysical features,

and at the same time for correctly maintaining the large-

scale forcing in domain interiors over a total cycling

period. Last, but not the least, the current localization

scheme for ensemble-based background error covariance

estimation has fixed localization parameters for all var-

iables and observation types. Efforts will be made to

experiment on the adaptive localization scheme ac-

cording to the observation physical characteristics and

spatial scales.

Ensemble data assimilation in limited areas at high

resolution has made significant progress in applications

using conventional direct observations on atmospheric

state and indirect observations in forms of ground-based

radar data. However, for applications using satellite ob-

servations, particularly under cloudy and precipitating

conditions, the research is still in its infancy (Meng and

Zhang 2011). The development of WRF-EDAS for the

application of dynamic downscaling of satellite pre-

cipitation observations provides a starting point to ex-

plore this potential and address challenges. To produce

a coherent and accurate precipitation estimate by com-

bining information from available data sources, the en-

semble data assimilation approach presented here

differs from purely observation-based estimation and

statistical downscaling techniques, mainly in employing

a priori information on the background state from a

numerical forecast model to achieve a maximum likeli-

hood solution. The dynamics and physics described in

a state-of-the-art numerical forecast model represent a

progressive understanding of the nature and the mech-

anism of atmospheric states and processes, with knowl-

edge accumulated and insight gained through the collective

efforts of scientific research, experiments, and observa-

tions. It is recognized that the model forecast skill of

FIG. 12. Vertical profiles of the first-guess departures from WRF-EDAS (with filled square) and WRF-GSI (with

open square). RMS errors for the (a) u-wind component, (b) y-wind component, (c) temperature, and (d) specific

humidity. The errors are calculated with respect to the NCEP conventional observations available during data as-

similation cycling from 1200 UTC 12 Sep to 1200 UTC 22 Sep 2009.
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precipitation forecasting still lags behind that of other

weather and climate fields, largely due to the level of

complexity and the unpredictability of the cloud and

precipitation phenomena. Nevertheless, there are ad-

vantages in using forecast models, including providing

dynamical and physical consistency and complete spa-

tial–temporal coverage at the desired resolution. While

future work is needed to improve the performance of

WRF-EDAS, this system’s development provides a

useful platform for advancing cloud and precipitation

assimilation techniques that utilize satellite observations

of precipitation processes.
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