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ABSTRACT

Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture

anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially

important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and

its memory using observations is the sparse availability of long-term measurements and their limited spatial

representativeness. In contrast, there is an abundance of long-term streamflowmeasurements for catchments

of various sizes across the world. The authors investigate in this study whether such streamflowmeasurements

can be used to infer and characterize soil moisture memory in respective catchments. Their approach uses

a simple water balancemodel in which evapotranspiration and runoff ratios are expressed as simple functions

of soil moisture; optimized functions for the model are determined using streamflow observations, and the

optimized model in turn provides information on soil moisture memory on the catchment scale. The validity

of the approach is demonstrated with data from three heavily monitored catchments. The approach is

then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distrib-

uted description of soil moisture memory and to show how memory varies, for example, with altitude and

topography.

1. Introduction

Among the variables of the climate system, soil mois-

ture has potentially important memory (persistence)

characteristics. If soil moisture anomalies, as induced by

precipitation anomalies, persist into subsequent weeks,

and if these long-lasting anomalies are then translated

to the atmosphere through their impacts on the surface

energy balance, soil moisture memory may have pro-

found implications for climate variability and prediction.

The role of soil moisture memory in climate, however,

is still not completely understood. Complexity arises,

for example, from the fact that while a soil moisture

persistence signal can be translated to the atmosphere

through evaporation anomalies (i.e., through soil

moisture–evapotranspiration coupling and land–

atmosphere interactions), these evaporation anomalies in

turn act to reduce any original soil moisture anomaly; that

is, a soil moisture anomaly, when it affects the surface

fluxes, also acts to limit its own lifetime (although positive

feedbacks with precipitation could also enhance it; e.g.,

Koster and Suarez 2001). In considering this balancing

act, it is instructive to consider two competing and ex-

treme scenarios. In the first scenario, evaporation pro-

cesses annihilate a soil moisture anomaly within a day or

two of its formation; soil moisture memory would then be

small, and its effects on climate variability would neces-

sarily be minimal. In the second scenario, the soil mois-

ture anomaly does not affect evaporation or runoff and

thereby persists indefinitely; here again, because the at-

mosphere or rivers cannot feel the anomaly, impacts on
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climate variability would necessarily be small. Evidence

exists to show that neither of these extremes wholly

captures the way nature works. In many regions, an im-

portant middle ground is achieved: soil moisture anom-

alies have been observed to persist for weeks to months

(Vinnikov and Yeserkepova 1991; Entin et al. 2000;

Seneviratne et al. 2006), and their impacts on atmo-

spheric variability do indeed manifest themselves at

those time scales, as demonstrated by various studies that

quantify the impact of soil moisture initialization on the

skill of subseasonal precipitation and/or temperature

forecasts (e.g., Viterbo and Betts 1999; Koster et al.

2004; Douville 2010; Koster et al. 2010b; Seneviratne

et al. 2010) or identified lag correlations between surface

moisture deficits and temperature extremes (e.g., Hirschi

et al. 2011; Mueller and Seneviratne 2012). This memory,

at the same time, also allows soil moisture initialization to

contribute significant skill to seasonal streamflow fore-

casts (e.g., Koster et al. 2010a; Mahanama et al. 2012).

The existence of this useful middle ground makes soil

moisturememory worthy of careful study. A critical step

in this understanding is the characterization of memory

and its variations across the globe. Unfortunately, such

a characterization is not straightforward. A major ob-

stacle is the limited availability of long-term soil moisture

measurements (e.g., Robock et al. 2000; Seneviratne et al.

2010; Dorigo et al. 2011). Ground measurements of soil

moisture are only available at the point scale, which im-

plies some limitation in their spatial representativeness.

Although spatial variability should not be overstated

(e.g., Mittelbach and Seneviratne 2012), different hydro-

logical dynamics may be active, for example, over adja-

cent grassland and forest areas (Teuling et al. 2010b; Orth

and Seneviratne 2012a, hereafter OS12). Also, model

estimates of soil moisture cannot be used for persistence

studies, given the dependence of simulated soil moisture

persistence on generally unvalidated model assumptions.

In contrast, streamflow measurements are widely

available, they generally cover longer periods, and they

represent an integral of hydrological processes over an

area. Because streamflow itself responds to soil moisture

variations (see also Kirchner 2009; Mahanama et al.

2012), it is natural to ask whether streamflow measure-

ments contain useful information on catchment-scale

soil moisture anomalies and soil moisture memory. We

address this question in this paper. Using an adapta-

tion of the simple water balance model of Koster and

Mahanama (2012, hereafter KM12), streamflow mea-

surements are translated into fitted functional re-

lationships between soil moisture and both runoff and

evapotranspiration. These fitted relationships in turn

provide estimates of soilmoisturememory. The approach

is successfully validated in three heavily monitored

catchments in central Europe and is then applied to

several near-natural catchments in Switzerland, pro-

viding a spatial picture of how soil moisture memory

varies across the country. The analysis shows how soil

moisture memory is affected by both geomorphological

controls (e.g., altitude, topography, and catchment size)

and meteorological controls (e.g., dryness index and the

potential for externally induced memory from the at-

mospheric forcing to be transmitted into the soil).

2. Methodology

a. Simple water balance model

KM12 developed a simple water balance model to

study the influence of soil moisture on hydroclimatic

means and variability on large spatial and temporal

scales. We use a similar approach in the present study.

However, because we focus here on soil moisture mem-

ory in small catchments on daily toweekly time scales, we

introduce several new features to the model, as described

below.

1) WATER BALANCE EQUATION

As in KM12, the model used here is based on the fol-

lowing water balance equation:

wn1Dt 5wn 1 (Pn 2En2Qn)Dt , (1)

where wn denotes the model’s sole prognostic variable:

the total soil moisture content (in mm) at time step n.

The value of wn is altered by precipitation Pn, evapo-

transpiration En, and runoff Qn (all in mmday21) ac-

cumulated from time step n to n 1 Dt to yield the soil

moisture at the next time step,wn1Dt. As inKM12, we run

the model here with a time step of 1 day (Dt 5 1 day).

2) EVAPOTRANSPIRATION

As in KM12, we assume simple dependencies of

evapotranspiration [normalized by net radiation (in

Wm22)] and runoff (normalized by precipitation) on soil

moisture. We use the following equation to capture the

control of soil moisture on the ratio of evapotranspiration

to net radiation, or ET ratio:

lrwEn

Rn

5b0

�
wn

cs

�g

with g. 0 and b0# 1, (2)

where l is the latent heat of vaporization (in J kg21) and

rw is the density of water (in kgm23). Soil moisture is

scaled by the soil water-holding capacity cs (in mm)

so that the function operates on the degree of satu-

ration (unitless). The unitless exponent g ensures that the

function is strictly monotonically increasing, so that the
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ET ratio increases with soil moisture. The factor b0 (also

unitless) reflects the residual plant and soil evaporative

resistance under conditions that are not soil moisture

limited (e.g., Seneviratne et al. 2010). This factor there-

fore prevents the complete conversion of available net

radiation into ET even when water is fully available (re-

flecting, for example, the fact that even with no water

stress, transpiring water must still travel through the

vegetation).

3) RUNOFF AND STREAMFLOW

Even if runoff in nature is controlled by many vari-

ables, we assume that it depends on precipitation and soil

moisture only, according to the equation

Qn

Pn

5

�
wn

cs

�a

with a$ 0. (3)

As with the exponent g in Eq. (2), the unitless exponent

a ensures that the runoff ratio Qn/Pn increases mono-

tonically with soil moisture. Note that runoff as defined

here (which includes, in effect, both overland flow and

drainage to baseflow-producing groundwater) is distinct

from streamflow, as measured at a stream gauge site; the

latter quantity includes delays associated with the sub-

surface water transport to the streambeds and the trans-

port of the surface water to the stream gauge site. Based

on sensitivity tests, we found that accounting explicitly for

this distinction between runoff and streamflow improves

the model’s performance in comparison to the KM12

version (not shown). We thus compute streamflow from

the simulated runoff values by imposing a delay charac-

terized by a time scale t:

Sn1t 5Qn

1

t
e2(t/t) , (4)

where the streamflow Sn1t corresponds to the stream-

flow produced at time n 1 t associated with the surface

runoff formed at time n. The integral of (1/t)e2(t/t) as

t / ‘ equals 1, ensuring that the full complement of

assumed runoff water [i.e.,Pn(wn/cs)
a, fromEq. (3)] does

contribute to streamflow at some time. The parameter 1/t

determines how quickly the runoff is transformed into

streamflow, whereas t corresponds to the recession time

scale, expressed in days. Using Eq. (4), the streamflow

accumulated over the mth time step after the precipi-

tation event is

Sn1mDt 5

�
wn

cs

�a

Pn

ðm1Dt

m

1

t
e2(t/t) dt

5Qn[e
2(mDt/t) 2 e2[(m11)Dt/t]] . (5)

With this equation we can express the streamflow at any

time step as the accumulation of the effects of all runoff

amounts generated during the preceding 60 time steps:

Sn 5 �
60

i50

Qn2iDt[e
2(iDt/t) 2 e2[(i11)Dt/t]] . (6)

Note that in order to make sure that all the generated

runoff is transformed into streamflow, we would in prin-

ciple need to use an infinite number of time steps. Sixty

time steps is an arbitrary but tractable number that allows

us to account for 99% or more of the runoff water.

4) MODEL INTEGRATION

Assuming that values for the five parameters inEqs. (2)

and (6) (namely, cs, b0, g, a, and t) can be determined,

Eq. (1) can be driven with daily values of precipitation

and net radiation over any time period of interest to

produce daily time series of total soil moisture wn, as

well as daily time series of runoff and ET. In contrast to

KM12, who used monthly precipitation observations

(equally distributed across the days of a given month)

and an observed seasonal climatology of net radiation

to force their model, we employ daily observations of

precipitation and radiation. Unlike KM12, we do not

include a snow layer in the model as our study focuses

on the growing season.

In fact, because of the limitation of using a daily (rather

than a finer) time step, we integrate instead an implicit

form of Eq. (1), a form that effectively computes the

evaporation and runoff for a given day based on the soil

moisture content at the end of that day:

wn1Dt 2wn 5Pn 2En1Dt 2Qn1Dt

’
Pn 2En2Qn

11E0
n1Q0

n

, (7)

where the prime indicates the derivative with respect to

soil moisture, evaluated at wn. Note that even with this

correction, the time-discretized equation is still not

perfectly solved because the functions E(w) and Q(w)

are not linear but (partly strongly) curved.

Running the model requires the initialization of the

soil moisture prognostic variable.We spin up themodel

by integrating it over 5 years prior to the start of a

simulation.

b. Optimization of streamflow, runoff, and
evapotranspiration parameters

We optimize the above model with daily data from

16 European catchments, three of which have been

previously examined inOS12.We use precipitation and
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radiation observations in these catchments to force the

model. We then identify, separately for each catch-

ment, the optimal set of values for the five parameters

in Eqs. (2) and (6), that is, the set of values that allows the

modeled streamflow Sn [Eq. (6)] to agree most closely

with observed streamflow.

The accuracy of the modeled streamflow is measured

with a time correlation against observed streamflow. The

correlation period is limited to July through September to

avoid any impact of snow, which is not included in the

model (May–September for warmer site San Rossore).

The absence of snow is supported by daily average tem-

peratures that are always above 08C during the correla-

tion period.Note thatwhile applied here to specific basins

in Switzerland, the simple water balance model is gen-

erally applicable to any region and time period where

streamflow is present.

One way to find the optimal set of values for the five

parameters at each catchment would be to run the model

using all possible combinations of values. Capturing the

optimal values in this way with some accuracy, however,

would be computationally prohibitive. To work around

this problem, we developed an alternative procedure

(see the appendix) to reduce the number of model runs

required to yield a reliable optimal parameter set (see

Table 1).

c. Validation of approach: Soil moisture memory

The time series of simulated soil moisture produced

with the optimal parameters, a reflection of precipitation,

radiation, and streamflow information only, is compared

to the observed soil moisture in three highly monitored

catchments to demonstrate that the precipitation, radia-

tion, and streamflow data can indeed be translated into

useful information on local soil moisture behavior. Be-

cause observed soil moisture information was not used at

all in the calibration exercise, this comparison serves as

a valid test of our methodology.

The validation focuses in particular on soil moisture

persistence. There are many ways of quantifying soil

moisture persistence; here, we compute it, for a given

time of the year, as a lag correlation for a given lead (see

Koster and Suarez 2001; Seneviratne and Koster 2012;

OS12) that ranges between 0 (no memory) and 1 (maxi-

mum memory). The memory we compute at a given day

with a given time lag is defined as

r(wn,wn1t
lag
)5

cov(wn,wn1t
lag
)

sw
n
sw

n1tlag

, (8)

where cov(wn,wn1tlag ) denotes the covariance between

soil moisture at days n and n1 tlag in all considered years

and swn
refers to the standard deviation of soil moisture

at day n using also the values of all considered years.

Because of the limited available number of years of soil

moisture observations (see section 3a), we in fact do

some smoothing of the calculated persistences, comput-

ing representative estimates for half-monthly intervals.

To determine the smoothed persistence for a given half-

monthly interval, we use a ‘‘moving window’’ approach

(OS12) that also considers the 30 days prior to the half-

monthly interval and the 30 days after the end of the

half-monthly interval. This can be expressed mathe-

matically as

r(wn,wn1t
lag
)

5 trimmed average

2
4 �

t
end
1302t

lag

i5t
start

230
r(wi,wi1t

lag
)

3
5 , (9)

where tstart and tend refer to the beginning and end of the

particular half-monthly time period. The memory of that

half-monthly interval is then computed as a trimmed

average of the 75 tlag individual persistences, avoiding

days with the 10% largest and 10% lowest values (this

last step differs from the approach of OS12, who take the

median).

We compute the correlation for many different lags

(from 1 to 40 days) in order to capture more completely

the character of the persistence. One region may show

high correlations at small lags and a rapid falloff in cor-

relation at longer lags, and another may show a fast

falloff at short lags and a slower falloff thereafter; our

TABLE 1. Overview of step width of model parameters as used in the optimization procedure, their boundaries, and the range of their

respective estimates.

Parameter Step width Lower limit Upper limit

Maximum

value found

Minimum

value found

Water-holding capacity cs (mm) 30 30 — 500 80

Inverse streamflow recession time scale 1/t (day21) 0.02 0.02 — 0.80 0.10

Runoff ratio exponent a 0.2 0.2 — 8.0 0.8

ET ratio exponent g 0.03 0.03 — 1.05 0.03

Max ET ratio b0 0.03 0.03 0.99 0.99 0.60
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computations will capture such differences in behavior.

Thus, we calculate, from both observations and the

simulations with optimized parameters, the correlation

between soil moisture on a given date n with that at a

later date (n 1 tlag) across all years [Eq. (9)]. By com-

puting a separate correlation for each date across all

years, we avoid examining artificial memory associated

with the climatological seasonal cycle of soil moisture.

The higher the resulting correlation over a prescribed

lag time, the higher we deem the soil moisture memory

at that lag, and vice versa. Soil moisture memory is

always decreasing with increasing time lag because ac-

cumulated precipitation, runoff, and ET alter the soil

moisture content [Eq. (1)]. To facilitate the interpretation

of soil moisture memory expressed as lag correlation,

Orth and Seneviratne (2012b) compared the lag corre-

lation with a persistence time scale (computed as mean

duration to recover from anomalous conditions exceed-

ing a certain threshold to normal conditions, expressed in

days). They report an exponential relationship, that is,

the persistence time scale changes exponentially with

linearly changing lag correlation.

Similarly to Eq. (9), but without time lag, we compute

estimates for the standard deviations of, for example,

initial soil moisture over all estimates of day n of all years.

Using the moving window approach, we obtain a number

of estimates from which we take a trimmed average as

a representative estimate for a particular half-monthly

interval.

Soil moisture persistences in this study are computed

from April to October to exclude the impact of snow

cover, which is not included in the model. We therefore

apply the model in an extended period compared to the

period July–September used for optimization to allow us

to show that the model also performs reasonably in

months that are not used for calibration, but that are still

mostly snow-free (underlined by daily average temper-

atures above 08C on almost all days).

To compute uncertainties of the soil moisturememory

estimates, we separate the whole time period (24 years;

see section 3b) into nonintersecting subsets of 3 years

(period July–September in each year as described in

section 2b) and optimize the model in each catchment

to yield one parameter set per subset for a particular

catchment. This is done with five repetitions for each

subset (instead of 20 used for the whole time series)

because of computational constraints. We apply all pa-

rameter sets of a particular catchment with the whole

time series and derive respective soil moisture memo-

ries; from thesememories we then compute the standard

deviations for every considered month and lag time.

3. Data

a. Data analyzed for model validation

To validate the model, we use data from the three

heavily monitored catchments: Oensingen (Switzerland),

Rietholzbach (Switzerland), and SanRossore (Italy). The

climate at the Swiss sites is temperate humid, whereas

San Rossore is characterized by Mediterranean climate.

Along with the stream gauge measurements for the full

catchments, there is a site in each catchment where ET,

radiation, and precipitation have been recorded.Detailed

information on the catchments and sites is provided in

Table 2.

ET at Rietholzbach was measured using a weighing

lysimeter (Seneviratne et al. 2012), whereas the eddy

covariance flux measurement method (Baldocchi et al.

2001) was used at the other two sites. As this latter

method is known for its energy balance closure error

(e.g., Wilson et al. 2002; Foken et al. 2006; Franssen et al.

2010), we corrected the ET data with the following pro-

cedure: using hourly values, we increased sensible and

latent heat flux to equal net radiation while keeping the

Bowen ratio constant (Twine et al. 2000). If the Bowen

ratio was negative, both fluxes were adjusted with respect

TABLE 2. Overview of measurements and conditions at the sites and catchments used for validating the model as well as references

describing the sites in more detail. CH is Switzerland, ITA is Italy.

Station Data period Land cover Soil type SM measurement depths (m)

Oensingen (CH) 2002–07 Grassland Clay 0.05, 0.1, 0.3, 0.5

Rietholzbach (CH) 1994–2007 Grassland (Clay) loam 0.05, 0.15, 0.55

San Rossore (ITA) 2004–10 Forest Sand 0.1, 0.3, 0.45

Station

Streamflow station

(distance and direction

relative to SM station) Catchment area

Satellite radiation

coordinates Reference

Oensingen (CH) Brugg (38 km east) 11 726 km2 47.58N, 78E Ammann et al. (2010)

Rietholzbach (CH) Mosnang (1.5 km) 3.3 km2 47.58N, 98E Seneviratne et al. (2012)

San Rossore (ITA) Vicopisano (25 km east) 8228km2 43.58N, 118E Tirone (2003)
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to the strength of their dependence on net radiation in-

stead. This strength was the slope obtained from the re-

gression of all available values of the particular flux

against net radiation on a particular time of the day; the

flux with the higher slope was modified by the larger

fraction of the energy balance deficit. Note that the ET

data from San Rossore could not be corrected as no data

of sensible heat flux is available for that site. Further-

more, we linearly detrended the soil moisture data from

Rietholzbach to address a known problem with the sen-

sors there (see also Seneviratne et al. 2012).

At all three catchments, we use satellite-derived net

radiation data obtained from the National Aeronautics

and Space Administration (NASA)/Global Energy and

Water Cycle Experiment (GEWEX) surface radiation

budget (SRB) project (http://gewex-srb.larc.nasa.gov/

common/php/SRB_data_products.php). Since these data

only extend until 2007, we had to extrapolate net radia-

tion from the available solar radiation measurements for

the remaining 3 years at San Rossore. These were scaled

to match the mean and standard deviation of the satellite

net radiation of the previous 4 years. To evaluate the

impact of this treatment we also applied such a scaling to

solar radiation measured at Oensingen and found only

minor impacts on the results there, predominantly on ET

(not shown).

b. Data used for model application

Following validation, we apply the model to 13 near-

natural catchments (i.e., catchments with little or no

known human impact on streamflow) across Switzerland

for which detailed stream gauge data are available. The

catchments are located in a humid temperate climate, ex-

cept for the Cassarate catchment in southern Switzerland,

where the climate is ratherMediterranean.A summary of

the catchment characteristics is provided in Table 3. The

time period considered is 1984–2007.

For this period, we also obtained catchment-specific

precipitation and radiation data. Precipitation forcing

for the model was derived from several MeteoSwiss

(Swiss Federal Office of Meteorology and Clima-

tology) rain gauges in and/or near each respective

catchment. The number of rain gauges per catchment

depends on the size of the respective catchment and

on the density of the network in the particular re-

gion (see http://www.meteoschweiz.admin.ch/web/de/

klima/messsysteme/boden.Par.0049.DownloadFile.tmp/

karteniederschlagsmessnetz.pdf). The measurements

were weighted inversely according to their distance from

the catchment in order to compute an area-representative

estimate. As only solar radiation was measured at the

ground, we used net radiation data from the NASA/

GEWEX SRB project. A comparison of anomalies of

the solar radiation measured at the ground with that

from SRB showed correlations between 0.8 and 0.9 for

the different catchments, underlining the good match

also reported by OS12.

To study the dependency of soil moisture memory on

topography (hilliness), we obtained values of mean

compound topographic index (CTI; Moore et al. 1993)

from the HYDRO-1K dataset (http://webgis.wr.usgs.

gov/globalgis/metadata_qr/metadata/hydro1k.htm). As

a measure of topography for each catchment, the CTI is

a function of slope as well as upstream contributing area

and increases with decreasing hilliness. Note that CTI is

only evaluated at the catchments used for application of

the model and not at the three validation catchments

that include the very small Rietholzbach catchment.

Therefore, the 1 km 3 1 km resolution is sufficient to

characterize, to first order, the CTI among the catch-

ments examined.

4. Results

In this section we first describe the application and

validation of the simple model methodology in three

heavily monitored catchments (sections 4b and 4c). We

show its satisfactory ability to yield a realistic soil moisture

memory despite its simplicity. In section 4d we describe

the application of themodel inmultiple catchments across

Switzerland. This allows us to study the main meteoro-

logical controls of soil moisture memory as well as its

dependency on altitude and topography.

a. Streamflow, runoff, and evapotranspiration
parameters

To summarize our methodology, we optimize the ap-

plied simple water balance model (i.e., we find optimized

values for its five parameters) so that it reproduces well

TABLE 3. Overview of catchments where the model is applied.

Catchment

Size

(km2)

Mean

altitude

(m MSL)

Mean

CTI

Mean daily

streamflow

(mm)

Satellite

radiation

coordinates

Aach 49 480 11.82 1.32 47.58N, 98E
Broye 392 710 11.33 1.78 46.58N, 78E
Cassarate 74 990 9.39 2.72 45.58N, 98E
Emme 124 1189 10.03 3.01 46.58N, 78E
Ergolz 261 590 10.99 1.25 47.58N, 78E
Goldach 50 833 10.71 2.32 47.58N, 98E
Guerbe 54 837 9.98 2.01 46.58N, 78E
Kleine Emme 477 1050 10.48 2.81 46.58N, 78E
Langeten 60 766 11.37 1.79 47.58N, 78E
Mentue 105 679 11.27 1.34 46.58N, 78E
Murg 79 650 11.47 1.98 47.58N, 98E
Sense 352 1068 10.5 2.18 46.58N, 78E
Sitter 74 1252 10.18 4.06 47.58N, 98E
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the time variations in the daily streamflows measured in

a given catchment when forced with local precipitation

and net radiation data. An overview of the fitted pa-

rameters in all catchments is provided in Table 4.

A note about the parameter search is appropriate

here. Two parameters, the ET ratio exponent and maxi-

mum ET ratio, collide with their bounds in two and nine

catchments, respectively, out of the 16 catchments con-

sidered in total in this study (see Table 1 for bounds and

Table 4 for fitted parameters). Concerning the maximum

ET ratio, the fact that the optimum value of b0 is found to

be exactly 1, an imposed bound for the parameter, does

not reflect poorly on the parameter estimation approach;

the optimized value of 1 simply means that for the

catchment in question, all of the net radiation is con-

verted to evaporation in wet conditions, a physically

plausible scenario. Our requirement that b0 cannot

exceed 1 is simply a reflection of our assumption that

net radiation provides the energy needed for evaporation.

Whereas high maximum ET ratios are not surprising

in a radiation-limited regime that is characteristic for

Switzerland, we note the possibility that in nature, ET

might (temporarily) exceed net radiation through pro-

cesses that are not captured by our simple model, such as

energy input from warm air advection to Europe; there-

fore, the collisions experienced with the b0 term can be

said to reflect the limitations of our assumption. Note

that both parameters that collide with their bounds are

related to radiation [Eq. (2)] and streamflow (through

optimization procedure, see section 2b). Therefore, it is

furthermore possible that these collisions are due to

scale discrepancies between radiation and streamflow

measurements and the consequent mismatch in their

temporal evolutions. However, the parameter collisions

should, in any case, not have a major impact on the re-

sulting estimated soil moisture memory as indicated by

supplemental tests (not shown) in which the bounds were

removed (in conflict with the model’s underlying as-

sumptions) and the results were found to be generally

similar. Furthermore, we note that, despite the parameter

collisions, we find a good match between modeled and

observed soil moisture memory as described in the fol-

lowing subsection.

To validate our optimization procedure, we applied it

with higher (coarser) step widths for the parameters and

then compared the results with those obtained when all

possible combinations of parameters (assuming the same

coarse spacing) were tested. This allowed us to compare

the resulting best parameter sets. Given the high com-

putational effort, the validation was done only for the

three catchments listed in Table 2. The best parameter

sets found from both procedures were identical for all

three catchments (see Table 4 for parameter values),

underlining the validity of the approach introduced in

this study. As expected because of the larger step width

(lower accuracy), these parameter sets yield slightly lower

correlations between observed and modeled streamflow

compared to the parameter sets found using the default

step widths (see Table 1).

b. Validation of estimated memory

In addition to generating realistic streamflows, the

optimized model produces, as a matter of course, a time

series of daily soil moisture, from which soil moisture

TABLE 4. Overview of fitted parameters for all catchments.

Catchment

Water-holding

capacity cs (mm)

Inverse streamflow recession

time scale 1/t (day21) Runoff ratio exponent a ET ratio exponent g Max ET ratio b0

Catchments in which model is validated

Oensingen 410 0.10 0.8 0.03 0.60

Rietholzbach 140 0.80 4.4 0.42 0.99

San Rossore 500 0.14 3.6 0.03 0.96

Catchments in which model is applied

Aach 230 0.62 8.0 0.78 0.99

Broye 200 0.36 5.8 0.42 0.60

Cassarate 410 0.36 6.8 0.33 0.81

Emme 80 0.74 1.4 0.27 0.99

Ergolz 290 0.54 5.6 0.90 0.99

Goldach 350 0.60 6.8 0.75 0.99

Guerbe 170 0.44 4.2 1.05 0.99

Kleine Emme 80 0.66 2.4 0.60 0.99

Langeten 320 0.52 4.0 0.06 0.81

Mentue 410 0.52 6.4 0.66 0.99

Murg 230 0.50 6.2 0.63 0.99

Sense 80 0.52 1.6 0.09 0.69

Sitter 170 0.56 7.4 0.90 0.69
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persistence measures can be derived. Our methodology

for converting streamflow measurements into soil

moisture information is deemed successful if the de-

rived soil moisture persistences obtained from this time

series agree with those obtained using independent soil

moisture measurements in the catchments.

This validation test was performed in each of the three

catchments described in section 3a. Results are shown in

Fig. 1. Shown for each catchment are the modeled and

observed persistences for different lags (out to 40 days)

and for different times of the year (April–October).

Overall, the memory characteristics in the three catch-

ments are well captured by the model, with a reasonable

representation in each of the seasonal cycle of soil mois-

ture memory and its decay with lag. The observed and

simulated memory is comparatively strong at Oensingen

and San Rossore and weakest at Rietholzbach. The sea-

sonal cycle of the observed memory at San Rossore dif-

fers clearly from that of the other two sites, and this is

captured by the model. Difference plots are shown in the

bottom row of the figure; there is no clear pattern of over-

and underestimation of memory in the simulation re-

sults. The relatively large difference between modeled

and observed soil moisture memory in autumn at both

Rietholzbach and San Rossore is consistent with results

of OS12 (their Fig. 6), who used the same atmospheric

forcing data and also derived a clearly underestimated

soil moisture memory. In this previous study, the identi-

fied reason for this behavior was a mismatch between

precipitation and soil moisture observations in autumn at

these two sites. This means that the water balance is

not closed with the employed observations, which could

be due, for example, to a higher spatial variability of

precipitation or a stronger role of land cover in this

season.

Themodel, using only information on locallymeasured

precipitation, net radiation, and streamflow, therefore

successfully captures the distinctions between the catch-

ments in their soil moisture memory behavior. Despite its

simplicity, it captures enough of the physical processes

controllingmemory to allow the translation of streamflow

information into soil moisture information. Furthermore,

the agreement in Fig. 1 suggests (as does the reasonable

reproduction of soil moisture anomalies shown below)

that the time behavior of the observed site-based soil

moisture anomalies is representative of that for soil

moisture across the catchment containing the site; that

is, soil moisture levels may be spatially heterogeneous

within a catchment but may nevertheless show simi-

lar temporal dynamics. This is consistent with results

from Mittelbach and Seneviratne (2012) for Switzerland

based on measurements from the Swiss Soil Moisture

FIG. 1. Soil moisturememory computed fromobserved andmodeled soil moisture in the three validation catchments for lag times between

5 and 40 days. Values outside the plotting range of the difference plots are shaded in gray.
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Experiment (SwissSMEX), which show that soil moisture

dynamics have a large regional footprint in that region,

unlike absolute soil moisture that displays a stronger

spatial variability.

To illustrate further the impact of the fitted parameter

set on the resulting soil moisture memory characteristics—

in particular, to show the relative impacts on memory of

the parameter values and themeteorological forcing—we

run the model at each of the three sites mentioned above

with the parameter set fitted for the particular site and

also with the parameter sets fitted for the other two sites.

The results are displayed in Fig. 2. We find that the

parameter set is more important for determining the

resulting soil moisture memory than is the meteoro-

logical forcing. There are similarities between the ac-

tual modeled memory at Oensingen and San Rossore

and the resulting memory when using the parameter

set or meteorological forcing from another site. This

can be explained by the roughly similar fitted param-

eters (see Table 4). Generally, the strong sensitivity of

the memory with respect to the parameter set under-

lines the ability of our simple model framework to

yield a parameter set that is related with realistic fea-

tures of the studied catchments.

c. Hydrological states and fluxes

While the main goal of the tested methodology is the

extraction of soil moisturememory statistics, we can also

validate the soil moisture, streamflow, and evapotrans-

piration time series produced by the optimized model

against available observations in the three validation

catchments. Comparisons of the observed and simulated

anomalies of these quantities are provided in the top

three rows of Fig. 3. Mean seasonal cycles have been

subtracted from both the observed and simulated data in

order to avoid an overestimation ofmodel skill associated

with the seasonal cycles inherent in the precipitation and

net radiation forcing. While this subtraction also pre-

vents a proper evaluation of bias, such bias evaluations

would, in any case, be of limited usefulness: (i) signifi-

cant biases are likely in the observed evaporation data

given the closure problem associated with eddy co-

variance measurements (see section 3a); (ii) biases in

soil moisture are likely because the model uses an ar-

bitrary wilting point (which does not affect the tem-

poral variability of the soil moisture it produces);

(iii) observed absolute soil moisture is also expected to

vary strongly even on small spatial scales, and only the

temporal dynamics should display a regional footprint

(Mittelbach and Seneviratne 2012); and (iv) biases in

streamflow may occur especially in flat catchments

through baseflow out of the catchment away from the

stream gauge.

Overall, the model seems to do especially well in

estimating soil moisture variations, particularly for

Oensingen (R2 5 0.78) but also for Rietholzbach (R2 5
0.62). Streamflows for these two sites are also reasonably

reproduced (R2 values of 0.6 and 0.87, respectively),

whereas simulated ET values are somewhat less consis-

tent with the observations, although still satisfactory at

Rietholzbach (R2 5 0.58). The simulated values are al-

ways worse for the San Rossore catchment, possibly be-

cause of (i) its larger size and the corresponding reduction

in the large-scale representativeness of its site-based

precipitation forcing and (ii) the interpolation of the ra-

diative forcing (see lower part of section 3a). In cases of

comparatively lowR2 values, such as for ET atOensingen

and for all quantities at San Rossore, we find that the

model tends to underestimate the variability of the

anomalies, as indicated by the regression slopes that are

clearly smaller than 1.

Corresponding scatterplots produced with data from

June and October (not shown) show comparable agree-

ment between the model results and observations. This

provides an independent evaluation of model perfor-

mance, given that these months were not part of the fit-

ting period (see section 2b).

The bottom row in Fig. 3 displays the optimized runoff

functions (solid red lines) and ET functions (solid black

lines) at Oensingen, Rietholzbach, and San Rossore.

Every plotted point represents either an observed

streamflow ratio, Sn/Pn (in red), or an observed ET ratio,

lrwEn/Rn (in black), with the respective quantities (both

the numerators and the denominators separately) ac-

cumulated over a week to increase representativeness

and to ensure comparability between runoff ratio as

shown by the fitted function and streamflow ratio in the

observations.

At first glance, the evaporation functions seem to

disagree with the data. Here one must remember two

key points: (i) no evaporation data were used in the

optimization of the functions and (ii) the evaporation

observations are subject to bias and, even after bias

correction, are uncertain. Eddy covariancemeasurements

are known, for example, to produce underestimated

fluxes (e.g.,Wilson et al. 2002; Foken et al. 2006; Franssen

et al. 2010). Therefore, we corrected the ET in order to

close the energy balance through a modification of la-

tent and sensible heat fluxes, as described in section 3a.

Indeed, at Rietholzbach, where ET was measured with

a weighing lysimeter instead, the modeled ET ratio

compares better to observations. At San Rossore, the ET

data could not be corrected because net radiation was not

available over the whole time period; the observed ET

fluxes there are thus underestimated. (Such errors might

also explain the relatively poor comparison of ET

DECEMBER 2013 ORTH ET AL . 1781



anomalies at San Rossore in the third row of Fig. 3). At

Oensingen, ET flux correctionsmay have led to excessive

ratios, possibly because ETwasmeasured over grassland,

whereas the optimized function represents the whole

catchment, which includes forested regions. Teuling et al.

(2010b, their Fig. 1), using observations, showed that for-

ests in temperate Europe use water more conservatively

than grassland, especially under extreme conditions.

In contrast, the optimized runoff functions do capture,

to first order, the observed streamflow ratios. This makes

sense, given that the streamflow measurements were

used in the optimization procedure. The high fitted

runoff ratio (especially for wet conditions) corresponds

well with the generally wet regime at Rietholzbach (an-

nual precipitation ’ 1500mm), such that most of the

precipitation cannot be stored but runs off instead. There

FIG. 2. Soil moisture memory computed for all possible combinations of meteorological forcings and parameter sets from the three

validation catchments as compared to observed soil moisture memory displayed in the bottom row.
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FIG. 3. Modeled (top row) soil moisture, (second row) streamflow, and (third row) evapotranspiration plotted against observations for

data within the period July–September that was used to fit the functions. The red lines are fitted through least squares regressions. (bottom

row) The functions of Eqs. (2) (black) and (6) (red) fitted for each catchment. These are compared to weekly averaged observed cor-

responding ratios plotted as points against observed soil moisture (mean and variance adapted to model soil moisture).
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is nevertheless still some bias seen in the optimal runoff

functions and a substantial amount of scatter seen in the

streamflow ratio observations.Again, our use of available

streamflow and precipitation observations is made diffi-

cult by themismatch in their scales; because the functions

are optimized using data from July to September, we

speculate that local thunderstorms and showers might

influence parts of a catchment not captured by the rain

gauge or might overemphasize small-scale storms falling

over the rain gauges. Of course, even without a scale

mismatch, scatter in the plotted points will result from

the fact that precipitation and streamflow measurements

each have their own errors, and these errors are com-

pounded when the ratio is computed. Again, some time

shift between precipitation and streamflow is already

implicitly included inEqs. (4)–(6) through the streamflow

recession.

Summing up, we note that, generally, the unimpres-

sive agreement found in the bottom row in Fig. 3 is no

surprise given the vastly different scales we consider

(e.g., for streamflow and precipitation or of modeled,

catchment-scale ET and observed, point-scale ET) and

the noted measurement uncertainties related to, for

example, eddy covariance ET measurements or point-

scale precipitation measurements. When considering

this unimpressive agreement, it is worth remembering

that the optimization procedure focuses on finding the

runoff and evaporation functions that best reproduce

the time variability of the observed streamflow (through

anR2 value), a reflection of the time dynamics of the local

hydrological cycle, rather than functions that are neces-

sarily consistent with direct evaporation and streamflow

measurements, as represented by the plotted points in

the lowest row of Fig. 3. Naturally, if the latter approach

were used, the functions chosen would agree much

more strongly with those plotted points. Of course, the

latter approach requires soil moisture and evaporation

information, which is what we want to avoid here, given

the noted dearth of contemporaneous soil moisture and

evaporation data. While it is certainly possible that our

optimization approach does not produce the runoff

function and ET function combination that best repro-

duces the measured soil moisture memory, it does nev-

ertheless produce a combination that reproduces it

reasonably well (Fig. 1), and it does maintain the critical

advantage of being based on only streamflow, precipi-

tation, and radiation information.

Note furthermore that the suitability of the optimi-

zation approach may vary depending on the climate

regime, as it becomes difficult, under dry conditions when

streamflow variations are small, to infer hydrological

variability of a catchment from streamflow only (e.g.,

Teuling et al. 2010a).

For completeness, Fig. 4 shows the hydrographs asso-

ciated with the optimized values of t for the three

catchments. In the Rietholzbach catchment, the stream-

flow response falls off most quickly, as might be expected

given the catchment’s hilliness and relatively small size.

In the other two catchments, 2% of the water in a pre-

cipitation event is still running off 2 weeks after the event.

d. Application to multiple Swiss catchments

The application of the methodology to precipitation,

net radiation, and streamflow data in 13 catchments

across Switzerland (section 3b) allows us to obtain an

areal picture of soil moisture memory (30-day-lagged

autocorrelation), as shown in Fig. 5. The similar memo-

ries found for adjacent catchments, even those with dif-

ferent sizes, provide additional support for our approach.

A signature of the alpine ridge (and its associated pre-

cipitation regime) is seen in the memory distribution.

The highest memory is found for the Langeten catch-

ment, which is located in the Swiss plateau between the

Alps and the JuraMountains. Highmemory is also found

FIG. 4. Fitted hydrographs [Eq. (4)] in the three validation catchments.
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for the Mentue (also in the Swiss plateau) and Ergolz

(northern end of the Jura Mountains) catchments. The

lowest memory is found in the highest catchments: Sitter,

kleine Emme, Emme, and Sense. Overall, soil moisture

memory seems to increase with increasing distance from

theAlps, as seen in the far west for theBroye andMentue

catchments and in the far east for theMurg,Aach,Goldach,

and Sitter catchments. Despite the drier climate regime

south of the Alps, we find a similar strength of the soil

moisture memory at Cassarate compared to catchments

along the northern alpine front.

Figure 6 summarizes the results for all catchments,

showing the optimized runoff and ET functions (first

column) and the corresponding soil moisture memories

as a function of season and lag (second column). The rows

holding the catchment results are arranged in order of

average memory, starting with Langeten (the catchment

with the strongestmemory). Theoptimized functions differ

significantly among the catchments, as does the absolute

soil moisture range. Correspondingly, the strength of the

estimated soil moisture memory and its seasonal cycle

differ significantly across the catchments, especially in

summer. In general, memory seems to be strongest in au-

tumn, for which considerable memory is often seen at 4–5-

week lags, and it is weakest in spring, which generally

shows almost no significant memory beyond 2 weeks.

Figure 6 also displays the uncertainties corresponding

to the soil moisture memories, as derived with the

methodology described in section 2c. They are mostly

smaller than 0.2, indicating that the computed memory

patterns are robust with respect to parameter sets ob-

tained from different and independent subsets of the

full time period analyzed. Especially if the estimated

memory is high, the uncertainties are low; therefore,

high soil moisture memory as identified with the simple

water balance model is particularly reliable.

1) CONTROLS OF SOIL MOISTURE MEMORY IN

SWITZERLAND

OS12 identified two main controls of soil moisture

memory at five sites in central and Mediterranean Eu-

rope: (i) the ratio between the variability of initial soil

moisture and subsequent forcing and (ii) the correlation

between initial soil moisture and the subsequent forcing.

They also report that the forcing is dominated by pre-

cipitation, and thus, we can express the first control as

the unitless ratio between the standard deviation of initial

soil moisture and the standard deviation of subsequent

precipitation:

~kn 5
sw

n,y

sP
n,ytlag

, (10)

wherePn,y denotes precipitation (inmmday21) between

date n and n 1 tlag of year y. It is multiplied with tlag to

yield the accumulated precipitation during that interval.

The standard deviations are computed as described in

section 2c. Note that ~kn also reflects the impact of sea-

sonal variations in precipitation. Given that precipitation

dominates the forcing, the second control identified in

FIG. 5. Soil moisture memory of lag 30 days at all investigated catchments across Switzerland, averaged fromApril through October. The

brownish background indicates the topography, with darker brown referring to higher elevations.
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OS12 can be simplified to yield r(wn, Pn). High values

of either of these controls are indicative of higher soil

moisture memory. The first control, ~kn, reflects the size

of the anomaly to be erased relative to that of the pre-

cipitation available to erase it, and the second describes

how the effect of the precipitation may be diminished if

its magnitude is not independent of the initial anomaly.

The fourth and fifth columns of Fig. 6 illustrate the

values of these controls at all catchments for all months

and lags considered. The ratio of the soil moisture and

precipitation variabilities decreases from top to bottom

in both figures as the soil moisture memory decreases,

suggesting a connection. Confirming the results of OS12,

comparatively high correlations between initial soil

moisture and the subsequent precipitation (a reflection,

indeed, of memory in precipitation itself) also seem to

coincide with high memory in most catchments.

Moreover, these two figures show that the runoff

optimization approach (section 2b) yields functions of

similar shape for nearby catchments (e.g., Mentue/Broye

and Sitter/Goldach), underlining the robustness of the

simple model approach. However, despite such simi-

larity in the functions, we can sometimes find different

strengths for the soil moisture memory, as in the Mentue

FIG. 6. Overview of (left column) fitted functions, (second column) soil moisture memory, (third column) its uncertainty (refer to text

for details), (fourth column) ~kn 5swn,y /sPn,ytlag , and (right column) r(wn, Pn) [as described in section 4d(1)] for all catchments going from

(top row) high soil moisturememory to (bottom row) low soil moisturememory. In the left column, the red curves correspond to the fitted

runoff ratio functions, the black lines show the fitted ET ratio functions, and the vertical blue lines denote the 5% and 95% quantile of all

soil moisture values in the time frame between April and October. Soil moisture memory, its uncertainty, ~kn, and r(wn, Pn) are computed

for all months between April and October and for lag times between 5 and 40 days.
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and Broye catchments, illustrating the importance of

catchment-specific parameters such as water-holding ca-

pacity and maximum ET ratio.

Figure 7 shows the correlations between the optimized

model parameters and the resulting soil moisture mem-

ory (as shown in Fig. 5).Water-holding capacity is seen to

be a strong control of soil moisture memory, which is

intuitively sensible; it has a direct impact on the numer-

ator of the standard deviation ratio discussed above. A

second control of memory is the runoff ratio exponent

(even if of questionable statistical significance because of

the relatively small set of catchments). The higher this

exponent, the greater the contrast in the impact of runoff

on soil moisture in wet and dry conditions. That is, for

a high exponent, the dampening impact of runoff on

soil moisture anomalies is significantly reduced in drier

conditions. OS12 found that especially dry anomalies

contribute to a higher soil moisture memory, which

explains why the runoff ratio exponent has such a large

effect. It is important to note that these three controls

are not statistically independent, because they would

otherwise explain too much of the variance of soil

moisture memory; a proper breakdown of the roles of

these parameters and how they vary with each other

would require a substantially larger collection of analyzed

catchments.

2) DEPENDENCE OF SOIL MOISTURE MEMORY ON

ALTITUDE, TOPOGRAPHY, ANDDRYNESS INDEX

Investigating the dependency of soil moisture memory

on altitude, topography, and dryness index allows us to

separate the effects of soil and vegetation characteristics,

FIG. 6. (Continued)
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morphology, and atmospheric forcing, respectively. Even

if altitude and topography are usually related, here they

are to some extent independent because of the complex

(pre)alpine terrain of Switzerland. The top row of Fig. 8

demonstrates that memory decreases with altitude and

with increased topography (expressed as CTI; see sec-

tion 3b). The bottom row of the figure shows a link be-

tween ~kn [the aforementioned ratio of initial soilmoisture

variability to precipitation variability shown in Eq. (10)]

and both altitude and topography. This ~kn ratio was

identified in section 4d(1) as a main control of soil

moisture memory, which is consistent with the shown

dependencies on altitude and topography. The higher

(or hillier) a catchment is, the thinner the soil should be,

leading to a decreased water-holding capacity and there-

fore a lower swn
and a lower ~kn value. Even if topography

and altitude are found to have the same impact on soil

moisture memory, the reasons may not be the same, since

topography as such only impacts soil moisture dynamics

whereas altitude also reflects the varying atmospheric

forcing [e.g., precipitation (variability) increasing with

altitude and thereby reducing soil moisture memory as

described in the previous subsection].

We also investigated the link between mean soil mois-

ture memory (as shown in Fig. 5) and catchment-specific

dryness index, as illustrated with the plots on the right-

hand side of Fig. 8. The dryness index is computed as

R/lrwP, where l is the latent heat of vaporization and

R and P are long-term averages of annual net radiation

and precipitation, respectively. Soil moisture memory

tends to increase with increasing dryness index, even if

the diagnosed relationship between the two is rather

weak. Less precipitation leads to a lower variability and

thus a higher ~kn value, as shown in the figure.

Comparing the influence of these three controls on

soil moisture memory in Switzerland as indicated by the

R2 values, we find that altitude is of highest importance,

followed by topography and dryness index.

5. Conclusions

In this study, we modified the simple water balance

model proposed by Koster and Mahanama (2012) to

include such features as streamflow recession and an

implicit form of the water balance equation. We then

applied the model to the analysis of soil moisture mem-

ory. Our main tested hypothesis was whether such a

simple model can be used to extract information on soil

moisture memory based on observations of precipitation,

net radiation, and streamflow alone, since these obser-

vations are much more plentiful than soil moisture ob-

servations.

Our approach was successfully validated using data

from some of the relatively rare catchments for which

soil moisture measurements and contemporaneous me-

teorological measurements are adequate. Using only

precipitation, net radiation, and streamflow data, the

model captures the first-order behavior of the observed

soilmoisturememory in terms of its variation with season

and the considered lag (Fig. 1). The model also repro-

duces the observed soil moisture anomalies reasonably

well (Fig. 3).

We then used the validated model to estimate the soil

moisture memory within 13 near-natural catchments

across Switzerland. The resulting spatial distribution of

estimatedmemory allowed an analysis of the controls on

this memory. Our results support earlier propositions

that the main controls of memory in central Europe are

(i) the ratio of the standard deviations of initial soil

moisture and subsequent precipitation and (ii) the cor-

relation between the initial soil moisture and the sub-

sequent precipitation. Soilmoisturememory in the vicinity

of theAlps appears to decrease with altitude and hilliness

(as measured by CTI), possibly because soils at higher

elevations tend to be thinner.

The study with the 13 Swiss catchments demonstrates

that the simple water balance model can be used in con-

junction with precipitation, net radiation, and streamflow

FIG. 7. Correlations of fittedmodel parameters (listed in Table 1)

at all catchments with respective soil moisture memory at a lag of

30 days. Dark gray corresponds to negative correlations, and light

gray indicates positive correlations. Hatching indicates correla-

tions that are not significant on the 5% level (two-sided t test).
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measurements to estimate soil moisture memory and its

controls even in the absence of direct soil moisture

measurements. Applying this methodology to catch-

ments in other regions of the world could help identify

areas of strong soil moisture memory, that is, areas for

which soil moisture initialization has a chance to con-

tribute to hydrological or meteorological prediction.
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APPENDIX

Optimization Procedure for Identification of
Catchment-Specific Parameter Sets

We first choose a random value for each parameter in

Eqs. (2) and (6) from within a prescribed acceptable

range and add a prescribed step width (see Table 1) to

yield a second value for each parameter. We then run

the model for all 25 5 32 combinations of parameters to

find the set which yields the highest correlation between

modeled and observed streamflow. After that, we rerun

themodel using another 255 32 combinations, assigning

to each parameter the optimal value found before and

this value with the respective step width subtracted

(if the lower value from before was the optimal value) or

added (if the higher value from before was the optimal

value). This procedure is repeated until the same set of

parameters is found two times in a row.

This procedure, of course, guarantees only a local (rather

than a global) optimum in the five-dimensional parameter

space. We thus repeat the procedure 20 times, always

starting with new randomly chosen values for each pa-

rameter. This yields 20 local optima, of which many are

similar or even identical, underlining the robustness of this

approach. Of these 20 local optima, we take the best as our

parameter set for a given catchment. Our tests with the

FIG. 8. (top) The soil moisture memories of lag 30 days of all 13 catchments plotted against altitude, CTI, and dryness index, including

a least squares fit and explained fraction of variance. (bottom) As in the top row, but for the ratio ~kn 5swn,y /sPn,ytlag .
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procedure suggest that higher computational effort would

probably not yield a different solution; given the stepwidths

applied to the parameters, we most likely indeed find the

global optimum in the five-dimensional parameter space.
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