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ABSTRACT

In this paper, the authors estimate the uncertainty of the rainfall products from NASA and Japan Aero-

space Exploration Agency’s (JAXA) Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar

(PR) so that they may be used in a quantitative manner for applications like hydrologic modeling or merging

with other rainfall products. The spatial error structure of TRMM PR surface rain rates and types was sys-

tematically studied by comparing them with NOAA/National Severe Storms Laboratory’s (NSSL) next

generation, high-resolution (1 km/5min) National Mosaic and Multi-Sensor Quantitative Precipitation Es-

timation (QPE; NMQ/Q2) over the TRMM-covered continental United States (CONUS). Data pairs are first

matched at the PR footprint scale (5 km/instantaneous) and then grouped into 0.258 grid cells to yield spatially
distributed error maps and statistics using data fromDecember 2009 throughNovember 2010. Careful quality

control steps (including bias correction with rain gauges and quality filtering) are applied to the ground radar

measurements prior to considering them as reference data. The results show that PR captures well the spatial

pattern of total rainfall amounts with a high correlation coefficient (CC; 0.91) with Q2, but this decreases to

0.56 for instantaneous rain rates. In terms of precipitation types, Q2 and PR convective echoes are spatially

correlated with a CC of 0.63. Despite this correlation, PR’s total annual precipitation from convection is

48.82% less than that by Q2, which points to potential issues in the PR algorithm’s attenuation correction,

nonuniform beam filling, and/or reflectivity-to-rainfall relation. Finally, the spatial analysis identifies regime-

dependent errors, in particular in the mountainous west. It is likely that the surface reference technique is

triggered over complex terrain, resulting in high-amplitude biases.

1. Introduction

Reliable quantitative estimates of the spatial pre-

cipitation distribution are critical in the application of

satellite-based rainfall in hydrologic modeling and haz-

ards monitoring and forecasting. Because of their global

coverage and spatial continuity, satellite-based quantitative

precipitation estimates (QPE) products are used for

such applications. However, there are many inherent

error sources in satellite-based measurements, such as

the spatial horizontal/vertical heterogeneity of the rain

fields. Therefore, characterizing the error structure of

satellite-based rainfall products is recognized as a major

issue for the usefulness of the estimates (Abdella and

Alfredsen 2010; Wolff and Fisher 2009; Yang et al. 2006;

Zeweldi and Gebremichael 2009). In addition, a quan-

tification of the error characteristics is necessary for data

assimilation, climate analysis (Li et al. 2012; Stephens

and Kummerow 2007), and hydrological modeling of
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natural hazards (Grimes and Diop 2003; Hong and Adler

2007; Lebel et al. 2009; Li et al. 2012; Parkes et al. 2013).

The first space-based precipitation radar (PR) was

launched aboard the Tropical Rainfall Measuring Mis-

sion (TRMM) in 1997. TRMM is a joint mission between

the National Aeronautics and Space Administration

(NASA) and the Japan Aerospace Exploration Agency

(JAXA) designed to monitor and study tropical rainfall.

In addition toPR, other precipitation-related instruments

include the TRMM Microwave Imager (TMI), the Visi-

ble Infrared Scanner (VIRS), and the Lightning Imaging

Sensor (LIS; Kummerow et al. 1998). PR measures the

rainfall conjointly with TMI; it measures the 3D rainfall

distribution over both land and ocean, whereas TMI, as

well as many other passive microwave sensors aboard

other satellite platforms, provides an indirect measure-

ment of surface rainfall. Therefore, TRMM PR rainfall

estimates are considered as a reference for calibrating

TMI-based rainfall estimates (Wolff and Fisher 2009;

Yang et al. 2006). The PR-calibrated TMI, in turn, has

been used as the reference for other passive microwave

sensors, which collectively enable the creation of global-

scale precipitation products (Huffman et al. 2007). Thus,

PR has fundamental impacts on satellite-based rainfall

estimates from other low-Earth-orbiting passive micro-

wave measurements and a number of satellite-based,

high-resolution precipitation products (Berges et al.

2010; Ebert 2007; Hong et al. 2007).

To evaluate the error characteristics of TRMM

PR, many studies have been conducted to investigate

the quality of PR estimates in different regions in the

world (Adeyewa and Nakamura 2003; Amitai et al. 2009;

Wolff and Fisher 2009; Wolff et al. 2005). Over the

United States, Amitai et al. (2009, 2012) have compared

the PR with the National Oceanic and Atmospheric

Administration/National Severe Storms Laboratory’s

(NOAA/NSSL) ground radar-based National Mosaic

and Multi-Sensor QPE system (NMQ/Q2) as the U.S.

network offers a robust set of resources for validation.

However, many of the studies are event based and are

limited in terms of breadth of study domain and length

of time period. So far, long-term, large-scale studies of

PR’s performance are rare, largely because of the lack of

matching ground references. Following the work de-

scribed by Kirstetter et al. (2012b), in this paper we

carried out studies over the southern continental United

States (CONUS) for a long, continuous period, in-

cluding both warm and cool seasons, with quality-

controlled, high-resolution ground radar measurements.

Specifically, we performed a comprehensive evaluation

for regions over the entire southern CONUS covered by

TRMM PR using one year of data from TRMM PR and

NOAA/NSSL Q2 data (Zhang et al. 2011) from

December 2009 to November 2010. Analyses from this

study now reveal the spatial error characteristics of

TRMM PR both in terms of rain rates and types. A

major outcome of this study is to supply uncertainty

estimates for users of the data.

As part of an effort to characterize the error of PR

rainfall estimates, this paper builds on a framework

developed in Kirstetter et al. (2012b) for comparing

space-based measurements to Q2 rainfall. Ongoing ef-

forts are underway to analyze influences of additional

error factors on the PR rainfall estimates at ground like

nonuniform beam filling (NUBF), rain types, and in-

cidence angle. A complementary interest of the present

paper is to map the error so as to provide spatial error

information to users of TRMM PR data, including hy-

drologists, and to identify specific error regimes. These

tasks are possible with an accurate rainfall reference at

ground. Finally, this study provides a benchmark for the

future Global Precipitation Measurement (GPM) Dual-

Frequency Precipitation Radar (DPR). The paper is

organized as follows. Section 2 describes the ground-

based and spaceborne radar data and methods used in

this study. Section 3 describes the evaluation results and

discussion, including the analysis of spatial error char-

acteristics over TRMM-covered regions of the CONUS.

Section 4 provides the summary and conclusion.

2. Data and methods

a. Q2 ground reference data

The ground reference data used in this study are re-

ferred to as NMQ/Q2 data. The NMQ system was

originally developed from a joint initiative between

NSSL, the Salt River Project, and the Federal Aviation

Administration/Aviation Weather Research Program.

TheNMQ system is composed of fourmajormodules: 1)

single-radar processing, 2) 3D and 2D radar mosaic, 3)

QPE generation (Vasiloff et al. 2007), and 4) evaluation.

The data sources include the level 2 (base level) data

from the Next Generation Weather Radar (NEXRAD)

network, Rapid Update Cycle (RUC) model hourly

analyses (Benjamin et al. 2004), and rain gauge obser-

vations from theHydrometeorological AutomatedData

System network. Two precipitation products from the

NMQ system, namely, radar-derived QPE (Q2Rad) at

1-km/5-min resolution and the local gauge-corrected ra-

dar product (Q2RadGC) at 1-km/1-h resolution (Zhang

et al. 2011) are used in this study. In addition, NMQ

provides another important product related to the accu-

racy of theQPEs called the hybrid scan reflectivity height

(HSRH). The HSRH product is available every 5min

and is composed of the lowest effective radar scanning

DECEMBER 2013 CHEN ET AL . 1885



heights from which the reflectivity data are converted

into precipitation according to a certain Z–R relation

based on the vertical profile of reflectivity (VPR) clas-

sification (Zhang et al. 2011). Figure 1a shows the

HSRH product over the CONUS. Relatively high

HSRH values are present in the Intermountain West

because of intervening beam blockages (Maddox et al.

2002). Finally, we used the precipitation-type product

from Q2 to infer potential error characteristics due to

precipitation classification. Both Q2 and PR algorithms

base their surface rainfall rate estimates on the classifi-

cation of the precipitation type (e.g., convective versus

stratiform) for a given grid column. Thus, there may

be errors that are merely due to improper classification.

Q2 identifies convective echoes if there is reflectivity

.50 dBZ anywhere in the grid column or reflectivity

.30 dBZ at temperatures colder than the2108C isotherm.

Otherwise, it is considered as stratiform in our study.

To obtain an instantaneous, low-bias rain rate mosaic,

we applied a bias-correction method similar to the one

proposed by Amitai et al. (2012) to yield the Q2RadGC

product at 5-min resolution. We compared the hourly

Q2Rad and Q2RadGC products to compute the bias on

a pixel-by-pixel basis. The hourly correction factor was

then applied to the Q2Rad product every 5min. While

the true, unknown rainfall bias may vary at a given pixel

within an hour, the adjustment scheme we applied at

least provides for the removal of hourly bias applied

downscale to rainfall rates. Extreme adjustment factors

(outside 0.1–10) were discarded and no comparison is

FIG. 1. (a) HSRH and Weather Surveillance Radar-1988 Doppler (WSR-88D) radar locations (shown as white

points), (b) overpass of TRMM PR at 1630 UTC 8 Feb 2010, (c) a zoomed-in view of the TRMM 2A25 PR rainfall

product of (b),(d) original Q2RadGC rain rate product, (e) Q2RadGC resampled to the TRMMPR pixel resolution,

(f) robust Q2RadGC, and (g) nonrobust Q2RadGC.
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performed with PR for the corresponding Q2 values

(Kirstetter et al. 2012b). Additional details regarding the

processing of theQ2 reference are provided in section 2c

with a discussion on the PR-Q2 matching methodology.

b. TRMM PR

The TRMM PR is the first precipitation radar oper-

ating in space. It operates at 13.8GHz and measures the

3D rainfall distribution over both land and ocean, and it

defines the layer depth of the precipitation. It covers the

tropics from 378S to 378N, with a spatial horizontal res-

olution of 4.3 km before the orbit boost on 7August 2001,

which increased to 5.0 km after the boost, and a vertical

resolution of 250m. Its radar wavelength is 2.2 cmand the

minimum detectable echo is about 17 dBZ, which is

equivalent to about 0.5mmh21 (Kozu et al. 2001;

Kummerow et al. 1998). A study by Kirstetter et al.

(2012a) show that version 7 of the PR underestimates

light rain rates (,0.3mmh21) and high rain rates

(.10mmh21). The TRMM PR product used in this

study is the version 7, level 2 product 2A25. Figure 1b

shows an example of a TRMM PR pass over the

southern CONUS at 1630 UTC 8 February 2010.

c. Data matching and evaluation

The time and space resolution of the reference rainfall

should be carefully matched to the TRMM PR pixel

resolution as closely as possible in order to quantita-

tively evaluate PR. Otherwise, systematic and random

errors may arise because of data mismatches rather than

reflecting the accuracy of the product. The Q2 products

closest in time to the TRMM satellite local overpass

schedule time are used and resampled to the PR spatial

resolution. TRMM essentially provides a snapshot at

a given time while Q2-based rainfall estimates are pro-

duced every 5min. This equates to a maximum temporal

offset of 2.5min at a fixed location. The reference rain-

fall Rref is a Q2 rainfall mean computed within each PR

pixel by considering the power density function of the

PR beam. A standard error is computed alongside the

mean reference rainfall value sfootprint, which represents

the variability of the Q2 rainfall (at its native resolution)

inside the PR footprint. This standard error is used to

select the PR-Q2 reference pairs for which Rref is con-

sidered trustworthy. The reference pixels are segregated

into ‘‘robust’’ (Rref. sfootprint) and ‘‘nonrobust’’ (Rref,
sfootprint) estimators. Nonrobust reference values are

discarded for quantitative comparison. The PR rainfall

statistical characteristics are preserved because the

product remains free of undesirable impacts caused by

resampling. A more detailed discussion concerning this

point is provided in Kirstetter et al. (2012b). Figure 1c

shows a zoom-in of the snapshot of TRMMPR shown in

Fig. 1b. Figures 1d–g illustrates the processing steps

performed on the Q2RadGC product. Figure 1d shows

the original Q2RadGC product prior to processing, and

Fig. 1e shows matching Q2RadGC after it has been re-

sampled to the pixel resolution of TRMM PR. Data

falling outside the swath of the TRMM overpass have

been discarded. Figure 1f shows theQ2 product after the

robustness condition has been applied. Figure 1g shows

those pixels that were considered nonrobust and have

therefore been discarded in subsequent analyses.

Next, matched data pairs are counted within 0.258 grid
cells. This common grid was needed for composited data

because the TRMM 2A25 product is specific for each

overpass. If the number of matched pixels was less than

30 for a given 0.258 grid cell, then we deemed the sample

size too small and do not consider those pairs for sta-

tistical evaluation hereafter. Figure 2a shows the distri-

bution of total matched pairs between Q2 and PR for all

overpasses combined in the 1-yr study. No consider-

ations of the data quality, rainfall amounts, or sample

sizes have been made in this plot; thus, it represents the

theoretical maximum of data pairs for the study period.

Figure 2b shows the distribution of nonzero PR-Q2 data

pairs (i.e., both PR and Q2 rain rates are greater than

0mmh21) following application of all processing steps

including the robustness criterion toQ2 data, removal of

pixels with HSRH values greater than 3200m, and re-

moval if the number of matched pairs is less than 30. The

HSRH threshold was implemented in order to strike

a balance between high-quality Q2 reference values,

which are generally obtained at lower HSRH values,

and sample sizes of matched pairs. The most pair-

intensive areas are along the latitude of 358, which cor-

responds to the location with the most frequent TRMM

overpasses.

To compare TRMM PR’s rainfall estimates using Q2

as a reference, we compute the bias, mean bias (MB),

relative bias (RB), root-mean-squared error (RMSE),

and Pearson linear correlation coefficient (CC). These

statistics are defined as follows:
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RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

i51

(PRi 2Q2i)
2

s
, (4)

CC5
Cov(PR,Q2)

sQ2sPR

, (5)

where bias, MB, and RMSE are in units of mmh21; RB

and CC are dimensionless; Cov refers to the covariance;

and s is the standard deviation. RB, when multiplied

by 100, gives the degree of overestimation or under-

estimation in percentage. In Eqs. (1)–(5),N corresponds

to the number of matched data pairs.

The contingency table statistics describing the probability

of detection (POD), critical success index (CSI), and false

alarm rate (FAR) are also used to evaluate PR perfor-

mance. These indexes are computed based on the number

of hits (H), false alarms (F), misses (M), and correct nulls

(C) for data pairs exceeding a given rainfall threshold:

POD5
H

H1M
, (6)

CSI5
H

H1F1M
, (7)

FAR5
F

H1F
. (8)

3. Results and discussion

a. All grid cells combined

Figures 2c and 2d show the yearly accumulated rainfall

distribution according to TRMM PR and ground radar–

basedQ2. The density-colored scatterplot in Fig. 2e shows

that PR underestimates the average rain rate by 18.38%

and ismoderately correlated with Q2 with a CC of 0.56. If

we consider the annual rainfall accumulation in Fig. 2f, we

see that PR is highly correlated with Q2 as indicated by

a CC of 0.91. This means that while PR and Q2 have only

moderate agreement on the spatial distribution of in-

stantaneous rainfall rates, they agree very well in cap-

turing the annual spatial distributions of rainfall.

FIG. 2. (a) Theoretical maximum of PR-Q2 matched pairs for the study period. (b) Number of matched pairs with

nonzero rainfall amounts following application of the robust criterion to the Q2RadGC product and removal of pixels

with small sample sizes and HSRH . 3200m. Total annual rainfall (mm) from (c) PR and (d) Q2RadGC. Density-

colored scatterplots and statistics computed for (e) rainfall rates and (f) total annual rainfall accumulation.
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The number of data samples for evaluation is affected

by rainfall intermittency, the overpass frequency of

TRMM PR, and censoring of reference values to im-

prove its quality. Table 1 indicates there are a total of

1 142 724 PR-Q2 matched pairs for which the rain rates

of both Q2 and PR are greater than 0mmh21. After

applying the robust criterion to Q2, the sample size

drops to 959 332 samples, and the CC improves from

0.55 to 0.56. This criterion mainly filters out low refer-

ence values, as discussed in Kirstetter et al. (2012b), and

thus increases the mean of the Q2 reference from 3.68 to

3.96mm, having an impact on the bias. After pairs at

relatively high HSRH values (.3200m) have been fil-

tered, we see the number of matched pairs decrease

5.5% to 906 539. The impact of the HSRH filter is shown

to be insignificant on the overall statistics in Table 1.

Figure 3 shows POD, CSI, and FAR for different

reference rainfall thresholds based on all valid matching

pairs in which the rainfall estimated by PR and Q2 is

greater than or equal to 0mmh21. We note the general

improvement of the POD and CSI from 0 to 0.5mmh21,

the latter value being close to the characteristic threshold

TABLE 1. Conditioned statistics for PR-Q2RadGC 5-min comparison.

Condition Pairs

Mean (mmh21)

CC RMSE MB (mmh21) RB (%)Ref PR

1. Ref . 0 and PR . 0 1 142 724 3.68 3.23 0.55 6.91 20.45 212.29

2. Ref . 0 and PR . 0 and Robust (Rref . sfootprint) 959 332 3.96 3.27 0.56 7.13 20.69 217.58

3. Ref . 0 and PR . 0 and Robust (Rref . sfootprint)

and HSRH filtration

906 539 4.01 3.27 0.56 7.18 20.74 218.38

FIG. 3. Spatial distribution of unconditioned (left) POD, (middle) FAR, and (right) CSI based on different thresholds of (a)–(c) 0,

(d)–(f) 0.5, (g)–(i) 1, (j)–(l) 2, (m)–(o) 5, and (p)–(r) 10mmh21.
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defining the detection capabilities of the PR. This im-

provement illustrates again that the PR misses the

lightest intensities, with large differences between the

Great Plains andmountainous areas. Above 0.5mmh21,

higher FAR values and noisy POD patterns are consis-

tently pronounced in the mountainous regions of the

west, probably to be linked to poor performance of the

surface reference technique (SRT). Figure 4 shows

POD, CSI, and FAR as a function of reference rainfall

thresholds based on the robust dataset with HSRH fil-

tering. Because only positive rainfall pairs are considered,

POD and CSI are high when the threshold is set to very

light amounts (e.g., 0.1mmh21). The POD and CSI de-

crease dramatically and the FAR increases consistently

when considering higher thresholds. At thresholds

greater than 12mmh21, POD and CSI decrease dra-

matically and FAR asymptotically approaches 61.71%.

This indicates that PR has deficiency in detecting higher

rain rates, probably because of insufficient attenuation

correction of the PR radar signal as suggested by Amitai

et al. (2009) and Kirstetter et al. (2012b).

Cumulative distributions of rain rates of PR and Q2

rainfall in terms of occurrence (CDFc) and volume

(CDFv) are used to characterize the PR’s ability to de-

tect different rainfall intensities. Figure 5 shows that PR

poorly detects the lightest rain rates (,0.1mmh21) but

presents similar CDFc with the Q2 reference for rain

rates greater than 1mmh21. The CDFv indicates that

for PR, rain rates in the range of 0.3–25mmh21 contribute

nearly entirely to the total rainfall volume while the con-

tribution from higher rain rates (.25mmh21) is signifi-

cant for the reference. As an example, PR has a limited

cumulated occurrence (7%) of rain rates greater than

10mmh21 for a cumulated contribution up to 40%. Q2,

on the other hand, has a similar total rainfall contribution

of 40% when the rain rates are greater than 20mmh21.

This indicates that PR underestimates higher rainfall

rates (.20mmh21), probably because of insufficient

correction of signal attenuation losses as suggested by

Wolff and Fisher (2008) for the 2A25, version 6, and still

significant of version 7 (Kirstetter et al. 2012b). There are

several factors that could explain the PR overestimation

formoderate rain rates of 5–20mmh21 including incorrect

rainfall classification, overcorrection of the attenuated ra-

dar signal, incorrect Z–R relationship, and geometric ef-

fects (i.e., parallax issue outside of nadir).

b. Spatial analysis

TRMMPR classifies rainfall as convective, stratiform,

and others (Iguchi et al. 2000). Figure 6 shows the spatial

distribution of convective and stratiform occurrences as

well as the scatterplots of convective and stratiform rain

types derived independently from PR and Q2. We can

see that the patterns of convective and stratiform echoes

according to PR and Q2 are quite similar. Both sensors

detect lower occurrence (,25%) of convective rain

events over most areas, with locally higher convective

occurrence (25%–50%) in the mountainous areas and

central Florida. However, as shown in Fig. 6e, PR de-

tects more convective rain types than Q2 over the Great

Plains (especially in Texas, Alabama, and Florida) and

less over the western mountainous part of the CONUS.

The scatterplots in Figs. 6g and 6h indicate that the

spatial distributions of both convective and stratiform

echoes from PR are poorly correlated with those of Q2

with a CC of 0.33. The biggest difference, however, is the

propensity for PR to detectmore convective echoes than

FIG. 4. Contingency table statistics for PR as a function of ref-

erence rainfall rates shown on the abscissa. Only pairs of positive

PR and reference rainfall values are used. FIG. 5. CDFc and CDFv for PR and Q2 references.
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Q2. While there is no evidence that the Q2 classification

may be more accurate than the PR, this particular char-

acteristic will be revisited in the spatial rainfall error

quantification, as it can potentially explain bias in rainfall

rate estimation due to more classification of convective

rain types from the PR relative to the reference.

Convective events usually bring localized, intense

rainfall in a short amount of time while stratiform events

are associated with weaker rainfall but lasting for a rel-

atively long time period over larger areas. Insights into

convective and stratiform contributions in rain events go

beyond evaluating PR QPEs in that they will benefit

users of the data interested in hydrologic extremes such

as floods and landslides. Figure 7 shows the spatial distri-

butions of total convective and stratiform rainfall, percent

contribution from convective and stratiform echoes to

total rainfall, and scatterplots between PR and Q2.

Figures 6a–c indicate that the patterns of PR and Q2

convective rainfall accumulation are similar, but PR

underestimates the convective accumulation relative to

Q2. Figure 7c indicates that the patterns are correlated

(CC 5 0.63) and PR underestimates the convective ac-

cumulation by 48.82%. Accordingly, Figs. 7d–f indicate

that Q2 presents more stratiform rainfall accumulation

than PR, especially over Texas andAlabama, Tennessee,

North Carolina, and South Carolina. Figure 7f demon-

strates that the stratiform rainfall pattern of PR is more

correlated with Q2 (CC 5 0.86) than for the convective

rainfall, and PR underestimates the stratiform rainfall

accumulation by 5.13%.

Considering the percent contribution from the two

rain types, we can see from Figs. 7g, 7h, 7j, and 7k that

FIG. 6. Convective rain type occurrence distribution for (a) Q2 reference and (b) PR, stratiform rain type oc-

currence distribution for (c) Q2 reference and (d) PR, (e) the difference of (b) and (a),(f) the difference of (d) and

(c),(g) scatterplot of (a) and (b), and (h) scatterplot of (c) and (d).
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the spatial patterns of PR types are similar to Q2. The

scatterplots in Figs. 7i and 7l indicate that both con-

vective and stratiform distribution patterns of PR are

poorly correlated with Q2 with a CC of approximately

0.38 and 0.37, respectively. However, PR overestimates

the convective contribution relative to Q2.

Figure 8 shows the spatial distributions of POD, CSI,

and FAR with a threshold set to 1mmh21 for the first

column to focus onmoderate rainfall andwith a threshold

set to 10mmh21 for the second column to focus on high

rainfall rates. With the threshold set at 1mmh21, PR

generally shows good POD (59.84% of areas have POD

above 80%), good CSI (34.48% of areas have CSI above

50%) and low FAR (only 3.21% of areas have FAR

above 50%). Plains and mountainous areas are distinct,

with lower detectability of PR noted in New Mexico,

Arizona, and California. We note consistently higher

FAR values in the mountainous regions of the west. A

potential explanation is that the higher false alarms over

mountainous regions may be caused by poor perfor-

mance of the SRT. It is unlikely that these regions are

poorly sampled by Q2, which also suffers by beam

blockages, becausewe restricted theQ2 reference dataset

to areas of good radar sampling with HRSH , 3200m.

Two other spots of high FAR values are noticeable in

Texas. Figure 5f shows that these spots correspond to

a significant overestimation (.15%) of the PR convec-

tive rainfall classification relative to the reference. In this

case one could relate this PR overestimation of surface

rain rate to a misclassification of rainfall type. We discuss

this point further in section 3c below.

With the threshold set to 10mmh21, scores are gen-

erally worse with lower POD (9.32% of areas have POD

above 80%), lower CSI values (only 2.52%of areas have

CSI above 80%), and higher FAR (11.02%of areas have

FAR above 80%). The POD tends to increase toward

the west, but this is offset with an increase in the FAR

over the mountainous areas. The spatial correlation

between areas with FAR values above 0.6 in Fig. 8f

and the rainfall convective misclassification of PR rela-

tive to the reference in Fig. 6 are now becoming more

evident.

FIG. 7. Total convective rainfall from the (a) Q2 reference, (b) PR, and (c) scatterplot between the two; (d)–(f) as in (a)–(c), but for

stratiform rainfall. The percentage of contribution from convective echoes for (g) Q2 reference, (h) PR, and (i) scatterplot between the

two; (j)–(l) as in (g)–(i), but for stratiform echoes.
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Figure 9 reveals the spatial distribution maps of bias,

RB, RMSE, and CC and the occurrences PDFc and

CDFc of the error statistics. Figures 9a, 9b, and 9e in-

dicate that PR underestimates rainfall amounts for ap-

proximately 75% of the total area. Figure 8f shows that

the rainfall was underestimated by about 20%–40%

over 32% of the total study area. The most significant

overestimates by PR according to RB (Fig. 9b) occur in

the westernmountainous regions, which can be explained

by failures in the SRT algorithm associated with complex

terrain. The other overestimation areas are in north

Texas and Alabama and are correlated with the con-

vective misclassification of PR relative to the reference.

Regarding RMSE, Fig. 9h shows that 37% of the total

area has RMSE ranging from 3 to 6mm, and 14% of the

total area has RMSE . 10mm. The RMSE spatial

pattern (Fig. 9c) is correlated with the intensity of the

rainfall amounts (Figs. 2c,f), with lower RMSE values (2

and 4mm) over mountainous regions and higher values

(.7mm) over the Great Plains. The correlation between

PR and the reference is moderate (CC values lower than

0.7 over 68%of the total area). The correlation is notably

degraded over mountainous regions (CC, 0.4) probably

because of issues with the SRT.

c. Discussion

The following factors (and combinations therein)

potentially explain why PR more frequently estimates

moderate rain rates from 5 to 20mmh21 (Fig. 5b):

incorrect rainfall classification, overcorrection of the

attenuated radar signal, poor performance of the SRT,

ground clutter in mountainous regions, incorrect Z–R

relationship, and geometric effects (i.e., parallax issue

outside of nadir). As shown in Fig. 4, FAR increases

correspondingly as the rain rate threshold increases,

indicating that PR overdetects high rain rates relative to

the time and location of the Q2 reference. Regions with

significant FAR (Fig. 8) and overestimation of rainfall

rates (Fig. 9) are correlated with PR misclassification of

rainfall type relative to the reference (see Figs. 6, 7).

Iguchi et al. (2009) mentioned the model for vertical

profile of specific attenuation used in the 2A25, version 6,

algorithm is particularly strong (i.e., specific attenuation

is 0.3–0.4 dBkm21 greater in version 7 compared to

version 6 for convection above the freezing level); thus,

misclassifications of stratiform echoes to convective will

likely result in such overestimation of moderate rain

rates. While there is no evidence we should expect the

same in version 7, this could be considered for explain-

ing such biases of the PR relative to the reference.

A clear error separation can be made between moun-

tains and the Great Plains. It is likely the SRT method

is triggered over complex terrain, resulting in high-

amplitude biases. Over theGreat Plains, dominant error

factors are more probably related to the rainfall classi-

fication, attenuation correction, and Z–R relationship.

Generally, the 2A25 algorithm detects more convec-

tion than Q2. The greatest amounts of convective

FIG. 8. Spatial distribution of (top) POD, (middle) CSI, and (bottom) FAR for rainfall thresholds of

(a),(c),(e) 1mmh21 and (b),(d),(f) 10mmh21.
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overestimation occur over the southern part (Texas,

Louisiana, Mississippi, Alabama, Georgia, and Florida),

which corresponds to the regions where intense pre-

cipitation (.10mmh21) occurs most frequently (Lin and

Hou 2012). However, these patterns do not correspond to

the spatial variations of biases of PR relative to Q2. The

PR convective (stratiform) rainfall contribution is gen-

erally lower (greater) than Q2 (Figs. 7a,b), which implies

issues in the attenuation correction of the PR signal,

NUBF, and/or Z–R relationship.

4. Summary and conclusions

This study provides a spatially distributed evaluation

of TRMM PR-based precipitation rates and types over

the southern CONUS using NOAA/NSSL’s ground

radar-based national mosaic QPE product (Q2) from

December 2009 to November 2010 in anticipation of

NASA’s future GPM mission. Given their resolutions,

NMQ products are well suited for evaluating rainfall

estimates from spaceborne sensors like the PR aboard

the low-Earth-orbiting TRMM satellite. Both products

were resampled onto a common grid at a 0.258 resolu-
tion, and a conservative approach was followed to

ensure a robust comparison. Annual total precipita-

tion, point-to-point-based scatterplots, comparison of

precipitation-type products, bias, RB, RMSE, CC,

POD, CSI, and FAR were all applied to evaluate the

TRMM PR–based products. The main findings are sum-

marized as follows.

FIG. 9. Spatial distribution of (a) bias (mm), (b) RB (%), (c) RMSE (mm), and (d) CC. (e) PDFc and CDFc for the bias, (f) PDFc for RB,

(g) CDFc for RB, (h) PDFc and CDFc for RMSE, and (i) PDFc and CDFc for CC.
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1) PR captures the spatial pattern of total annual rainfall

with a CC of 0.91.

2) PR detects more convection than Q2.

3) TRMMPR andQ2 have very similar spatial patterns

of total convective and stratiform rainfall types, with

a CC of 0.63 for convective and 0.86 for stratiform

echoes.

4) Despite these strong correlations of precipitation

type, PR’s total annual precipitation from convection

is 48.82% less than that by Q2, and its contribution to

total annual precipitation from stratiform echoes is

5.13% less than from the Q2 reference.

5) In terms of instantaneous rain rates in a year, PR is

moderately correlated with Q2 with a mean CC of

0.56 (Fig. 2e).

6) Regarding regional error characteristics, TRMM PR

overestimates in western mountainous areas, pre-

sumably because of failure of the surface reference

technique used in the PR algorithm.

7) TRMM PR underestimates precipitation magnitude

by a great margin in the southeastern CONUS, which

may be related to specific microphysics not well

described in the 2A25 algorithm. Further research

is needed to explore the impacts of the assumptions

used in the algorithms relative to observed partici-

pate drop size distributions.

8) TRMMPRhas highRMSE (.6mm) in eastern parts

of New Mexico, northwest Texas, south Arkansas,

south Tennessee, north Alabama, north Georgia, and

south Florida.

9) PR has high POD (.80%), moderate CSI (.60%)

and low FAR in the eastern flat areas of the CONUS

when the rain rate threshold is set to 1mmh21, but

these statistics degrade significantly when the thresh-

old is increased to 10mmh21.

A quantification of the uncertainty of these rainfall

estimates will be quite useful to users of the data, in-

cluding hydrologists, which is the principal aim of this

study. Given that the TRMMPR has more than 10 years

of product generation since its launch in 1997 and the

NMQ is under retrospective production going back to

2002, future work will be potentially carried out to ex-

plore the climatological spatial patterns of rain rates and

rain types (i.e., convective and stratiform) derived by

TRMM PR against NMQ at multiseasonal, interannual,

and decadal time scales. This will give us further un-

derstanding of TRMM PR’s spatially distributed perfor-

mance. Moreover, future investigations with anticipation

of the GPM launch in 2014 will likely advance our un-

derstanding of the spatial features of spaceborne radar

precipitation products extended from the TRMM-

covered CONUS to the whole CONUS and beyond.

This study develops a benchmark to be used for the

GPM-DPR era. With dual-frequency radar, we expect

the rainfall estimates will have reduced RMSE and

systematic biases compared to the ground reference.We

will be able then to establish the areas with greatest

(lowest) improvements and will be able to relate these

trends to error factors.

Acknowledgments. The authors wish to acknowledge

the OU and NOAA/NSSL team for providing the NMQ/

Q2 products. This work was funded by a postdoctoral

grant from theNASAGlobal PrecipitationMeasurement

MissionGroundValidationProgramandwas also supported

by the Multi-function Phased-Array Radar (MPAR)

Project at the University of OklahomaAdvanced Radar

Research Center. Partial funding was provided by the

NOAA/Office of Oceanic and Atmospheric Research

under NOAA–University of Oklahoma Cooperative

Agreement NA17RJ1227.

REFERENCES

Abdella, Y., and K. Alfredsen, 2010: Long-term evaluation of

gauge-adjusted precipitation estimates from a radar in Nor-

way. Hydrol. Res., 41, 171–192, doi:10.2166/nh.2010.011.

Adeyewa, Z. D., and K. Nakamura, 2003: Validation of

TRMM radar rainfall data over major climatic regions

in Africa. J. Appl. Meteor., 42, 331–347, doi:10.1175/

1520-0450(2003)042,0331:VOTRRD.2.0.CO;2.

Amitai, E., X. Llort, and D. Sempere-Torres, 2009: Comparison of

TRMM radar rainfall estimates with NOAA next-generation

QPE. J. Meteor. Soc. Japan, 87A, 109–118, doi:10.2151/

jmsj.87A.109.

——, W. Petersen, X. Llort, and S. Vasiloff, 2012: Multiplatform

comparisons of rain intensity for extreme precipitation events.

IEEE Trans. Geosci. Remote Sens., 50, 675–686, doi:10.1109/

TGRS.2011.2162737.

Benjamin, S. G., and Coauthors, 2004: An hourly assimilation-

forecast cycle: The RUC. Mon. Wea. Rev., 132, 495–518,

doi:10.1175/1520-0493(2004)132,0495:AHACTR.2.0.CO;2.

Berges, J., I. Jobard, F. Chopin, and R. Roca, 2010: EPSAT-SG: A

satellite method for precipitation estimation; Its concepts and

implementation for the AMMA experiment. Ann. Geophys.,

28, 289–308, doi:10.5194/angeo-28-289-2010.

Ebert, E., 2007: Methods for verifying satellite precipitation esti-

mates. Measuring Precipitation from Space, V. Levizzani,

P. Bauer, and F. J. Turk, Eds., Springer, 345–356.

Grimes, D. I. F., and M. Diop, 2003: Satellite-based rainfall esti-

mation for river flow forecasting in Africa. I: Rainfall esti-

mates and hydrological forecasts. Hydrol. Sci. J., 48, 567–584,
doi:10.1623/hysj.48.4.567.51410.

Hong, Y., and R. F. Adler, 2007: Towards an early-warning system

for global landslides triggered by rainfall and earthquake. Int.

J. Remote Sens., 28, 3713–3719, doi:10.1080/01431160701311242.
——, ——, and G. Huffman, 2007: An experimental global pre-

diction system for rainfall-triggered landslides using satellite

remote sensing and geospatial datasets. IEEE Trans. Geosci.

Remote Sens., 45, 1671–1680, doi:10.1109/TGRS.2006.888436.

Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite

precipitation analysis (TMPA): Quasi-global, multiyear,

DECEMBER 2013 CHEN ET AL . 1895



combined-sensor precipitation estimates at fine scales. J. Hy-

drometeor., 8, 38–55, doi:10.1175/JHM560.1.

Iguchi, T., R. Meneghini, J. Awaka, T. Kozu, and K. Okamoto,

2000: Rain profiling algorithm for TRMM precipitation

radar data. Adv. Space Res., 25, 973–976, doi:10.1016/

S0273-1177(99)00933-3.

——, T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, and

K. Okamoto, 2009: Uncertainties in the rain profiling algo-

rithm for the TRMMprecipitation radar. J.Meteor. Soc. Japan,

87A, 1–30, doi:10.2151/jmsj.87A.1.

Kirstetter, P.-E., Y. Hong, J. Gourley, M. Schwaller, W. Petersen,

and J. Zhang, 2012a: Comparison of TRMM 2A25 products,

version 6 and version 7, with NOAA/NSSL ground radar–

based National Mosaic QPE. J. Hydrometeor., 14, 661–669,

doi:10.1175/JHM-D-12-030.1.

——, and Coauthors, 2012b: Toward a framework for systematic

error modeling of spaceborne precipitation radar with

NOAA/NSSL ground radar-based National Mosaic QPE.

J. Hydrometeor., 13, 1285–1300, doi:10.1175/JHM-D-11-0139.1.

Kozu, T., andCoauthors, 2001: Development of precipitation radar

onboard the Tropical Rainfall Measuring Mission (TRMM)

satellite. IEEE Trans. Geosci. Remote Sens., 39, 102–116,

doi:10.1109/36.898669.

Kummerow,C.,W.Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998:

The tropical rainfall measuring mission (TRMM) sensor

package. J. Atmos. Oceanic Technol., 15, 809–817, doi:10.1175/
1520-0426(1998)015,0809:TTRMMT.2.0.CO;2.

Lebel, T., and Coauthors, 2009: AMMA-CATCH studies in the

Sahelian region of West-Africa: An overview. J. Hydrol., 375,

3–13, doi:10.1016/j.jhydrol.2009.03.020.

Li, L., C. S. Ngongondo, C.-Y. Xu, and L. Gong, 2013: Comparison

of the global TRMM and WFD precipitation datasets in

driving a large-scale hydrological model in southern Africa.

Hydrol. Res., doi:10.2166/nh.2012.175, in press.

Li, X.-H., Q. Zhang, and C.-Y. Xu, 2012: Suitability of the TRMM

satellite rainfalls in driving a distributed hydrological model

for water balance computations in Xinjiang catchment,

Poyang lake basin. J. Hydrol., 426–427, 28–38, doi:10.1016/

j.jhydrol.2012.01.013.

Lin, X., and A. Y. Hou, 2012: Estimation of rain intensity spectra

over the continental United States using ground radar-gauge

measurements. J. Climate, 25, 1901–1915, doi:10.1175/

JCLI-D-11-00151.1.

Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard, 2002:

Weather radar coverage over the contiguous United States.

Wea. Forecasting, 17, 927–934.

Parkes, B., F. Wetterhall, F. Pappenberger, Y. He, B. Malamud,

and H. Cloke, 2013: Assessment of a 1-hour gridded pre-

cipitation dataset to drive a hydrological model: A case study

of the summer 2007 floods in the Upper Severn, UK. Hydrol.

Res., 44, 89–105, doi:10.2166/nh.2011.025.

Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing

of clouds and precipitation from space: A review. J. Atmos.

Sci., 64, 3742–3765, doi:10.1175/2006JAS2375.1.

Vasiloff, S. V., and Coauthors, 2007: Improving QPE and very

short term QPF. Bull. Amer. Meteor. Soc., 88, 1899–1911,
doi:10.1175/BAMS-88-12-1899.

Wolff, D. B., and B. L. Fisher, 2008: Comparisons of instantaneous

TRMM ground validation and satellite rain-rate estimates at

different spatial scales. J. Appl. Meteor. Climatol., 47, 2215–
2237.

——, and ——, 2009: Assessing the relative performance of mi-

crowave-based satellite rain-rate retrievals using TRMM

ground validation data. J. Appl. Meteor. Climatol., 48, 1069–
1099, doi:10.1175/2008JAMC2127.1.

——, D. A. Marks, E. Amitai, D. S. Silberstein, B. L. Fisher,

A. Tokay, J. Wang, and J. L. Pippitt, 2005: Ground valida-

tion for the Tropical Rainfall Measuring Mission (TRMM).

J. Atmos. Oceanic Technol., 22, 365–380, doi:10.1175/

JTECH1700.1.

Yang, S., W. S. Olson, J. J. Wang, T. L. Bell, E. A. Smith, and C. D.

Kummerow, 2006: Precipitation and latent heating distribu-

tions from satellite passive microwave radiometry. Part II:

Evaluation of estimates using independent data. J. Appl.

Meteor. Climatol., 45, 721–739, doi:10.1175/JAM2370.1.

Zeweldi, D. A., and M. Gebremichael, 2009: Sub-daily scale vali-

dation of satellite-based high-resolution rainfall products.

Atmos. Res., 92, 427–433, doi:10.1016/j.atmosres.2009.01.001.

Zhang, J., and Coauthors, 2011: National Mosaic andMulti-Sensor

QPE (NMQ) system: Description, results, and future plans.

Bull. Amer. Meteor. Soc., 92, 1321–1338, doi:10.1175/

2011BAMS-D-11-00047.1.

1896 JOURNAL OF HYDROMETEOROLOGY VOLUME 14


