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ABSTRACT

Land–atmosphere (LA) interactions play a critical role in determining the diurnal evolution of both planetary

boundary layer (PBL) and land surface heat andmoisture budgets, aswell as controlling feedbackswith clouds and

precipitation that lead to the persistence of dry and wet regimes. In this study, the authors examine the impact of

improved specification of land surface states, anomalies, and fluxes on coupledWeatherResearch andForecasting

Model (WRF) forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the

U.S. southern Great Plains. The improved land initialization and surface flux parameterizations are obtained

through calibration of the Noah land surface model using the new optimization and uncertainty estimation sub-

systems in NASA’s Land Information System (LIS-OPT/LIS-UE). The impact of the calibration on the 1) spinup

of the land surface used as initial conditions and 2) the simulated heat andmoisture states and fluxes of the coupled

WRF simulations is then assessed. In addition, the sensitivity of this approach to the period of calibration (dry, wet,

or average) is investigated. Results show that the offline calibration is successful in providing improved initial

conditions and land surface physics for the coupled simulations and in turn leads to systematic improvements in

land–PBL fluxes and near-surface temperature and humidity forecasts. Impacts are larger during dry regimes, but

calibration during either primarily wet or dry periods leads to improvements in coupled simulations due to the

reduction in land surface model bias. Overall, these results provide guidance on the questions of what, how, and

when to calibrate land surface models for coupled model prediction.

1. Introduction

Despite evidence of the importance of land–atmosphere

(LA) interactions in weather and climate prediction

(e.g., Betts 2009; Seneviratne et al. 2010), the systematic

impact of land surface parameterizations on coupled

mesoscale modeling has proven difficult to quantify in

a robust manner. The role of the land in modulating

water and energy cycling has been well-documented in

terms of LA coupling strength and the support of hy-

drological anomalies and extremes such as flood and

drought (van den Hurk et al. 2011; Koster et al. 2010),
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which includes immediate effects of the land on the

temperature and humidity structure in the boundary

layer, convective initiation, and mesoscale circulations

(Di Giuseppe et al. 2011). In addition, the influence of

soil moisture on precipitation has been under community-

wide investigation in a range of studies from local

(Santanello et al. 2011b) to global (Koster et al. 2004)

scales. What is less understood is how specific land sur-

face models (LSMs), parameterizations, datasets, and ini-

tialization approaches impact coupled mesoscale model

predictions on diurnal time scales and how each could be

improved.

One confounding factor in quantifying LSM impact

on coupled prediction lies in the disparate approaches

to land surface spinup and initialization of community

mesoscale models. Recent advances have been made in

offline land data assimilation systems (LDAS; e.g., Mitchell

et al. 2004; Rodell et al. 2004), with results showing im-

provement in prediction of ambient weather and pre-

cipitation as a result of land initial conditions taken from

an LSM spinup (Chen et al. 2007; Kumar et al. 2008;

Case et al. 2008, 2011; Wen et al. 2012). It still remains,

though, that a great majority of coupled prediction

studies do not make use of rigorous spinup or initiali-

zation methods, thereby limiting the potential impact of

the land on those simulations before coupled integration

even begins.

Adding to the difficulty in assessing the land surface

impact on coupled modeling is that LSM physics rely

heavily on diverse parameter sets corresponding to

soil, vegetation, and other land-specific conditions

that are difficult to measure. The accuracies of these

parameters on regional scales are strongly limited by

coarse-resolution datasets and their inability to cap-

ture local-scale heterogeneity in parameters such as

soil hydraulic properties. As a result, attempts have

been made to calibrate parameters based on obser-

vations of land surface conditions in order to ulti-

mately improve prediction of state variables such as

soil moisture (e.g., Santanello et al. 2007; Harrison

et al. 2012). Fully coupled calibration studies are ex-

tremely limited, however, because of computing re-

quirements and the difficulty in untangling the complex

interactions of land and atmospheric physics and

parameters.

Despite these challenges, it is important to note that

the atmospheric component of a coupled model is con-

nected to the land solely through the turbulent surface

(sensible and latent heat) fluxes calculated at each time

step. As a result, all the specificity and complexity of an

LSM (including its parameters and the spinup approach)

are invisible to the atmospheric component of a coupled

simulation. A key question can therefore be asked: what

are the potential impacts of providing ‘‘optimal’’ surface

fluxes from an LSM to a coupled model versus those

generated from a default or coarser-resolution (e.g., 30–

100 km) land initialization? The answer would provide

insight as to the first-order influence of the land surface

on ambient weather (e.g., temperature, humidity, and

precipitation) and coupled LA components of a pre-

diction system [e.g., planetary boundary layer (PBL)

growth and convective initiation].

This question is addressed here by combining LSM

calibration and spinup approaches to produce best es-

timates of land surface fluxes for coupling with the

Advanced ResearchWeather Research and Forecasting

Model (WRF-ARW; Skamarock et al. 2005). The focus

of these experiments will be on LSM calibration over

a range of surface conditions (dry to wet) in the U.S.

southern Great Plains (SGP), where the land is known

to have a strong modulating impact on the atmosphere

(Koster et al. 2004; Dirmeyer et al. 2006). In the process,

these experiments will shed light on the following is-

sues for improving the LSM component of coupled

prediction: 1) what to calibrate, 2) how to calibrate,

and 3) when to calibrate. A key aspect of this work will

be to comprehensively evaluate the coupled forecasts

using diagnostics that simultaneously assess the land–

PBL system as a whole in terms of water and energy

cycling.

Section 2 of this paper provides a brief review of

recent land model calibration and spinup studies, as

well as the coupling diagnostics developed to assess

the land–PBL system. The model, Land Information

System (LIS) optimization (LIS-OPT) and uncertainty

(LIS-UE) subsystems, and experimental design are

then described in section 3. Results are presented in

section 4, with discussion and conclusions on the role

of the land surface in coupled prediction following in

section 5.

2. Background

a. LSM spinup

Because in situ and remotely sensed observations of

soil temperature and moisture states or fluxes are not

available at the resolution of a mesoscale model grid

(horizontally or vertically), LSMs are used to produce

flux and state estimates based on sound physics and con-

strained by forcing (based on traditional atmospheric

meteorological data such as precipitation) and param-

eter data (based on static maps of vegetation and soil

properties at high spatial resolutions). The practice of

long-term spinup of offline LSMs to equilibrate soil

moisture and temperature states has been in place for
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some time. Rodell et al. (2005) looked at the sensitivity

of equilibration of total column soil moisture to the

length of the spinup simulation, which was found to vary

based on climate regime (e.g., cold and dry regions tend

to take longer to equilibrate than warm and moist lo-

cales) and soil type.

Spinup time has also been shown to be dependent on

initial values of soil moisture, atmospheric forcing, and

vegetation conditions (Yang et al. 1995; Chen and

Mitchell 1999; Cosgrove et al. 2003; de Goncalves et al.

2006). Overall, LSMs use either manual or automated

approaches to spinup based on reaching a predefined

equilibration threshold (which can range from hori-

zontally uniform to climatologically distributed). The

particular threshold values are rather arbitrary, how-

ever, and have produced spinup times varying from

a few weeks to over a decade in different studies. Also

a factor is whether forcing data is available to run an

offline LSM for the period leading up to the coupled

simulation of interest, or whether cyclical data from a

single annual cycle must be used to equilibrate the states

(e.g., Cosgrove et al. 2003).

Despite the diversity of spinup approaches applied,

recent case studies have revealed specific impacts and

improvements in coupledmodels as a result of improved

specification of the land initial condition. Kumar et al.

(2008) found significant differences in prediction of

fluxes, boundary layer structure, and temperature and

humidity, and improvements in precipitation forecasts

when using a multiyear spinup versus using the default

WRF land surface initialization. Similarly, Case et al.

(2008) showed that spun-up initial conditions led to im-

proved sea breeze circulation and 2-m temperature

forecasts from WRF over Florida and improved sum-

mertime and hourly precipitation over the southeastern

United States (Case et al. 2011) over the default WRF

simulations.

In a similar vein, Holt et al. (2006) demonstrated

a potential impact on coupled forecasts from using high-

resolution representation of soil states and fluxes, while

Trier et al. (2008, 2011) also show that the initial soil

moisture for a WRF forecast is significantly more im-

portant than the evolution of that soil moisture during

the coupled simulation itself. Using a different combi-

nation of land surface andmesoscalemodels, Di Giuseppe

et al. (2011) indicate that consistency in the physics and

configuration between offline LSM and coupled model

is paramount when choosing a source for the land ini-

tialization of a coupled model.

b. Calibration of offline and coupled LSMs

As mentioned, the physics of LSMs are highly de-

pendent on specification of a large number of parameter

values representing soil, vegetation, and other surface

conditions. To simplify things, lookup tables are commonly

associated to a particular soil or vegetation type that

relates a number of parameters to each classification.

Lookup tables are only as accurate as the available soil

or vegetation information, however, and attempt to

provide a representative value of each parameter for

each soil or vegetation type. High-resolution maps that

accurately capture the observed heterogeneity in pa-

rameter values are difficult to obtain on the scales of

land surface and mesoscale models (particularly for

regions outside the United States), and lookup table

classes do not allow for many mixed crops or soil types.

This can be a problem, particularly for soils where larger

differences in soil parameters have been observed within

a soil type than between types (Feddes et al. 1993; Soet

and Stricker 2003; Gutmann and Small 2005; Santanello

et al. 2007).

To address these limitations, numerous attempts

have been made to calibrate (or optimize) LSM pa-

rameters using observations of state variables such as

soil moisture and surface temperature as constraints

(Gupta et al. 1999; Hess 2001; Hogue et al. 2005; Liu

et al. 2003, 2004, 2005; Santanello et al. 2007; Peters-

Lidard et al. 2008; Harrison et al. 2012). Such approaches

improve matches of state variables to observations

during the calibration period (and beyond) and, in the

process, address LSM systematic biases. However, it

remains difficult to derive parameter information that

could be evaluated independently as most studies have

focused on techniques that derive large sets of ‘‘effec-

tive’’ parameters. Such studies also require a great deal

of computational time and are limited in assessing the

broader applicability of derived parameters; therefore,

little has been gained in terms of quantifying the effec-

tiveness of calibrated parameters in improving coupled

simulations.

In terms of offline LSM calibration applications,

Hogue et al. (2005) investigated the transferability of

large calibrated parameter sets in an offline LSM and

concluded that calibration results are site specific and

that models should be recalibrated for changes in sea-

sons or over longer time intervals. This suggests that if

a spinup is to be used to initialize a coupled model, the

calibration performed offline needs to be tailored (e.g.,

domain, resolution, and LSM) specifically for the ex-

periment of interest and potentially for the period of

interest as well.

Liu et al. (2003, 2004, 2005) extended parameter es-

timation to a semicoupled system by examining the

pathways by which limitations in the LSM physics im-

pact both offline and 1D (single column) model simu-

lations. Each of these studies found coupled forecasts
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to be highly sensitive to the initial soil moisture value

(prescribed uniformly in their study), stressing that the

land initialization for coupled models is important and

that the methodology of an offline spinup with cali-

brated parameters shows promise in providing the most

accurate initial condition consistent with the surface

physics and parameterizations.

c. Evaluation of LA coupling

The initial communication between the land and at-

mosphere occurs on local scales, and therefore, a com-

munity effort supported by the Global Energy andWater

Cycle Study (GEWEX) Global Land/Atmosphere Sys-

tem Study (GLASS; van den Hurk et al. 2011) has been

launched to diagnose and quantify local LA coupling in

models, called LoCo (van denHurk and Blythe 2008). A

thorough review of LoCo research and the related di-

agnostic approaches can be found in Santanello et al.

(2009, 2011a,b, 2013, hereafter referred to as S09, S11a,

S11b, S13).

As discussed in S11a, a full understanding and quan-

tification of LA interactions will only come by careful

examination and quantification of a series of inter-

actions and feedbacks (i.e., links in the chain) between

soil moisture (SM) and precipitation (P). These rela-

tionships depend on the sensitivities of 1) surface fluxes

of sensible (Qh) and latent (Qle) heat to soil moisture,

2) PBL evolution to surface fluxes, 3) entrainment fluxes

to PBL evolution, and 4) the collective feedback of the at-

mosphere (through the PBL) on surface fluxes (Santanello

et al. 2007; van Heerwaarden et al. 2009).

LIS and LIS-WRF have served as a core test bed to

develop and implement LoCo diagnostics utilizing the

range of LSM and PBL scheme options available in

each. For example, S09, S11a, and S13 developed a

model intercomparison methodology based on the

‘‘mixing diagram’’ theory of Betts (1992). The power of

this approach lies in its ability to exploit the covariance

of 2-m potential temperature and humidity to quantify

the components of the SM–P relationship, and it is

based only on routine variables that can be applied to

anymodel or observation product. As shown in S09 and

S11a, how anomalies and/or errors in the surface fluxes

computed by a particular model are then translated

into the atmospheric water and energy cycle can then

be quantified using this approach. For example, results

from S13 during dry/wet extremes show that the choice

of LSM is critical for dry regimes, but that both PBL

and LSM are comparable influences on the coupled

behavior during wet regimes. LoCo diagnostics are

therefore well suited to evaluate the first-order impact

of land spinup on the coupled LSM–PBL system as

a whole.

3. Model and site description

a. LIS and LIS-OPT/UE

The National Aeronautics and Space Administra-

tion’s (NASA) LIS (Kumar et al. 2006; Peters-Lidard

et al. 2007) consists of a suite of LSMs under the same

software framework and provides a detailed represen-

tation of land surface physics and states, which can then

be directly coupled to an atmospheric model. The sen-

sitivity of land surface spinups to methods and forcing

data has already been addressed under this framework

(Rodell et al. 2005; Kato et al. 2007). More recently, new

subsystems have been added to LIS that allow so-

phisticated optimization and uncertainty estimation

(LIS-OPT/UE) algorithms to be applied to the LSMs to

exploit further the information content from observa-

tions (Kumar et al. 2012a; Harrison et al. 2012). The

algorithms [e.g., Levenberg–Marquardt (Levenberg 1944;

Marquardt 1963), genetic algorithm (GA; Holland 1975),

and shuffled complex evolution from the University of

Arizona (Duan et al. 1993)] calibrate the model param-

eters to observations (e.g., satellite), thereby enabling

improved model forecasts and enhancing the efficiency

of data assimilation approaches (Santanello et al. 2007;

Peters-Lidard et al. 2008; Kumar et al. 2012a). The un-

certainty estimation subsystem also includes Bayesian

approaches based on Markov chain Monte Carlo (Gilks

et al. 1996) to estimate the uncertainty in model pa-

rameters given calibration datasets, which enables prob-

abilistic prediction.

Overall, the high-performance computing infra-

structure in LIS provides an advantage over previous

parameter estimation studies that were limited to

trial and error, manual, and lower-dimensional (i.e.,

smaller parameter sets) calibration approaches, as

demonstrated by Kumar et al. (2012a) and Harrison

et al. (2012) for offline spinup and data assimilation

applications. The evaluation of offline, coupled, and

LIS-OPT/UE experiments is performed using an

LIS-based tool called the Land Surface Verification

Toolkit (LVT; Kumar et al. 2012b). LVT provides

a standardized platform for intercomparing model

output (from LIS or other sources) with observations

and offers a range of statistical and benchmarking

approaches.

b. NU-WRF

WRF-ARW has been designated as the community

model for atmospheric research and operational pre-

diction and is ideal for high-resolution (e.g., 1–10 km)

regional simulations on the order of 1–14 days. WRF-

ARW has an Eulerian mass dynamical core and in-

cludes a wide array of radiation, microphysics, and PBL
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options as well as two-way nesting and variational data

assimilation capabilities. Recently, aNASAUnifiedWRF

(NU-WRF; https://modelingguru.nasa.gov/community/

atmospheric/nuwrf) modeling system has been devel-

oped at NASA’s Goddard Space Flight Center (GSFC).

Built upon the WRF-ARW model, NU-WRF incor-

porates LIS, the WRF/Chem enabled version of the

Goddard Chemistry Aerosols Radiation Transport

(GOCART; Chin et al. 2000) model, GSFC radiation

and microphysics schemes, and the Goddard Satellite

Data Simulation Unit (SDSU; Matsui et al. 2009) into

a single modeling framework.

The LA coupling is a core component of NU-WRF

and has been performed through the coupling of LIS and

WRF by Kumar et al. (2008). The version of NU-WRF

used here includes LIS V6.2 and WRF-ARWV3.2. The

advantages of coupling LIS andWRF include the ability

to spin up land surface conditions on a common grid

from which to initialize the regional model, flexible and

high-resolution (satellite based) soil and vegetation rep-

resentation, and direct coupling of the atmospheric

model to the LIS subsystems (including LIS-OPT/UE).

The work of S09, S11a, and S13 has demonstrated

NU-WRF as a test bed for LA interaction studies and

LoCo because of its land–PBL scheme flexibility and

high resolution. Hereafter, we refer to NU-WRF as the

coupled prediction system that includes the LIS-WRF

coupling for these experiments.

The experiments described below are run on a single

5003 500 domain at 1-km spatial resolution (see below),

and include a 5-s time step, GSFC microphysics, long-

wave and shortwave radiation, and theMonin–Obukhov

surface layer scheme. The North American Regional

Reanalysis (NARR; Mesinger et al. 2006) data were

used for atmospheric initialization and lateral boundary

conditions using 3-hourly nudging, and the vertical res-

olution of NU-WRF was specified as 43 vertical levels,

with the lowest model level ;24m above the surface.

The PBL scheme selected is theYonseiUniversity (YSU;

Hong et al. 2006) PBL, which is based on nonlocal K

theory and includes explicit treatment of entrainment

and counter gradient fluxes.

The LSM employed in LIS for this study is the Noah

LSM version 3.2 (Ek et al. 2003), and it is identical to the

version of Noah packaged in the community version of

the WRF-ARW version 3.2 release. Noah is used op-

erationally by the National Centers for Environmental

Prediction (NCEP) as the LSM for the North American

Mesoscale Model (NAM) and the Global Forecasting

System (GFS). As such, Noah is a well-supported, de-

veloped, and utilized LSM for both offline and coupled

applications. The soil type specification in LIS is based

on the State Soil Geographic (STATSGO; Miller and

White 1998) database over the United States, while

vegetation type is assigned based on the University of

Maryland (UMD) land cover dataset (Hansen et al.

2000). The combination of Noah LSM and YSU PBL is

a common selection in the WRF community and has

served as the default configuration for NU-WRF test

cases, where it has performed well for daytime condi-

tions over the SGP study area.

c. 2006–07 dry/wet extremes

The SGP region has been identified as a hotspot for

LA coupling in terms of the strength of interactions and

impact of soil moisture anomalies on clouds and pre-

cipitation (e.g., Koster et al. 2004). Because of this and

the large record of observational data from the Atmo-

spheric and Radiation Measurement (ARM) test bed

(ARM-SGP), S09, S11a, and S13 have focused WRF

studies on the SGP region to develop and test the LoCo

diagnostics described in section 2c. In particular, S13

looked at the extreme conditions observed during the

2006–7 period and the impact on LoCo. Low anomalies

of clouds and precipitation in 2006 (October–September)

were immediately followed by conditions of high cloud

percentage and rainfall in 2007, with 2006 being the

second-driest and 2007 the seventh-wettest year on re-

cord at the ARM-SGP central facility over the period of

1921–2008 (Dong et al. 2011). This period was followed

by a relatively normal summer season in 2008, with soil

moisture conditions in between that of the 2006 and

2007 extremes (as confirmed by ARM-SGP observations

and offline Noah simulations).

As described in S13, ideal case studies were chosen for

each regime. The 14–20 July 2006 experiment consists of

a lengthy dry-down period with little synoptic distur-

bance in which the land was free to interact and evolve

with the atmosphere on primarily local scales. The case

study of 14–20 June 2007 focuses on a period with

scattered precipitation every 1–2 days in portions of the

ARM-SGP domain, interspersed with brief dry downs

in which conditions were clear and/or cloudy and cul-

minating in a large mesoscale convective system (MCS)

traversing the domain on the final nighttime period.

d. Experimental design: Default spinups

Forcing data from phase 2 of the North American

Land Data Assimilation System (NLDAS-2; Xia et al.

2012) project were used to drive the spinup simulations.

Noah was run offline in LIS beginning 1 January 2003,

thus producing a ;3.5–4.5-yr spinup prior to the start

time of the 2006 and 2007 case studies. This is slightly

longer than the recommended spinup length for similar

moisture and climatic regimes (soil and precipitation)

and is consistent with previous studies using this LSM,
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location, and time period (S09; S11a; S13) in ensuring

an equilibrated soil initial condition for the coupled

simulations.

Using the resultant spun-up surface fields as initial

conditions for the 2006–07 case studies, NU-WRF simu-

lations were then performed over a single high-resolution

1-km domain centered over Oklahoma and Kansas.

Figure 1 shows the upper layer (0–10 cm) soil moisture

values over the ARM-SGP domain as generated by

Noah spinups valid at 0000 UTC on 1 July 2006, 2007,

and 2008. The advantages of using LIS over default or

coarse-resolution WRF initialization approaches are evi-

dent in the ability to resolve high-resolution soil moisture

(Fig. 1) based on the 1-km grid inputs of vegetation and

soil properties. Soil moisture varies significantly from dry

to moderate (generally ,25% volumetric) in 2006 to

extremely wet (near saturation) and more uniformly

saturated conditions in 2007, with 2008 showing more

moderate soil moisture and heterogeneity.

e. Experimental design: LIS-OPT/UE case studies

The offline calibration experiments were performed

using the GA algorithm in LIS-OPT/UE and applied to

a set of 29 parameters describing soil, vegetation, and

general characteristics in the Noah model (Table 1).

The ranges were specified for each parameter based on

the range across all (vegetation or soil) classes in the

Noah lookup tables for each and are consistent with

those used by Hogue et al. (2005) and Kumar et al.

(2012a). These ranges also provide a physical con-

straint to ensure the realism of individual calibrated

parameter values and agreement with expectations of

the model physics.

The goals of calibration are to provide the best pos-

sible surface fluxes for NU-WRF simulations. There-

fore, the observations employed are measurements of

surface sensible (Qh), latent (Qle), and soil (Qg) heat

fluxes from the ARM-SGP network of sites over the

domain, including six Energy Balance Bowen Ratio

(EBBR; Qh, Qle, and Qg) and 12 Eddy Correlation

(ECOR; Qh and Qle only) tower locations. The GA

was applied using an objective function that mini-

mizes the root-mean-square error (RMSE) at each

site with no discrimination of flux type (i.e., Qh, Qle,

and Qg flux observations are weighted equally) as

follows:

RMSE5


1

NQh

�
t2T

Qh

(Qhlsm,t 2Qhobs,t)
21

1

NQle

�
t2T

Qle

(Qlelsm,t 2Qleobs,t)
21

1

NQg

�
t2T

Qg

(Qglsm,t 2Qgobs,t)
2

s
, (1)

where t is an index variable indicating the time of ob-

servation (hourly), with TQh, TQle, and TQg indicating

the sets of observation times for each observation type

and NQh, NQle, and NQg indicating the number of ob-

servations of each type. The subscripts denote the sur-

face fluxes from the land surface model (lsm) and

observations (obs). The calibration was performed over

the periods 1 May to 1 September of 2006, 2007, and

2008 to produce separate calibrated parameter sets for

the dry, wet, and normal regimes. Having three separate

calibration periods allows for the study of the impact of

calibration period and varying atmospheric and land

surface conditions on the calibration results.

The number of observations of Qle, Qh, and Qg that

are used in the GA optimization are comparable, but

vary slightly from 2006 (NQle, 48 546; NQh, 48 822; NQg,

32 218) to 2007 (NQle, 37 936; NQh, 39 063; NQg, 30 100)

and to 2008 (NQle, 45 767; NQh, 48 353; NQg, 31 344). As

a result, the objective function is skewed toward the

fluxes with the greater number of observations in each

case and is weighted more heavily toward Qh and Qle

than Qg, which is available only from EBBR stations. It

should also be noted that EBBR estimates both Qh and

Qle simultaneously through use of the Bowen ratio

method, and although they offer a desirable constraint

on the calibrated flux values, they do not offer truly

independent sources of information to the objective

function.

The GA integrations use a population size of 50 and

employ an elitism strategy to ensure that the current

best solution is not overwritten during GA evolution,

with amutation rate of 0.005 and a recombination rate of

0.9. The GA parameters (including the mutation and

recombination rates) are chosen largely from experi-

ence and the success of the optimization simulations in

Kumar et al. (2012a). The algorithm was found to con-

verge after approximately 200 generations, when the

fitness of the best solution was found not to improve in

the last 30 generations.

From these simulations, a unique calibrated value of

each of the 29 Noah parameters was obtained at each of

the 18 grid cells pertaining to the flux sites. To obtain

calibrated values covering the full model domain, the

values from each site were grouped and averaged by

common vegetation and soil types and assigned to the

full domain based on the vegetation and soil classification
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at each grid cell. Note that Noah parameters were des-

ignated into soil (15 parameters, five classes in the SGP

domain), vegetation (11 parameters, three classes in the

SGP domain), and general (three parameters, no clas-

sification) categories as based on their functionality and

most direct impact on the model physics. For example,

for a soil-related variable such as porosity, the calibrated

values of porosity from each flux site with a ‘‘clay’’

classification were averaged and then applied as the

porosity value to the remainder of the domain where

clay was also the soil type. Also, if a soil/vegetation class

occurs in the domain but was not represented at one of

the observation sites, default table values are used.

General parameters are constant across the domain and

do not have a classification, and therefore were averaged

across all the sites.

Using the calibrated parameters, new soil, vegetation,

and general lookup tables for Noah were then gener-

ated. Spinup runs (as described in the previous section

for the default case) were repeated using the new tables

based on the 2006, 2007, and 2008 calibration results,

thereby producing spun-up and initial conditions that

are optimized for dry, wet, and average conditions, re-

spectively, over this region. To examine the impact of

calibrated spinups on coupled forecasts, four targeted

NU-WRF case studies were then chosen from the larger

7-day periods described above, with characteristics as

follows:

1) 14 July 2006: 24 h, dry regime (NU-WRF test case);

2) 18–19 July 2006: 48 h, dry regime (end of dry-down

period);

3) 16–17 June 2007: 48 h, wet regime (limited/scattered

precipitation);

4) 19–20 June 2007: 48 h, wet regime (scattered/MCS

precipitation).

Each simulation was initialized at 1800 LST with the

land using the LIS soil moisture and temperature states

from each calibration run (described below) and the

atmosphere using the NARR analysis as generated from

the WRF Preprocessing System (WPS).

NU-WRF was then run for each case study above

using four different combinations of parameter values/

lookup tables, as shown in Table 2. The array of simu-

lations was designed to capture the impact on NU-WRF

forecasts from using a combination of 1) default spinup

(uncalibrated) and default parameters in the coupled

run (DEF), 2) default spinup with calibrated parameters

in the coupled run (CPL), 3) calibrated spinup with de-

fault parameters in the coupled run (SPN), and 4) cali-

brated spinup with calibrated parameters in the coupled

run (SCP). Note that the focus of the results presented

here will be on the differences between the DEF (no

FIG. 1. Soil moisture (m3m23 3 100) in the upper 0–10-cm layer

valid at 0000 UTC on 1 July (top) 2006, (middle) 2007, and (bot-

tom) 2008 as simulated from a multiyear spinup of the Noah LSM

with default parameter sets over the 500 3 500 1-km NU-WRF

domain in the SGP, along with the ARM-SGP Lamont, OK (E13),

and Plevna, KS (E4), sites.
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calibration) and SCP (fully calibrated) cases, but CPL

and SPN offer the ability to parse out the relative im-

pacts of using optimal parameters during the spinup

versus coupled simulation period and will be included in

the discussion when relevant.

f. Observation data

The ARM-SGP program provides a long-standing

record of quality-controlled surface flux, meteorologi-

cal, and hydrological observations along with atmo-

spheric profiles for a network of sites across the domain

shown in Fig. 1. This includes collocated soil moisture;

net radiation; and sensible, latent, and soil heat, along

with collocated surface meteorology data. For the cali-

bration experiments, ARM-SGP data were collected

from ECOR and EBBR towers as described above.

Typical error ranges for Qle and Qh are ;10% for

EBBR with perfect closure (by definition) and about

5%–6% for ECORwith 75%–90% closure (http://www.

arm.gov/instruments/ecor; Wilson et al. 2002). The im-

plications of observational bias on the results will be

discussed in section 5.

The LoCo evaluation was performed using collocated

surface meteorology, flux towers, and radiosonde profile

data. For the mixing diagram analysis, we have defined

the residual vector in the diagrams (formerly the ‘‘en-

trainment vector’’ as in S09) as the atmospheric response

vector (Vatm) to more precisely reflect the inherent as-

sumptions. The vector Vatm represents the full sum of

atmospheric contributions to LA coupling in terms of

the PBL budget fluxes. A significant fraction of Vatm is

composed of entrainment fluxes, but it also incorporates

TABLE 1. Minimum and maximum values of the Noah parameters used in the LIS-OPT experiments.

Parameter Description Min Max

SMCMAX Porosity (-) 0.30 0.50

PSISAT Saturated matric potential (-) 0.01 0.70

DKSAT Saturated hydraulic conductivity (m s21) 0.05 3 1025 3.00 3 1025

DWSAT Saturated soil diffusivity (-) 5.71 3 1026 2.33 3 1025

BEXP Beta parameter (-) 3 9

QUARTZ Soil quartz content (-) 0.10 0.90

RSMIN Minimum stomatal resistance (m) 40 1000

RGL Parameter used in solar radiation term of canopy resistance (-) 30 150

HS Parameter used in vapor pressure deficit term of canopy resistance (-) 36 55

Z0 Roughness length (m) 0.01 0.99

LAI Leaf area index (-) 0.05 6.00

CFACTR Canopy water parameter 0.10 2.00

CMCMAX Maximum canopy water content (m) 1.00 3 1024 2.00 3 1023

SBETA Parameter used in the computation of vegetation effect on soil heat flux (-) 24.00 21.00

RSMAX Maximum stomatal resistance (m) 2000 10000

TOPT Optimum transpiration air temperature (K) 293 303

REFDK Reference value for saturated hydraulic conductivity (m s21) 5.00 3 1027 3.00 3 1025

FXEXP Bare soil evaporation exponent (-) 0.20 4.00

REFDT Reference value for surface infiltration (-) 0.10 10.00

CZIL Parameter used in the calculation of roughness length of heat (-) 0.05 0.80

FRZK Ice threshold (-) 0.10 0.25

SNUP Snow depth threshold (m) 0.025 0.08

SMCREF Reference soil moisture where transpiration stress begins (-) 0.00 0.50

SMCDRY Dry soil moisture threshold where direct evaporation from top layer ends (-) 0.00 0.15

SMCWLT Wilting point (-) 0.00 0.15

F1 Soil thermal diffusivity coefficient (-) 211 0

CSOIL Soil heat capacity for mineral soil component (-) 1.26 3 106 3.56 3 106

SLOPE Linear reservoir coefficient (-) 0.00 1.00

EMISS Surface emissivity (-) 0.80 1.00

TABLE 2. Description of calibration approaches and parameter sets used in NU-WRF simulations.

Simulation Description Spinup parameters Coupled parameters

1 DEF Default run with uncalibrated parameters in LIS and NU-WRF Default Default

2 CPL Impact of calibrated parameters in NU-WRF only Default Calibrated

3 SPN Impact of calibrating LIS spinup (ICs) only Calibrated Default

4 SCP Impact of full calibration (LIS and NU-WRF) Calibrated Calibrated
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horizontal advection and reflects that the use of 2-m

temperature and humidity (as opposed to PBL mean

quantities) in the mixing diagrams can proportionally

overestimate the magnitude of the residual vector com-

ponent fluxes. While approaching the residual vector in

this manner prohibits the ability to quantify entrainment

fluxes in absolute terms (or in comparison to prior analyses

or observations of the entrainment ratio, for example), the

mixing approach still allows the coupled system (including

the bulk PBL response) to be evaluated consistently across

model runs and observations.

4. Results

The performance of the offline calibration experi-

ments will be evaluated first, followed by the impact of

FIG. 2. Average RMSE (Wm22) of calibrated and default Noah simulations of hourly fluxes of (a) latent, (b) sensible, and (c) soil

(ground) heat flux at each of the ARM-SGP sites and the average across all sites over the full 1May to 1 Sep 2006 calibration period. Also

shown at right are mean diurnal cycles across all ARM-SGP sites against observations.
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spinup calibration and initialization on NU-WRF pre-

dictions and LoCo and the sensitivity of the coupled

results to the period of calibration, and concluding with

the uncertainty introduced into the forecasts by differ-

ent parameter sets.

a. Offline calibration

Before examining the coupled cases, it is important

to quantify the impact of the calibrated parameters on

the offline spinup. Figure 2 shows the flux components

simulated using default and calibrated Noah parameters

during the dry regime (2006) versus observations at each

of the ARM-SGP sites and over the full domain. Both

Qh and Qle show improvement at nearly all sites, with

RMSE values reduced by up to 25.7Wm22 (10.5Wm22

on average) in Qle, and up to 45.3Wm22 (19.1Wm22

on average) in Qh. Note that the 95% confidence in-

terval for the average error across all sites is about

4–7Wm22, so the improvements are statistically sig-

nificant. The improvement due to the calibration is also

clearly evident in the mean diurnal cycle behavior of Qh

and Qle across all sites. Focusing on the daytime when

the turbulent fluxes are large and positive, Qh matches

observations almost exactly and improves over the high

FIG. 3. As in Fig. 3, but for the 1 May to 1 Sep 2007 calibration period.
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bias present in the default simulations. Analogously,

daytimeQle increases because of calibration andmatches

observations more closely than when default parameters

are used in Noah. The Noahmodel has often been shown

to produce systematic over/underestimation of surface

fluxes, and the GA calibration successfully improves

upon the biases exhibited for the SGP and study period

demonstrated here.

The surface soil heat flux Qg shows more mixed re-

sults, with five of the 11 EBBR sites showing slight deg-

radation after calibration, but the magnitudes for Qg are

small overall, and this does not present a concern for this

study. The mixed results are partially a reflection of the

reduced number of observations of Qg available for the

GA and the heavier weighting toward Qh and Qle. In

addition, phase errors inQg arewell documented (Robock

et al. 2003; Reichle et al. 2010) and could possibly be

corrected if joint calibration approaches including soil

temperature and Qg were conducted.

Figure 3 shows the offline calibration results for the

wet regime (2007), and once again, Qh and Qle are im-

proved at nearly all ARM-SGP sites (and in the case of

Qh, all sites show improvement). In this calibration, Qh

improvements are more modest than in 2006 (up to

25.9Wm22 and 12.3Wm22 on average), while Qle im-

provements are larger than during the dry regime (up to

54.9Wm22 and 12.3Wm22 on average). Interestingly,

site E24 shows the largest improvement in this case,

opposite of the 2006 calibration. The mean diurnal

cycles showmarked improvement (decrease) in daytime

Qle over the default simulations, while Qh is only very

slightly impacted (and also decreased). This suggests an

available energy bias in the NLDAS-2 forcing data and

subsequent overestimation in the offline Noah runs in

2007. Once again, Qg shows mixed results as five of

11 sites show degradation, though in this case there is a

noticeable increase in Qg after calibration that im-

proves afternoon simulations but does not impact the

phase error where Qg peaks too early (as in the 2006

case).

Overall, the largest impact and improvement due to

calibration of Noah is seen in Qh in 2006 and in Qle in

2007. Physically, this can be explained by the fact that

during the dry regime, Noah has a dry bias and produces

too little evaporation, thereby overestimatingQh. In the

wet regime, Noah has a wet bias and produces too much

Qle (partially due to too much net radiation). These

results are also consistent in that, during a dry regime,

which is water-limited, the primary adjustment in fluxes

would be toward the higher magnitude flux (Qh), and

during a saturated regime, the largest impact would be

felt in Qle. In fact, the domain-averaged statistics show

a maximum reduction (relative to the other flux com-

ponents) in positive bias of 26.46Wm22 in Qh during

2006 and 31.4Wm22 in Qle during 2007. We therefore

infer that the calibration has adjusted the parameter

set to correct for the dry bias in 2006 by modifying the

efficiency of the evaporative physics in Noah (and vice

FIG. 4. Mixing diagram showing the diurnal coevolution (0600–1600 LST) of Q2 and T2 on

14 July 2006 at the E4 site for the set of default and calibrated NU-WRF simulations. Also

shown are the Bowen and entrainment ratios as defined in S09 and described by the surface and

atmospheric response vectors (dashed lines).
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versa in 2007) to complement the new soil moisture levels

and produce the optimal fluxes based on observations.

b. Coupled simulations

To assess the impact of offline LSM calibration on the

coupled system, LoCo diagnostics are used to simulta-

neously evaluate the land (LSM) and atmospheric (PBL)

component evolution and interaction.

1) 14 JULY 2006

The mixing diagram analysis for the 14 July 2006 case

at theARM-SGPE4 site is shown in Fig. 4. Focusing first

on the comparison of the DEF and SCP simulations, it is

shown that the default Noah parameters produce the

poorest simulation of heat andmoisture states and fluxes

in NU-WRF. Visually, theDEF curve is drier (and slightly

warmer) than observed throughout the daytime period.

This is improved significantly in the SCP simulation,

which matches closely with observed 2-m potential tem-

perature (T2) and 2-m specific humidity (Q2) throughout.

Table 3 provides error statistics of simulated versus

observed T2 and Q2 coevolution, and because mixing

diagrams are in energy space, these can be repre-

sented in units of J kg21 and can be used to describe

a total RMSE,

Total RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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t
�
t

i51
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2

s

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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t
�
t

i51
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2

s
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and a total mean absolute error (MAE),

Total MAE5
1

t
�
t

i51

jT2wrf,i 2T2obs,ij

1
1

t
�
t

i51

jQ2wrf,i 2Q2obs,ij , (3)

TABLE 3. Error statistics for Fig. 4, where the coevolution of Q2

and T2 from each simulation is evaluated against observations in

time in terms of total RMSE [J kg21; Eq. (2)], total MAE [J kg21;

Eq. (3)], bias (J kg21), and the N-S efficiency (Nash and Sutcliffe

1970). Bold values indicate lowest error values between the DEF

and SCP simulations.

DEF CPL SPN SCP

Total RMSE 6288.60 6161.24 4665.10 5314.07

Total MAE 5231.25 5181.39 4044.50 4541.69

Bias Q2 26022.76 25743.49 23159.91 24196.35

Bias T2 4244.72 4458.54 3336.54 3919.27
N-S efficiency 21.78 21.67 20.53 20.98

FIG. 5. Daytime mean evaporative fraction vs PBL height for the simulations in Fig. 4.
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of heat and moisture combined (i.e., quantifying the

spatial differences between the model and observed

curves in Fig. 4), where the subscripts wrf and obs

indicate the NU-WRF–simulated and ARM-SGP–

observed values of each and t is the number of hours

evaluated in Fig. 4. These metrics confirm that the

DEF run performs worst of all the simulations, while

the SCP improves all aspects of the temperature and

moisture states (T2 and Q2) by 15%–26% in total

RMSE and 8%–30% in bias.

The fluxes in the coupled system can be evaluated in

Fig. 4 via the surface (Vsfc) and residual (Vatm) vectors

and their flux components and ratios. Note that fluxes

into the PBL are defined as positive, as sources of energy

for the PBL. As expected, SCP produces a surface

Bowen ratio (bsfc 5 Qh/Qle) nearly identical to that

observed because of the calibration to surface fluxes

performed, which produced the parameters used in the

SCP simulation. DEF overestimates bsfc, consistent with

the dry bias observed in the offline spinup and the cou-

pled T2 andQ2 results. The components ofVatm are also

impacted by the LSM calibration by ;15% and are

slightly closer to observations. Likewise, the relative

proportions of atmosphere-to-land fluxes (defined as the

ratios of atmospheric fluxes to surface fluxes generated;

Ale 5Qleatm/Qle andAh 5Qhatm/Qh) show substantial

improvement in SCP over default, where the higher Qle

FIG. 6. Diurnal cycle and error statistics of T2 and Q2 for the 14 July 2006 case and evaluated at 214 station pairs across the ARM-SGP

domain for each 6-hourly increment.

FIG. 7. Qle, Qh, and Qg RMSE and bias statistics (Wm22) on

14 July 2006 measured against the full set of ARM-SGP flux tower

sites and evaluated hourly.
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and lowerQh produce better ratios of land to PBL fluxes

as a result of correcting the dry bias at the surface. [It

should be noted here that advection can be incorporated

explicitly into mixing diagram analyses as described in

S09, but for the case studies evaluated here, the ad-

vection ratios (as defined in S11a) were sufficiently

small such that they are only a very small proportion

of Vatm.]

FIG. 8. Mixing diagrams for the (top) 18 and (bottom) 19 July 2006 case studies showing the

DEF and SCP simulations against observations at the E4 site.
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Focusing on the remaining two simulations, CPL and

SPN, indicates how calibrated parameters impact cou-

pled simulations when used in either offline spinups or

the coupled run only. It is first evident that SPN does

well with T2 and Q2 state estimation, correcting the dry

bias of Noah and producing the best overall error met-

rics in Table 3. The fluxes of SPN are severely over-

compensated, however (e.g., bsfc very low), and produce

too much evaporation. Because the calibrated parame-

ters in this simulation are used only for the spinup, these

results indicate that the default parameters still em-

ployed in the coupled run produce too high evaporation

rates for the given initial soil moisture state. The CPL

simulation performs poorly both in terms of T2 and Q2

(with comparable or worse metrics in Table 3 to the

DEF simulation) and surface and PBL fluxes, indicating

that using calibrated parameters only for the coupled

simulation along with a default spinup does not impact

or improve the coupled forecast at all. These results are

also consistent with those of Trier et al. (2008), who

showed that initial soil moisture (i.e., fluxes calibrated in

SPN) has a much larger influence on forecasts than the

evolution of soil moisture during the coupled run (i.e.,

fluxes calibrated in CPL).

A related diagnostic of the coupled system perfor-

mance is the relationship of daily midday evaporative

fraction (EF) and daytimemaximumPBL height (PBLH),

as shown in Fig. 5. Once again, the best combination of

land and atmospheric behavior is exhibited by the SCP

simulation, which closely matches both the EF (which

integrates the land surface condition) and PBLH (which

integrates the atmospheric response). SPN and CPL are

the extremes in terms of EF and PBLH, while the dry

bias in the DEF simulation is evident and leads to

slightly higher PBL growth.

From the full suite of simulations and diagnostics

in Figs. 4 and 5 and Table 3, it is clear that offline LSM

calibration can improve coupled simulation components

significantly and in a consistent fashion in terms of cor-

recting a bias and the impact of that correction (e.g., soil

moisture) on the coupled components (e.g., T2 and Q2).

It is also evident that employing calibrated parameters

in both the offline spinup and the coupled run is required

to achieve optimal improvement in coupled prediction.

It is the combination of a spinup produced with cali-

brated parameters that supports a wetter initial con-

dition and those same parameters that support lower

evaporation rates in the coupled simulation that are

compensatory. Therefore, if the calibrated parame-

ters are only used in either the spinup or coupled run,

significant and overreaching impacts will be seen in

the prediction of coupled states and/or fluxes (as seen

in SPN and CPL).

A robust measure of the impact of LSM spinup and

calibration on weather prediction can be found in the

performance of T2 and Q2 across the entire model do-

main. Figure 6 shows the domain-averaged statistics

computed using the Model Evaluation Tools (MET)

statistical software package [developed by the National

Center for Atmospheric Research (NCAR; www.dtcenter.

org/met/users/docs/overview.php) and incorporatingNCEP

Automated Data Processing (ADP) atmospheric and

surface data] and based on 214 site observations at

6-hourly intervals on 14 July 2006, which provides a true

independent evaluation of the model. In particular, the

total RMSE and bias statistics are largely improved in

SCP versus DEF and are consistent in terms of lowering

the dry/warm bias of the default simulation. Also plotted

are the results from aNU-WRF simulation that does not

use LIS or a spinup of the Noah LSM (as a true ‘‘off the

shelf’’ WRF default case comparison).

Overall, by introducing a spinup (DEF versus WRF),

there is a definite increment of forecast improvement

over using the default and coarser atmospheric initiali-

zation data source (e.g., NARR in this case). Performing

offline calibration for a spinup then increases the accu-

racy of the simulation even further (SCP versus DEF

versus WRF). Likewise, the land surface energy balance

(Qh, Qle, and Qg) components across the entire suite

of 19 ARM-SGP sites are shown in Fig. 7, where im-

provement is seen across the board in terms of reducing

the total RMSE and bias. These results provide strong

evidence that spinup and calibration improves coupled

forecasts across the entire NU-WRF domain, as well as

the individual site details shown in Figs. 4 and 5.

2) 18–19 JULY 2006

The other dry regime case study results are shown in

Fig. 8 and Table 4. As the dry down has progressed over

the period, there is a larger diurnal range in T2 observed

TABLE 4. Error statistics from (a) Fig. 9a and (b) Fig. 9b for all four

simulations. Bold values as in Table 3.

DEF CPL SPN SCP

Total RMSE 6018.59 5992.34 3977.58 5086.32

Total MAE 4921.32 4992.19 3050.16 4129.53

Bias Q2 27889.19 27859.74 25002.86 26663.78

Bias T2 1953.45 2124.63 818.18 1595.27
N-S efficiency 20.385 20.373 0.394 0.011

DEF CPL SPN SCP

Total RMSE 5916.36 5464.83 4031.29 5116.14

Total MAE 4638.54 4450.96 2475.01 3970.43

Bias Q2 26905.71 26541.11 23709.10 25976.76

Bias T2 2371.36 2360.82 416.55 1964.09
N-S efficiency 20.128 0.038 0.476 0.157
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(;20K) than the 14 July case (;13K), while the hu-

midity ranges are comparable on 18 July but reach

a much drier condition on 19 July as the surface nears

desiccation. On both days in Fig. 8, the DEF simulation

shows a more extreme dry bias now versus observations,

as reflected in Q2 and the surface Bowen ratio. Despite

this, the calibration in SCP still produces consistent

improvement in heat and moisture states and fluxes,

FIG. 9. As in Fig. 8, but for (top) 16 and (bottom) 17 June 2007.
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particularly on 18 July. The value of bsfc on 19 July is

observed to be much higher than the previous day and

supports a sharp diurnal decrease in Q2 due to lack of

surface evaporation and increased dry air entrainment

(and is similar to the mixing diagram signature seen in

the dry soils results of S09 and S11a). Overall, the SPN

simulation (not shown) produces the lowest T2 and Q2

errors, but as was the case for 14 July, this occurs for the

wrong reasons, as bsfc is vastly underestimated while

CPL remains close to the DEF results.

That SCP does not match or improve bsfc observations

as well as the previous cases is because the overall nature

of the calibration is to correct the dry bias in Noah,

thereby increasing the soil moisture and Qle. The cali-

bration works well overall, but for extreme conditions

like on 19 July, the DEF simulation just so happens to

produce better bsfc because of its inherent dry bias. The

limits of calibrating the spinup are also evident here, as

the shift due to higher initial soil moisture is felt in the

coupled simulation to the degree of the shift in DEF to

SCP curves and suggests that there remain deficiencies

in LSMphysics that limit the quality of results even after

a detailed calibration is performed.

3) 16–17 JUNE 2007

The wet regime cases show a vastly different signature

in the mixing diagrams that reflects much higher evap-

oration rates at the surface and limited PBL growth and

entrainment above. Figure 9 and Table 5 show that the

DEF simulations generally perform well relative to ob-

servations in terms of T2 and Q2 evolution. As a result,

there is very little impact of using calibrated versus de-

fault parameters, though the patterns are consistent in

that CPL performs worst and SPN performs best in

terms of T2 and Q2 metrics. The calibration does im-

prove bsfc in SCP over DEF and is very close to obser-

vations, as should be the case based on the calibration

design (note that the calibration performed for these cases

was appropriately based on the 1 May to 1 September

2007 period). There is not any translation of this im-

provement to the PBL fluxes or 2-m states, however.

This is consistent with the results of S13, who showed

that the impact of a particular LSM is dampened during

wet regimes when the PBL scheme and atmosphere-

dominated regime take over. Furthermore, when the

LSM and coupled model perform well [as 16 June total

RMSE, totalMAE, bias, andNash–Sutcliffe (N-S)metric

suggest], there is little to be gained in calibrating large

sets of parameters because the inherent predictability in

the system has already been maximized.

4) 19–20 JUNE 2007

At the end of the wet regime, much poorer perfor-

mance is seen in both the DEF and SCP simulations

(Fig. 10, Table 6) in terms of the diurnal evolution of

T2 andQ2. Particularly on 19 June, when DEF has a wet

bias in the morning, there is degradation across all

metrics (with the exception of the Q2 bias), which is

again consistent with the calibration attempt to correct

the overall dry bias that is not evident on this particular

day. As also evident from the comparisons of all the case

studies thus far, there is a noticeable shift on 19 June to

a very wet regime (high Q2) that reflects frequent pre-

cipitation events in the days prior (including the passage

of a MCS over the study region).

The performance on 20 June is similar to 16–17 June

in that there is very little impact of calibration on the

results. Overall, the wet regime is dominated by low bsfc

and relatively high Qle, along with lower net radiation

(due to clouds and precipitation) and reduced PBLH,

entrainment, and diurnal cycles of T2 andQ2. Thismakes

the potential impact from LSM adjustments (such as

calibration, spinup, and initialization approaches) on the

coupled system much lower than in the dry regime.

In addition, the attempt of calibration to systematically

reduce inherent LSM biases works least well for the

extremes of regimes (e.g., just after frequent rainfall or

at the end of a severe dry down) as opposed to the more

benign, moderate, and transitional periods (as reflected

in the overall offline and domain-averaged results pre-

sented above).

c. Period of calibration

The second part of this analysis addresses the ques-

tion, what is the impact of the period of calibration on

coupled predictions? The 2006 case studies above were

performed using parameters calibrated during the sum-

mer 2006 period, and the 2007 cases were performedwith

parameters calibrated during 2007. For broader applica-

bility of this methodology, it is important to address the

TABLE 5. Error statistics from (a) Fig. 10a and (b) Fig. 10b for all

four simulations. Bold values as in Table 3.

DEF CPL SPN SCP

Total RMSE 1380.69 1731.27 1539.36 1718.66

Total MAE 1190.26 1421.29 1280.70 1386.36

Bias Q2 436.17 2478.81 1283.31 938.37

Bias T2 1412.82 1920.64 1155.18 1485.82

N-S efficiency 0.809 0.699 0.762 0.704

DEF CPL SPN SCP

Total RMSE 1788.06 2480.89 1240.10 1498.29

Total MAE 1644.65 2280.67 1119.14 1338.25

Bias Q2 21761.03 22627.25 2977.38 21164.02

Bias T2 1528.27 1934.09 1237.55 1240.91
N-S efficiency 0.183 20.573 0.607 0.426
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impact of data availability and limitations on the cali-

bration. For example, if observed fluxes are only avail-

able for a limited time or for a certain year or season (as

is often the case for field experiments) that does not

coincide with the forecast period of interest, there likely

will not be as optimal results seen in the offline cali-

bration or coupled simulations. In addition, application

of parameters calibrated outside the forecast period of

FIG. 10. As in Fig. 8, but for (top) 19 and (bottom) 20 June 2007.
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interest can be evaluated here as truly independent

samples.

Table 7 lists the experiments conducted to determine

the impact of having observations only during dry, wet,

or average years, or having all three years available.

These simulations are each conducted using calibrated

parameters in the spinup and during the coupled run,

and therefore, C06 is identical to SCP in Figs. 4 and 8,

C07 is the same as SCP in Figs. 9 and 10, and DEF is the

same as in all previous analyses.

The land surface energy balance components for the

2008 offline calibration are shown in Fig. 11. Improve-

ment in total RMSE of Qle and Qh is seen at all but

three and five sites, respectively, but to a much lesser

degree overall (;5–10Wm22) than was seen in 2006

and 2007. Likewise, the impact of calibration on the

diurnal cycle fluxes is very small, particularly for Qle

(which is already simulated quite well by default), al-

though Qg shows more impact and degradation during

daytime than either 2006 or 2007.

The results for the offline calibration using all three

years of data (2006, 2007, and 2008) combined are then

shown in Fig. 12. Once again, the GA algorithm per-

forms well in improving the flux components at nearly

all sites (with the exception of only two in Qle and Qh),

and overall improvement in total RMSE is on the order

of 15–20Wm22. The diurnal cycles show marked

improvement in both Qle and Qh, nearly matching

observations in each and lowering the daytime magni-

tude of each. Some degradation is seen in Qg, where it is

overestimated during the daytime, therefore compen-

sating somewhat for the reduction in Qh and Qle.

The 14 July 2006 case study results for the suite of

simulations with different year calibrations are shown in

Figs. 13 and 14 and Table 8. DEF and C06 are the same

as in Fig. 4, but what is now evident is the spread in re-

sults introduced by different calibration periods. C07

performs nearly as well as C06 despite that this is a 2006

case (Fig. 14), with both the T2 and Q2 evolution and

error metrics almost identical (Table 8). The similarity

of C06 and C07 follow in the EF versus PBLH analysis

(Fig. 14) as well. The worst-performing simulation by far

is that with the calibrated parameters from the average

year (C08), which is too dry and significantly overesti-

mates bsfc as a result (low Qle, high Qh). This translates

into an atmospheric response that is too large and is

reflected in low EF and large PBL growth in Fig. 14. The

calibration using all three years of data (C678) generally

performs well, but less so than either C06 or C07, which

is as expected given the performance and weighting of

the individual years.

These results show that impacts on coupled prediction

during extremes are maximized when the calibration is

able to correct the LSM bias most significantly. In this

case, C06 and C07 occur during primarily dry and wet

extremes when the offline LSM produces large errors in

fluxes, and therefore, the resultant calibrated parame-

ters provide more improvement in the coupled predic-

tion during similar periods. This will be discussed further

in section 5. On the contrary, calibration during an

overall average year such as C08 (even one that has

short precipitation and dry downs within it) when the

LSM performs well does not yield much improvement

when applied to a dry extreme case. Similar results are

also seen for the 18–19 July 2006 case study (ranked as

C06, C07, C678, and C08 from most to least improve-

ment), and similar mixed/limited impacts are seen in the

2007 cases because of the atmospherically controlled

conditions. It should be investigated further whether this

‘‘targeted’’ calibration approach works for other loca-

tions and conditions as well, but it is suggested that

a single long-term calibration period (multiyear) might

TABLE 6. Error statistics from (a) Fig. 11a and (b) Fig. 11b for all

four simulations. Bold values as in Table 3.

DEF CPL SPN SCP

Total RMSE 4177.31 4963.27 4263.40 4611.42

Total MAE 3501.51 4383.16 3576.48 3987.41

Bias Q2 2257.51 21412.37 1159.99 142.81

Bias T2 2361.73 3213.09 2043.18 2811.18

N-S efficiency 21.193 22.096 21.285 21.673

DEF CPL SPN SCP

Total RMSE 1598.93 1898.51 2301.55 1632.62

Total MAE 1412.15 1708.75 2026.01 1497.77

Bias Q2 2467.35 21119.43 2471.04 2195.45

Bias T2 1373.55 1948.36 1144.36 1639.91

N-S efficiency 0.672 0.538 0.321 0.658

TABLE 7. Description of calibration approaches and parameter sets used in NU-WRF simulations.

Simulation Description Spinup parameters Coupled parameters

1 DEF Default run with uncalibrated parameters Default Default

2 C06 Impact of calibrating during 2006 only 2006 2006

3 C07 Impact of calibrating during 2007 only 2007 2007

4 C08 Impact of calibrating during 2008 only 2008 2008

5 C678 Impact of calibrating to all three years combined 2006, 2007, 2008 2006, 2007, 2008

OCTOBER 2013 SANTANELLO JR . E T AL . 1391



not generate parameters that are suitable to extreme

period prediction.

d. Uncertainty propagation

An interesting question that is inherent in parameter

estimation studies is how to quantify the sensitivity of

LSMs to calibrated parameter sets generated by algo-

rithms such as GA. To address this issue, an additional

suite of simulations was conducted using a simpleMonte

Carlo simulation (MC-SIM) sampling algorithm imple-

mented in LIS-OPT/UE in order to propagate uncer-

tainty from inputs (e.g., soil, vegetation, and general

parameters) to model outputs (e.g., offline spinup and

coupled prediction). As such, this algorithm allows for

an assessment of LSM uncertainty and can be used to

gauge the relative sensitivity of the coupled system to

LSM inputs. A small sample size (five) was applied,

given that WRF does not have a true ensemble mode

and essentially requires independent integrations for

each set. As in Kumar et al. (2012a), uniform distribu-

tions were applied to all parameters given the physically

realistic ranges in Table 1 (also based on Kumar et al.

2012a). The result is a sense of the spread in simulations

prior to calibration.

FIG. 11. As in Fig. 2, but for the 1 May to 1 Sep 2008 calibration period.
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Figure 15 shows the results of the DEF and C06 sim-

ulations (as in Fig. 14) for the 14 July 2006 case, along

with the simulations using the five parameter sets sam-

pled withMC-SIM (used in both the spinup and coupled

run, as for C06). The large spread in results (shaded

area) highlights the importance of LSM parameter sets

in the coupled forecast of heat and moisture states and

fluxes. That MC-SIM randomly sampled these sets sug-

gests the full spread, using physically reasonable bounds

on parameter values as was done here, could actually be

much larger than shown here as well. Nearly all of the

MC-SIM simulations are on the dry side of observations,

an indication of the dry bias in the Noah model that is

only circumvented when using the full C06 calibration

with observations. The fluxes in MC-SIM vary quite

a bit, where bsfc ranges from 0.733 to 4.960 and large

errors versus observed are carried into the atmospheric

components of the system.

5. Discussion

The questions addressed in this study of improving

coupled prediction using LSM calibration have shed

light on the following issues: 1) what to calibrate, 2) how

FIG. 12. As in Fig. 2, but for the combined 1 May to 1 Sep 2006, 2007, and 2008 calibration periods.
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to calibrate, and 3) when to calibrate. Because fluxes

are the most important aspect of LSMs for atmo-

spheric models, the largest impact will be seen in

calibrating an LSM to Qle and Qh observations. In the

approach presented here, in contrast to Santanello

et al. (2007), we calibrate only fluxes, and therefore,

soil states such as moisture and temperature are by-

products without observational constraints. Current

and future satellite missions will provide soil moisture

state observations that can be used to calibrate soil

hydraulic properties as shown in Santanello et al.

(2007). It is therefore increasingly likely that multi-

objective calibration approaches (e.g., Gupta et al.

1999) will be most beneficial to LA prediction if both

state and flux measurements can be used simulta-

neously in LSM calibrations.

With regards to the calibration of fluxes themselves,

it is also important to acknowledge the inherent un-

certainty in measurements by current best-available in-

struments such as EBBR and ECOR. As described in

section 3, there is up to 10% error (or larger) in Qh and

Qle, as well as up to 25% closure gaps possible in these

data. Therefore, we have performed preliminary anal-

yses (not shown) of the potential impact of this un-

certainty on the evaluation of the coupled simulations

and mixing diagrams. Results show that 610% changes

in the surface flux vector components only lead to

marginal impacts on atmospheric response and derived

ratios. More importantly, this uncertainty does not

change any of the conclusions that the full calibration

(SCP) simulation produces results closest to the ob-

served range of states and fluxes relative to the DEF or

other mixed calibration simulations.

In terms of how to calibrate, it is not the algorithm

choice (e.g., similar performance has been seen in LIS-

OPT/UE intercomparisons of the three methods therein;

Harrison et al. 2012) so much as the parameter sets and

mapping approach that are employed that is important

for coupled prediction. NU-WRF is fully 3D and com-

municates horizontally between grid cells through the

atmospheric flow. This is in contrast to LIS and most

LSMs, which operate in one dimension. This makes it

particularly important that parameter calibration and

assignment be considered carefully for coupled studies.

The approach performed in this study entailed the as-

signment of soil, vegetation, and general parameter

types, followed by averaging across observation sites for

like classes of each and assignment to the full domain.

With the exception of a few sites in the offline calibra-

tion results, this approach seemed to work well overall,

as evidenced by the independent assessment of 214 lo-

cations of T2 and Q2 performance in the coupled run

FIG. 13.Mixing diagrams for the 14 July 2006 case study showing theDEF andC06, C07, C08,

and C678, along with observations at the ARM-SGPE4 site. Note that DEF and C06 are equal

to DEF and SCP from Fig. 4.
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(Fig. 7). A next step in this regard is to investigate the

classification at those ARM-SGP sites that saw fluxes

that degraded slightly after calibration to see if the soil

type and land cover representation at those flux towers

was represented accurately by the datasets (STATSGO

and UMD) chosen for this study.

In addressing the final question of when to calibrate,

we found some interesting results that should be taken

into account in future studies. That the calibration in

the wet regime worked nearly as well as the dry regime

parameters suggests that, in order to improve simula-

tions during extremes, the calibration should be able to

improve model bias in a significant fashion (in this case,

during both dry and wet extremes). Clearly, this is not

a one-size-fits-all approach and depends on the season-

ality of a particular location/climate regime, but it also

suggests that the model physics be tested outside of

‘‘average’’ conditions (even those that include dry and

wet periods within them) in order to maximize LSM

improvement due to calibration. There are many more

experiments that could be performed in terms of period

sensitivity (seasonal, application to average condition

coupled cases, etc.) that will be a part of future research.

Another issue rarely addressed in studies of LSM

calibration is that of the physical realism of the cali-

brated parameter values and consideration of what the

values actually represent relative to the default lookup

tables. Santanello et al. (2007) was successful in achieving

both goals of reducing model bias and maintaining pa-

rameter realism among soil hydraulic properties through

the use of pedotransfer functions. Here the parameter

set is so large that it is difficult to ensure or even evaluate

FIG. 14. Daytime mean evaporative fraction vs PBL height for the simulations in Fig. 13.

TABLE 8. Error statistics from Fig. 14 for each of the simulations. Bold values as in Table 3.

DEF C07 C08 C06 C678

Total MAE 5231.25 4538.32 5707.05 4541.69 4630.35

Total RMSE 6288.60 5371.56 6851.72 5314.07 5490.36

Q2 bias 26022.76 24249.04 27044.01 24196.35 24492.11

T2 bias 4244.73 3977.18 4370.09 3919.27 3998.27

N-S efficiency 21.782 21.030 22.303 20.987 21.121

OCTOBER 2013 SANTANELLO JR . E T AL . 1395



interparameter consistency and applicability to real-world

(or measured) properties, and many LSM parameters

are not even observable. More importantly, the pri-

mary goal of this study is to evaluate the impact of

optimal surface fluxes on coupled forecasts, while re-

alizing that the atmospheric component is not sensitive

to actual values of LSM parameters or their consis-

tencies. More rigorous studies focused on generation of

‘‘equifinal’’ solutions (Gupta et al. 1999; Hogue et al.

2005) have shown promise in evaluating physical con-

sistency, but they are more narrowly focused on cal-

ibration approaches and internal physics of a particular

model.

For most calibration studies in applications outside of

hydrology, the ends (i.e., improved flux output) justify

the means (i.e., limited parameter realism). However,

we can still take a closer look at the evaporative physics

in Noah and two of the commonlymodified and ‘‘tuned’’

parameters in previous studies. The FXEXP parameter

is the exponent for bare soil evaporation in Noah, which

is a function of soil moisture and vegetation amount.

Lower values of FXEXP increase the bare soil compo-

nent of Qle for a given soil moisture/vegetation amount,

and the default value is 2.0. Table 9 shows the calibrated

values from the different period experiments, and there

is a definite downward shift in FXEXPdue to calibration

toward 1.0. In fact, Santanello et al. (2007) modified the

FXEXP parameter in their study to be 1.0 because of the

semiarid region and inability of Noah to produce enough

Qle. The calibration here has acted in the same manner

in order to increase Qle to match observations.

Theother parameter of interest is part of the evaporative/

flux calculations in Noah. CZIL is the Zilitinkevich co-

efficient relating the roughness length for momentum to

the roughness length for heat (Zoh) and the exchange

coefficient (Ch). There has been recent work in Noah

model development to modify this from its default value

of 0.1 to a value dependent on the particular region and/

or vegetation coverage (e.g., Mitchell et al. 2004; Chen

and Zhang 2009; LeMone et al. 2008, 2010; Trier et al.

2011). Higher values of CZIL decrease Zoh, Ch, and flux

magnitudes overall. Table 9 shows the values of CZIL

from DEF lookup table of Noah along with calibrated

FIG. 15. Mixing diagrams for the 14 July 2006 case study showing the default and suite of

experiments using parameters calibrated during 2006 (C06) and five randomly sampled sets

generated from MC-SIM (shaded), along with observations at the ARM-SGP E4 site.

TABLE 9. Values of the Noah CZIL and FXEXP parameters

used in each of the simulations and the CZIL studies of LeMone

et al. (2008) and Trier et al. (2011).

DEF C06 C07 C08 C678

LeMone

et al. (2008)

Trier et al.

(2011)

FXEXP 2 1.06 1.34 0.969 1.19 — —

CZIL 0.1 0.6 0.6 0.1 0.6 0.5 0.1–1.0
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values from different periods and the prior study esti-

mates. The value has been raised to 0.6 in the calibra-

tions that perform best (C06, C07, C678) versus 0.1 in

the DEF and the poor calibration of C08.

These results are consistent with tests of the Noah

model over the ARM-SGP domain by LeMone et al.

(2008), who found that CZIL should be larger in this

region and may also explain why both C06 and C07

perform well for the 2006 case study. Figures 2 and 3

showed that the bulk of improvement in the offline runs

were due to reducing Qh in the dry year and reducing

Qle in the wet year. Because these are the dominant flux

components in each year, the increase in CZIL is at least

partially responsible for the improved fluxes and re-

duction in model bias (consistent results are also found

in C678, where both Qle and Qh are improved and re-

duced). C08 saw no change in CZIL and, therefore, no

change in the evaporative physics for the corresponding

spinup or coupled run application.

The SPN versus CPL results above also support those

of Trier et al. (2008) in terms of consistency in calibrated

parameter sets and suggest that the results of Trier et al.

(2011) would have shown even greater sensitivity of

land–PBL coupling to CZIL if the same modified values

were used both in the spinup and coupled runs (their

CZIL modifications were applied to the coupled run

only). Overall, the calibrated values of both CZIL and

FXEXP appear to be physically consistent with previous

studies’ manual tuning of parameters, and while they by

no means guarantee the same for the other 27 parame-

ters involved, they at least suggest some physical con-

sistency andmodel improvement that produces the right

answer for the right reasons.

6. Conclusions

This study examines the impact of LSM spinup and

calibration on the land–PBL coupling in regional model

forecasts. Sensitivities to dry/wet regimes, period of cal-

ibration, and parameter sets were quantified using di-

agnostics of LA coupling and applied to the NU-WRF

coupled modeling system. Key findings from this work

include the following.

d Offline calibration using a surface flux network is

successful in reducing LSM biases and improving

diurnal cycles of Qle and Qh.
d Calibrated parameter sets can improve fluxes and

states during both dry and wet regimes and extend

their impact to PBL fluxes and ambient weather (T2

and Q2).
d Largest impacts of offline calibration on coupled runs

are seen during the dry regime when the turbulent

fluxes are larger and atmospheric and precipitation

forcing is weak.
d A calibrated spinup by itself can produce more accu-

rate temperature and humidity forecasts, regardless of

the parameter sets used in the coupled simulation,

though consistency in parameter sets between spinup

and coupled runs is critical to improving performance

and maintaining physical consistency in both states

and fluxes.
d Calibration during primarily dry and/or wet extreme

periods corrected more of the inherent LSM bias and

led to better coupled predictions in the dry regime.
d Significant variability in hydrometeorological predic-

tion can result from LSM parameter uncertainty but

can be reduced using observations and calibration

approaches.

These results can be considered preliminary in the

sense that there are multiple approaches to offline cali-

bration (objective function, multicriteria, etc.) and the

extension of calibrated parameters from a single grid

cell to other like sites in that domain. Future work is

being planned using LIS-OPT/UE to determine the

relative importance of specific parameters in the cal-

ibration process and to answer the questions of how

many and which parameters are essential to achieving

the degree of coupled model improvement seen in this

study. Further, these experiments were also designed as

a prototype test bed for future satellite missions [e.g.,

NASA’s Soil Moisture Active Passion (SMAP) mis-

sion]. Using LIS-OPT/UE, the tradeoffs of data avail-

ability versus accuracy and uncertainty in prediction can

be quantified systematically. The classification strategy

employed in this study (i.e., from single site to fully

gridded parameter optimization) also relates to the

spatial tradeoffs of satellite sensors, while the period of

calibration relates to the satellite overpass return time.

In the future, simultaneous development of Earth sci-

ence technologies (e.g., microwave soil moisture sen-

sors) and methodologies (e.g., thermal evapotranspiration

retrievals) will warrant the LIS-OPT/UE approach in

assessing the impact of observations on coupled fore-

casts for both calibration and data assimilation studies

alike.
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