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ABSTRACT

A zero-order (tau-omega) microwave radiative transfer model (RTM) is coupled to the Goddard Earth

Observing System, version 5 (GEOS-5) catchment land surface model in preparation for the future assimi-

lation of global brightness temperatures (Tb) from the L-band (1.4 GHz) Soil Moisture Ocean Salinity

(SMOS) and Soil Moisture Active Passive (SMAP)missions. Simulations using literature values for the RTM

parameters result in Tb biases of 10–50 K against SMOS observations. Multiangular SMOS observations

during nonfrozen conditions from 1 July 2011 to 1 July 2012 are used to calibrate parameters related to the

microwave roughness h, vegetation opacity t and/or scattering albedo v separately for each observed 36-km

land grid cell. A particle swarm optimization is used to minimize differences in the long-term (climatological)

mean values and standard deviations between SMOS observations and simulations, without attempting to

reduce the shorter-term (seasonal to daily) errors. After calibration, global Tb simulations for the validation

year (1 July 2010 to 1 July 2011) are largely unbiased for multiple incidence angles and both H and V po-

larization [e.g., the global average absolute difference is 2.7 K for TbH(42.58), i.e., at 42.58 incidence angle].

The calibrated parameter values depend to some extent on the specific land surface conditions simulated by

the GEOS-5 system and on the scale of the SMOS observations, but they also show realistic spatial distri-

butions. Aggregating the calibrated parameter values by vegetation class prior to using them in the RTM

maintains low global biases but increases local biases [e.g., the global average absolute difference is 7.1 K for

TbH(42.58)].

1. Introduction

Assimilating low-frequency (1–10 GHz) passive mi-

crowave observations into land surface models is ex-

pected to improve estimates of land surface conditions

and, hence, weather and climate predictions. Global

observations of brightness temperatures (Tb) are avail-

able from the (late) Advanced Microwave Scanning

Radiometer–Earth Observing System (AMSR-E), the

Soil Moisture Ocean Salinity (SMOS; Kerr et al. 2010)

mission, andAquarius (LeVine et al. 2007). Soilmoisture

has a dominant effect on Tb at frequencies lower than

;10 GHz and lower incidence angles, whereas vegeta-

tion becomes more dominant at higher frequencies and

higher incidence angles (Wigneron et al. 1993; Ferrazzoli

et al. 1995). The lower-frequency observations (1.4 GHz)

from SMOS and the future Soil Moisture Active Passive

(SMAP; Entekhabi et al. 2010) mission are sensitive to
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greater depths into the surface and allow a soil moisture

estimation with a reduced vegetation screening error

compared to earliermissions (e.g.,AMSR-Eat 10.7 GHz).

The benefit of using satellite soil moisture retrievals in

large-scale data assimilation systems has been shown in

multiple studies (Liu et al. 2011; Pan et al. 2012). How-

ever, only a few studies discussed the direct assimilation

of satellite-based Tb at larger scales (Reichle et al. 2001;

Balsamo et al. 2006).One of the reasons is the complexity

of representing radiative transfer processes at the global

scale, which will be addressed in this paper.

Successful use of satellite Tb observations in a soil

moisture and soil temperature analysis system requires

an accurate and unbiased model of the microwave radi-

ative transfer processes. Examples of radiative transfer

models (RTMs) include the Land Parameter Retrieval

Model (LPRM; Owe et al. 2008), the Land Surface Mi-

crowave Emission Model (LSMEM; Drusch et al. 2001)

and the L-band Microwave Emission of the Biosphere

model (L-MEB; Wigneron et al. 2007). The Community

Microwave Emission Modeling Platform (CMEM;

Holmes et al. 2008; Drusch et al. 2009; de Rosnay et al.

2009) collects a variety of submodels within a single

software framework. For the land surface emissivity

alone, there is a wide variety of modules for the surface

roughness, canopy layer, atmosphere, and dielectric

mixing models. The parameters in these modules have

typically been estimated using Tb observations from

local field experiments, for example, using ground-

based and airborne radiometers (de Rosnay et al. 2006;

Grant et al. 2007; Jackson et al. 1999; Panciera et al. 2009b;

de Jeu et al. 2009; Sabater et al. 2011; Montzka et al. 2013;

Bircher et al. 2012). Zhang et al. (2012) calibrated their

RTM for wetland conditions using AMSR-E Tb, and

Fitzmaurice and Crow (2011) presented an online vegeta-

tion parameter estimation using synthetic Tb observations,

all for small study areas. As we will show below, using

locally determined microwave RTM parameters in a

global modeling system can lead to strongly biased Tb

estimates. Large-scale studies on the parameterization of

RTMs and the assessment of effective parameters using

satellite data have been limited (Drusch et al. 2009; de

Rosnay et al. 2009).

In preparation for the global assimilation of Tb from

SMOS and SMAP, a zero-order (tau-omega)microwave

RTM is coupled here to the Goddard Earth Observing

System, version 5 (GEOS-5) catchment land surface

model (CLSM; Koster et al. 2000). We calibrate select

RTM parameters using multiangular H- and V-polarized

SMOS observations to obtain climatologically unbiased

Tb from themodeling system. The calibration is designed

to mitigate long-term biases. Short-term random errors

and (seasonal) biases can be accounted for within the

data assimilation system (De Lannoy et al. 2007;

Reichle et al. 2010). Ultimately, the calibrated model-

ing system developed here will facilitate Tb assimila-

tion to improve global estimates of surface and root

zone soil moisture, soil temperature, and vegetation

state variables (Wigneron et al. 2002) and support the

generation of the SMAP Level 4 Surface and Root

Zone Soil Moisture (L4_SM) product (Reichle et al.

2012).

2. Data and models

a. SMOS observations and preprocessing

Since its launch in November 2009, the SMOSmission

provides global Tb observations at a nominal spatial

resolution of 43 km and with a local overpass every 3

days at the equator. L-MEB is used operationally by

the SMOS mission to retrieve surface soil moisture

and vegetation opacity t from the Tb measurements

(Wigneron et al. 2007). For this study, we use observa-

tions from the period 1 January 2010 to 1 October 2012.

Specifically, we use the multiangular full-polarization

Tb fields (MIR_SCLF1C) to calibrate the RTM and the

retrieved soil moisture and t fields (MIR_SMUDP2) for

comparison against CLSM soil moisture and calibrated

t values. We use reprocessed data (processing versions

SCLF1C 504 and SMUDP2 501) for the years 2010 and

2011. For 2012, we use the daily updated data (processing

versions SCLF1C504 and 505 and SMUDP2 500 and 551)

distributed by the European Space Agency.

The preprocessing of the SMOS observations for use

in the present study involves several steps. First, we

collect all antenna-level SMOS SCLF1C Tb observa-

tions for a given grid cell and half orbit. We then apply

a quality control to their angular signature by eliminat-

ing observations that fall outside of a one-standard-

deviation range around the 58 angular moving average

(done separately for each half orbit and grid cell).

Thereafter, we transform (geometric and Faraday ro-

tation) the SMOS SCLF1C Tb data from the antenna

reference frame to the top of the atmosphere using in-

formation provided with the observations (CESBIO

et al. 2011; http://www.cesbio.ups-tlse.fr/SMOS_blog/wp-

content/uploads/TOOLS/XY2HV.m). After the rotation,

the observations are binned per 18 incidence angle. For

this paper, only a subset of all processed angles is used:

u 5 32.58, 37.58, 42.58, 47.58, 52.58, and 57.58, where, for
example, 32.58 represents the average of all observations
with incidence angles between 328 and 338. Incidence
angles below 208 have shown some unresolved deviation

from the expected angular signature (Martı́n-Neira et al.

2012) and were therefore excluded. We further apply
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a strict quality control by eliminating observations that

are (i) obviously contaminated by radio frequency in-

terference (RFI), that is, Tb. 320 K or according to the

RFI flags in the SMOS products; (ii) near water bodies;

or (iii) outside of the sensor footprint’s alias-free zone.

Next, both the SCLF1C Tb and SMUDP2 soil moisture

are aggregated from the 15-km discrete global grid

(DGG) on which they are posted to the 36-km Equal-

Area Scalable Earth Grid (EASE) that will be used for

SMAP Tb observations. The aggregation is a simple

spatial averaging of all theDGG cells with centers inside

an EASE grid cell and performed for each incidence

angle and polarization independently. During this ag-

gregation step, the data are screened for excessive sub-

36-km heterogeneity that may be indicative of RFI or

the presence of open water bodies. Specifically, we re-

tain only aggregated soil moisture retrievals that have

a maximum standard deviation of 0.2 m3 m23 in the

15-km retrievals within a 36-km grid cell. Similarly, Tb

observations are retained only if the sub-36-km standard

deviation is less than 7 K. Also, we require that at least

two 15-km observations are included in the 36-km

aggregate. The final quality check involves the elimi-

nation of data taken (i) during intensive rain events

(precipitation . 10 mm h21), (ii) near or below freezing

conditions (temperature, 273.4 K), or (iii) when snow is

present (snow water equivalent . 1024 kg m22) based

on GEOS-5 estimates of temperature, precipitation,

and snow. Furthermore, only soil moisture observa-

tions with an average retrieval uncertainty (provided

with the SMUDP2 product) less than 0.2 m3 m23 are se-

lected. The above quality standards are based on our best

judgment, through trial and error and inspection of the

retained data.

b. GEOS-5 catchment land surface model

TheGEOS-5 CLSMhasmany of the features found in

other land surface models used with climate models,

including subsurface soil moisture and heat transport, a

multilayer snow scheme, and complete energy andwater

balance equations for each of several heat and moisture

reservoirs. Unique to the CLSM is its use of subgrid-

scale topographic data to model explicitly the horizontal

variability of soil moisture within a given surface ele-

ment, which leads to conceptually improved treatments

of subsurfacemoisture dynamics, evaporation, and runoff

(Koster et al. 2000).

For this study CLSM is set up on the 36-km SMAP

EASE grid and spun up for 18 years prior to the SMOS

observation period using surface meteorological forc-

ing data at ½8 3 2/38 spatial and hourly temporal reso-

lution from the Modern-Era Retrospective Analysis for

Research and Applications (MERRA; Rienecker et al.

2011). The MERRA precipitation is corrected with

the National Oceanic and Atmospheric Administration

(NOAA) Climate Prediction Center unified gauge-

based precipitation product (Reichle 2012). The

CLSM model version used here is the same as that

used in GEOS-5.7.2, which is also used for the MERRA-

Land data product (Reichle et al. 2011), except for two

changes that align the model more closely with the

version that will ultimately be used for the SMAP

L4_SM data product: (i) the surface soil moisture is

diagnosed for the top-5-cm surface layer (as opposed

to the top-2-cm layer used in GEOS-5.7.2) and (ii) the

model is used here with a preliminary version of up-

dated soil parameters from a forthcoming version of

GEOS-5.

The new soil texture is a composite of different data

sources, including the Food and Agricultural Organi-

zation (FAO) dataset, Harmonized World Soil Data-

base (HWSD), State Soil Geographic (STATSGO),

Australian Soil Resources Information System (ASRIS),

and National Soil Database Canada (NSDC). Further-

more, the texture is stratified by low, medium, and high

organic material. For each texture class, a unique set of

soil hydraulic parameters is derived using the pedo-

transfer functions of W€osten et al. (2001). The wilting

point is determined through an inversion of the corre-

sponding Campbell (1974) tension curve at21500 kPa.

Collectively, these changes alter the soil moisture clima-

tology compared to that of the original GEOS-5.7.2 ver-

sion for better agreement with in situ observations (see

appendix A).

The CLSM has eight vegetation classes, and the veg-

etation processes are parameterized by spatially distrib-

uted climatological vegetation information, including

AdvancedVeryHighResolutionRadiometer (AVHRR)-

based monthly leaf area index (LAI) and greenness.

For the application of the RTM only, we further sub-

sample the 8 vegetation classes into the 16 classes

defined by the Moderate Resolution Imaging Spec-

troradiometer (MODIS; 500 m MOD12Q1V004) Inter-

national Geosphere–Biosphere Programme (IGBP)

land cover classification. At the 36-km EASE resolu-

tion, each grid cell is assigned a single dominant

IGBP-vegetation type, thereby neglecting subpixel

heterogeneity.

c. L-band radiative transfer model

A zero-order tau-omega microwave RTM is coupled

here to the GEOS-5 CLSM that converts soil moisture,

soil temperature, vegetation water content, and air

temperature into L-band Tb estimates at the top of the

atmosphere [TbTOA,p (K)] at polarization p 5 (H, V)

(horizontal or vertical) as follows:
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TbTOV,p 5Ts(12 rp)Ap1Tc(12vp)(12Ap)(11 rpAp)

1Tbad,prpA
2
p ,

(1)

TbTOA,p 5Tbau,p 1 exp(2tatm,p)TbTOV,p , (2)

where TbTOA,p (K) is the top of vegetation Tb, Ts (K) is

the surface soil temperature, Tc (K) is the canopy tem-

perature (assumed equal toTs), Tbad,p (K) and Tbau,p (K)

are the downward and upward atmospheric radiation,

Ap (–) is the vegetation attenuation, exp(2tatm,p) (–) is

the atmospheric attenuation, tatm,p (–) is the atmospheric

optical depth, rp (–) is the rough surface reflectivity, and

vp (–) is the scattering albedo. The atmospheric con-

tibutions [Tbad,p, Tbau,p, and exp(2tatm,p)] are described

by Pellarin et al. (2003). The rough surface reflectivity

rp (–) is derived from the smooth surface reflectivity

Rp (–) following Choudhury et al. (1979) and Wang

and Choudhury (1981):

rp5 [QRq1 (12Q)Rp] exp(2h) cosNr
p(u) , (3)

where Q (–) is the polarization mixing ratio, u (rad)

is the incidence angle, h (–) is the roughness param-

eter accounting for dielectric properties that vary

at the subwavelength scale, Nrp (–) is the angular

dependence, and q 5 V for p 5 H and vice versa.

Polarization coupling effects are small at L-band

frequencies (Kerr and Njoku 1990), and we therefore

set Q [ 0. The smooth surface reflectivity Rp (–) is

given by the Fresnel equations as a function of the

dielectric constant, which itself depends on soilmoisture,

temperature, texture, incidence angle, and wavelength.

We select the Wang and Schmugge (1980) soil dielectric

mixing model for this study. The results with this model

are similar to what is obtained with the Mironov et al.

(2004)model, and both are in a better agreement with the

SMOS data than the Dobson et al. (1985) model (con-

sistent with de Rosnay et al. 2009).

Equation (1) reflects that Tb is less sensitive to soil

moisture in areas with substantial vegetation, because

the water within the vegetation attenuates the emis-

sion from the soil and adds its own emission contri-

bution. The presence of litter (dead plant material)

typically increases emissions, especially when wet

(Grant et al. 2007). In addition, rainwater intercepted

by the vegetation absorbs microwave radiation and

thereby also masks emission from the soil (Saleh et al.

2006). However, litter and interception effects are

neglected here. The vegetation attenuation Ap (–) is

based on the Jackson and Schmugge (1991) vegetation

opacity model:

Ap5 exp

�
2

tp

cosu

�
, with (4)

tp 5bpVWC5 bpLEWTLAI, (5)

where tp (–) is the nadir vegetation opacity, which is a

function of a vegetation structure parameter bp (–) and

the vegetationwater content (VWC; kg m22). The latter is

modeled here as the product of LAI (m2 m22) and the leaf

equivalent water thickness (LEWT; kg m22).

In summary, the key parameters for the rough surface

reflectivity [Eq. (3)], the scattering albedo, and vegetation

optical depth [Eq. (5)] will be calibrated usingmultiangular

SMOS observations, as outlined in section 3. We use the

default empirical expressions for the remaining submodels

of the dielectric constant (Wang and Schmugge 1980) and

the atmospheric optical depth (Pellarin et al. 2003).

A variety of parameterizations and parameter values

exists for microwave soil roughness and vegetation ef-

fects. A direct comparison of literature values for RTM

parameters is not straightforward because they are esti-

mated with slightly different models for various purposes

(mostly soil moisture retrieval, rather than forward Tb

modeling) and are primarily based on local experiments.

For this paper, we assembled three different sets of pa-

rameter values from the literature:

(i) Lit1 values are based on look-up tables suggested

for the future SMAP L2/3_SM_P product (radiom-

eter soil moisture retrieval) (O’Neill et al. 2012),

which are largely inherited from an earlier Hydros

Observing System Simulation Experiment by Crow

et al. (2005), except for the LEWT (see below);

(ii) Lit2 values are collected from studies that use

L-MEB, LSMEM and CMEM (Drusch et al. 2009;

de Rosnay et al. 2009; Grant et al. 2008; Wigneron

et al. 2007; Saleh et al. 2007); and

(iii) Lit3 is similar to Lit2, but with Nrp 5 0 and with the

soil roughness h as used in SMOSTbmonitoringwith

CMEM (Sabater et al. 2011) at the European Centre

for Medium-Range Weather Forecasts (ECMWF).

These three sets of literature values are used in two

ways. First, we simulate Tb using the literature values for

the microwave RTMparameters and compare the results

against SMOS observations. Second, the literature values

are used as prior constraints in the parameter calibration

(section 3). Table 1 shows the most relevant RTM pa-

rameter values for L-band wavelengths for the three sets

of literature values broken down by the applicable IGBP

vegetation classes. Details of the parameterizations of

microwave soil roughness h, vegetation opacity t, and

scattering albedo v are discussed in appendix B. As can

be seen in Table 1, microwave soil roughness parameter
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values for h and Nrp differ greatly across the three sets of

literature values. For the parameter calibration, we as-

sume that h depends on soil moisture and varies between

hmin and hmax (see appendix B for details). The higher h

and higher Nrp in Lit2 and Lit3 result in higher Tb with

lower variability than Lit1. Table 1 further shows the

vegetation parameters LEWT and bp that directly affect

the vegetation opacity [Eq. (5)]. The LEWT and bp are

substantially smaller for Lit1 than for Lit2 and Lit3. The

lower opacity for Lit1 limits the contribution of vegeta-

tion to Tb values (mostly resulting in a lower Tb), but

assures a high sensitivity to soil contributions. For the

calibration, bp is assumed to depend on polarization. Fi-

nally, the Lit1 and Lit2 or Lit3 values for the scattering

albedo (v) differ somewhat (Table 1). Less scattering

leads to higher Tb. For the calibration,v is assumed to be

independent of polarization. Note that after calibration

we obtain an ‘‘effective’’ h that no longer just represents

subwavelength-scale dielectric roughness. Likewise, we

obtain effective values for t and v that no longer reflect

the assumption of single scattering (Kurum et al. 2012).

3. Calibration

In section 4, it will be shown that the literature-based

lookup table values for the microwave RTM result in

considerable biases of the simulatedGEOS-5Tb compared

to SMOS observations. Through parameter calibration we

therefore minimize the climatological differences be-

tween the simulated and SMOS-observed Tb, without

attempting to reduce the shorter-term errors that can be

dealt with through Tb data assimilation. The RTM pa-

rameters are optimized locally, that is, for each grid cell

independently, and for the land surface conditions sim-

ulated by the GEOS-5 modeling system.

a. Objective function

The particle swarm optimization (PSO; Kennedy and

Eberhart 1995) search algorithm is used to maximize the

Gaussian likelihood of a microwave RTM parameter

set, given a set of multiangular SMOS Tb observations.

A prior random set of parameter vectors (or particles; a)

iteratively explores the search space. At each iteration,

the velocity (speed and direction) of each particle is

adjusted based on the most favorable conditions that

have been experienced by the individual particle (cog-

nitive aspect) and the swarm as a whole (social aspect).

The iterative swarm search is performed in several in-

dependent repetitions to mitigate sampling limitations.

Details and examples of hydrological studies using this

algorithm can be found, for example, in Scheerlinck et al.

(2009) and Pauwels and De Lannoy (2012). The PSO

parameters are further discussed in section 3b.

To maximize the posterior likelihood, weminimize the

objective function J (–), which contains penalty terms for

long-term bias in the Tb mean [Jh�i,o (–)] and variability

[Js[�],o (–)] and a parameter penalty term [Ja (–)]:

J5Wm�
u
�
H,V

p
�
A,D

d

Nu,p,d

N

[hTboi2 hTb(a)i]2
u,p,d

s2
m

)
Jh�i,o

1Ws �
u
�
H,V

p
�
A,D

d

Nu,p,d

N

fs[Tbo]2 s[Tb(a)]g2
u,p,d

s2
s

)
Js[�],o

1Wa

1

Na

�
N

a

i51

(a0,i2ai)
2

s2
a
0,i

)
Ja .

(6)

We minimize the difference between the observed Tbo
and the modeled Tb(a) in the time series mean (h�i) and

TABLE 1. Literature-based microwave RTM parameters (NrH 5 NrV 5 0 for Lit1 and Lit3).

IGBP land cover class

h 5 hmin 5 hmax (–) NrH (–) NrV (–) v (–) LEWT (kg m22) bH 5 bV (–)

Lit1 Lit2 Lit3 Lit2 Lit2 Lit1 Lit2, Lit3 Lit1 Lit2, Lit3 Lit1 Lit2, Lit3

1 ENF Evergreen needleleaf forest 0.16 1.2 1.66 1 0 0.12 0.05 0.3 1 0.1 0.33

2 EBF Evergreen broadleaf forest 0.16 1.3 1.66 1.75 0 0.12 0.05 0.3 1 0.1 0.33

3 DNF Deciduous needleleaf forest 0.16 1.2 1.66 1 0 0.12 0.05 0.2 1 0.12 0.33

4 DBF Deciduous broadleaf forest 0.16 1 1.66 1 2 0.12 0.05 0.2 1 0.12 0.33

5 MXF Mixed forest 0.16 1.3 1.66 1 1 0.08 0.05 0.2 1 0.12 0.33

6 CSH Closed shrublands 0.11 0.7 1.66 1 0 0.05 0.05 0.2 0.5 0.11 0.3

7 OSH Open shrublands 0.11 0.7 1.66 1 0 0.05 0.05 0.2 0.5 0.11 0.3

8 WSV Woody savannas 0.125 0.7 1.66 1 0 0.12 0.05 0.15 0.5 0.11 0.3

9 SAV Savannas 0.156 0.5 1.66 1 0 0.08 0.05 0.15 0.5 0.11 0.2

10 GRS Grasslands 0.156 0.1 1.66 1 0 0.05 0.05 0.15 0.5 0.1 0.2

12 CRP Croplands 0.108 0.5 1.66 0 21 0.05 0.05 0.15 0.5 0.11 0.15

14 CRN Cropland and natural

vegetation

0.13 0.7 1.66 0 21 0.065 0.05 0.15 0.5 0.11 0.15

16 BAR Barren or sparsely

vegetated

0.15 0.1 1.66 0 21 0 0.05 0 0 0 0
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variability (s[�], temporal standard deviation) with

a target accuracy of sm 5 1 K and ss 5 1 K, respec-

tively. Note that we do not minimize the difference

between the simulations and observations at each in-

dividual time step in a root-mean-square sense. Instead,

weminimize the difference between temporal means for

each individual combination of polarization (p5H, V),

ascending (0600 LT) or descending (1800 LT) orbit di-

rection [d 5 (A, D)], and incidence angle (u 5 32.58,
37.58, 42.58, 47.58, 52.58, and 57.58). The number of data

points in time for a particular combination of angle,

polarization, and orbit direction is represented byNu,p,d and

N is the total number of data points in time over all

considered angles, polarizations, and orbit directions.

We also limit the deviation of each calibrated pa-

rameter (ai) from a vegetation-dependent prior con-

straint a0,iwith a standard deviation of sa0,i . The latter is

given by s2
a0,i

5 (amax,i 2amin,i)
2/12, which is the vari-

ance of a uniform distribution with boundaries (amax,i,

amin,i); Na is the number of simultaneously calibrated

parameters and varies between 2 and 5 (see section 3b).

The parameter penalty can be seen as a regularization

term to effectively select one ‘‘best’’ parameter set

among the multiple parameter sets that could be con-

sistent with the observations (equifinality); Wm 5 2,

Ws 5 2, and Wa 5 3 are weight factors for the different

penalty terms and are meant to balance the constraining

effect of each term. As will be shown below (section 4),

Jh�i,o is the largest component, that is, the biases in the

mean values are much larger than the biases in the

standard deviations. By giving Jh�i,o and Js[�],o equal

weights, we effectively emphasize the need for unbiased

Tb simulations in the mean, and Js[�],o is of secondary

importance. The parameter penalty term is generally the

smallest and is less constraining than the other terms

despite its greater weight factor.

b. Calibration details

A number of assumptions in the calibration setup af-

fect the optimized parameter estimates, including the

specific set of parameters selected for calibration, the

prior parameter constraints (a0), the allowable range of

parameter values (amin, amax), their prior standard de-

viation (sa0
), the weights (W) of each of the three pen-

alty terms, the length of the time series, the selected

incidence angles (number of constraining observations),

and the PSO parameters. The parameters that are never

calibrated in this exercise are Q 5 0, Nrp, and LEWT.

The latter two parameters are indirectly compensated

for through calibration of h and bp, respectively. The

candidate RTM parameters for calibration are hmin, Dh,
bH,Db, andv, whereDh[ hmax2 hmin andDb[ bV2 bH.

Table 2 lists the four different subsets of these parameters

(labeled A, B, C, and D) that are calibrated in different

experiments. Because the climatological meanTb is highly

sensitive to the microwave roughness, the parameters

hmin and Dh are included in all calibration scenarios.

The four scenarios thus combine the calibration of hmin

and Dh with the calibration of neither, either, or both

the scattering albedo v and vegetation structure pa-

rameters (bH, Db). In all scenarios, the selected pa-

rameters are calibrated simultaneously. Table 2 also

shows the allowable range (amin, amax) of each cali-

brated parameter, based on values reported in the

references cited above. This range is fixed for all sce-

narios and vegetation classes.

The RTM parameters are constrained by prior values

(a0) that depend on the vegetation class using the three

sets of literature values listed in Table 1. Altogether,

we repeat the calibration exercise 12 times, once for

each of the four subsets of calibrated parameters (A, B,

C, and D) with each of the three sets of prior con-

straints (Lit1, Lit2, and Lit3). For example, experi-

ments CalA1, CalB1, CalC1, and CalD1 refer to the

four calibration scenarios A, B, C, and D constrained

by prior values based on Lit1 parameters. Experi-

ments CalA1, CalA2, and CalA3 use the same set of

calibrated parameters (i.e., hmin and Dh for case A),

but with prior constraints from Lit1, Lit2, and Lit3,

respectively.

Parameters that are not calibrated in a particular

scenario are set to their default literature values (Table 1).

When calibrated, Dh is subject to the constraint Dh $ 0

and Db is confined to a relatively narrow range (Table 2).

While bH , bV in Crow et al. (2005) and O’Neill et al.

(2012), there are also reports of tH . tV (Wigneron et al.

2007). Therefore, we allow Db to assume either sign, while

imposing the constraint that bV $ 0. For vp, we calibrate

a single polarization-independent value, because the lit-

erature shows little evidence of differences in H- and

V-polarized v.

The soil-texture-dependent parameters (e.g., porosity

and wilting point) also strongly affect the Tb estimates

through their impact on the dielectric constant (Wang

and Schmugge 1980) and the roughnessmodel [Eq. (B1)].

TABLE 2. RTM parameters selected for different calibration sce-

narios, with indication of the allowed parameter range.

Parameter (Min, max)

Scenario

A B C D

hmin (0, 2.0) X X X X

Dh [ hmax 2 hmin (0, 1.0) X X X X

v (0, 0.3) X X

bH (0, 0.7) X X

Db [ bV 2 bH (20.15, 0.15) X X
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However, we choose not to calibrate such CLSM pa-

rameters to assure consistency with the soil moisture and

temperature values in the quasi-operational GEOS-5

system that is used for reanalysis data products, numeri-

cal weather prediction, and seasonal climate forecasting.

The initial values of the calibrated parameters (initial

particle swarm) are uniformly distributed over each

parameter’s allowable range (Table 2). A particle swarm

size of 25 is chosen and three repetitions are used. The

initial and final PSO inertia weights are w0 5 0.9 and

wt5 0.7, the cognitive and social parameters are c15 0.7

and c2 5 1.3, and the velocity factor is d 5 0.6. These

PSO parameter choices are not themselves optimized

but (i) are selected within a range that should assure

convergence (Trelea 2003) and (ii) impose a stronger

social than cognitive impact on the particle velocity

update (c2 . c1). We further enforce a minimum of 4

and a maximum of 30 iterations in each of the three

repetitions and use a stop criterion when the objec-

tive function reaches a steady minimum, that is, when

at least three iterations yield near-identical J values (i.e.,

jJi23 2 Jij , 0.001 for iteration i).

We split twoyears of SMOSdata into a calibrationperiod

(1 July 2011 to 1 July 2012) and a validation period (1 July

2010 to 1 July 2011). The actual number of available SMOS

observations strongly depends on the location. For exam-

ple, the number of observations used during the cali-

bration and validation periods is limited by RFI in

Europe and Asia and by frozen conditions in northern

latitudes or at high elevations. For both the calibration

and validation statistics, we require a minimum of 20

data points per year for each combination of angle,

polarization, and orbit direction, that is, Nu,p,d $ 20 at

a single location to assure some minimal sampling of

the climatological temporal variability. The calibration

involves 24 combinations of angles, polarizations, and

orbits, so that the minimum total number of data points

at each calibrated location is N $ 480.

4. Results

a. Brightness temperature evaluation

1) BEFORE CALIBRATION

Figure 1 shows SMOS and simulated Tb for the six

incidence angles, averaged from 1 July 2010 to 1 July 2011

(validation period) and across the globe. With increas-

ing incidence angle, H-polarized Tb decreases and

V-polarized Tb increases. The Lit1 setup, however, is too

cold by up to 50 K for H polarization and by up to 30 K

for V polarization. The Lit1 Tb estimates also exhibit too

much angular sensitivity. In contrast, the Lit3 setup is too

warm by up to 30 K for H polarization and by up to 15 K

for V polarization. Lit3 estimates also have insufficient

angular sensitivity. The Lit2 setup is closest to the SMOS

observations in terms of the global, annual mean.

Figures 2a and 2b show maps of the time series

mean and standard deviation of SMOS TbH at 42.58
incidence angle for the year 1 July 2010 to 1 July 2011.

Substantial areas across Asia and Europe are screened

out because of severe RFI contamination. The global

average TbH(42.58) (excluding RFI-contaminated and

predominantly frozen areas) for the validation year

is 254.1 K, with a global average of 11.2 K for the

TbH(42.58) time series standard deviation. The corre-

sponding values for the calibration year (not shown)

are 254.1 K and 10.9 K for the mean and standard

FIG. 1. Global annual mean values of ascending multiangular Tb

from SMOS and simulations using different RTM parameter sets

for (a) H and (b) V polarization during the validation period (1 Jul

2010 to 1 Jul 2011). Symbols are slightly offset from the nominal

incidence angle for clarity.
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FIG. 2. Time series (a) mean and (b) standard deviation of SMOS TbH(42.58) during the validation period (1 Jul

2010 to 1 Jul 2011), including both ascending and descending orbits. Remaining subplots show the difference of the

(left) mean and (right) standard deviation statistics between model simulations and SMOS observations for (c),(d)

Lit1; (e),(f) Lit2; (g),(h) Lit3; and (i),(j) CalD2. Within each subplot, titles indicate the global average (avg) and

standard deviation (std) across each map. For (c)–(j), the average absolute difference [avg(j�j)] across the map is also

indicated.
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deviation, indicating consistent simulations and obser-

vations across the calibration and validation years. Fig-

ures 2c–h also show the differences between Lit1, Lit2,

and Lit3 Tb simulations and SMOS observations during

the validation period. The global averages of the tem-

poral mean differences (biases) in TbH(42.58) for the

validation year are241.9 K,21.6 K, and 24.6 K for the

Lit1, Lit2, and Lit3 simulations, respectively. For Lit2

the global average bias is lowest, but local biases are still

very high; the spatial standard deviation of the bias map

is 16.2 K and the average absolute bias is 12.7 K. In

densely vegetated areas (e.g., Amazon forest, eastern

United States, boreal areas), the Lit2 Tb is typically too

warm, whereas the SaharaDesert and the western States

are too cold. For Lit1 and Lit3, all locations on the globe

are too cold or too warm, respectively. In Lit1, the low

vegetation opacity (low LEWT and bp), together with

the high rough surface reflectivity (due to low h values),

causes colder Tb predictions. Similarly, in Lit3, the

higher vegetation opacity and lower reflectivity result in

warmer Tb.

The difference between the time series standard de-

viation of the simulated TbH(42.58) and that of SMOS is

2.0 K, 21.5 K, and 25.0 K for Lit1, Lit2, and Lit3, re-

spectively. Lit3 underestimates the temporal variability

because of the large h values, whereas Lit1 and Lit2 have

smaller global average biases in temporal variability

(with opposite signs) but considerable spatial variations.

The average absolute differences are between 4.1 K and

5.2 K for Lit1, Lit2, and Lit3. All three experiments

underestimate the SMOS variability in the central

United States, southern Australia, and southeastern

South America and overestimate it in the Sahara.

2) AFTER CALIBRATION

Figures 1 and 2 also show the Tb results during the

validation period after calibration for scenario CalD2,

that is, simultaneously calibrating hmin, Dh, bH, Db, and
v, with prior constraint Lit2. Figure 1 shows that after

calibration the angular signature of the simulated Tb

matches that of SMOS very well. Figure 2i illustrates

that through calibration the long-term mean bias in

TbH(42.58) is considerably reduced and now below

5 K in most areas with a global average absolute bias of

2.7 K. Furthermore, Fig. 2j demonstrates that the aver-

age absolute bias in the time series variability is also

smaller on average (2.9 K). That is, the global mean bias

can be reduced and, at the same time, the temporal

variability indicated by the observations can be main-

tained.

While the climatological bias is typically reduced to

less than 5 K across all angles, residual seasonal Tb

biases remain because the calibration cost function is

(intentionally) not designed to mitigate errors at time

scales of less than 1 year. To illustrate the remaining

biases, Fig. 3 shows Hovm€oller plots of calibrated

(CalD2) simulations minus SMOS observations, aver-

aged over the six angles and for the period of 1 January

2010 to 1 October 2012. The figures show the evolution

of the seasonal biases as a function of latitude (averaged

over longitude), split up by polarization and orbit di-

rection. Note that the full-polarization SMOS Tb

product used here was only intermittently available

prior to April 2010. For both polarizations and orbit

directions, the residual seasonal biases mostly range

between210 and 10 K, and the seasonal and latitudinal

variations of the biases are very similar across the dif-

ferent years.

In the Northern Hemisphere, the simulation-minus-

SMOS average for a given latitude is dominated by es-

timates from North America, because large portions of

Europe and Russia are masked out because of RFI

contamination (see Fig. 2). The no-data periods (white)

correspond to frozen conditions, which are excluded

from the analysis (section 2).

A distinct residual cold bias in 2010 and 2011 is ob-

vious in the ascending V-polarized Tb (Fig. 3b) at ap-

proximately 508N, where SMOS TbV is persistently

warmer than the modeled near-surface soil temperature

Ts (in nature, Tb cannot exceed Ts; comparison against

Ts not shown). Under such conditions, it is impossible to

calibrate the RTM meaningfully. This bias does not

show up in the descending V polarization and points to

the presence of unfiltered RFI in the SMOS observa-

tions, probably caused by a radar system used for mili-

tary defense purposes. Because of the tilt in the SMOS

antenna, the defense radar signal is only picked up in the

ascending orbit. For the H polarization, the bias could

be suppressed by the calibration, because TbH is gen-

erally lower than TbV and is not similarly constrained by

Ts. This hypothesis is supported by the absence of the

cold bias in ascending TbV in 2012, when the contami-

nating signal was switched off (Y. Kerr 2012, personal

communication).

A comparison of Figs. 3a and 3c (and of Figs. 3b and

3d) reveals that there is also a residual global average

cold bias in the ascending orbits and a warm bias in the

descending orbits: the bias is not minimized for each

orbit direction separately but simultaneously for as-

cending and descending orbits (along with both polari-

zations and all angles). The opposing signs in the biases

of the ascending and descending orbits could suggest

a diurnal bias in the simulated Ts (Holmes et al. 2012) or

a measurement error related to the different position of

the spacecraft with respect to the sun in ascending and

descending mode.
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We emphasize again that the short-term errors are not

minimized in the calibration. The global root-mean-

square difference (RMSD) between the SMOS and the

calibrated brightness temperatures remains ;9.5 K for

H polarization and ;7.3 K for V polarization (at 42.58
incidence angle and for ascending and descending or-

bits). These shorter-term biases are caused by model er-

rors such as missed precipitation events, inaccurate

vegetation description, etc., or by short-term observation

errors and will be addressed through data assimilation.

b. Sensitivity of Tb to soil moisture

The parameter calibration is designed to provide un-

biased climatological Tb. Since the calibration of the

microwave RTM parameters may unduly increase h to

compensate for wet or cold biases in CLSM, it is nec-

essary to check the sensitivity of the modeled Tb to soil

moisture after calibration. As a rule of thumb, a 2–3 K

increase in Tb is associated with a 0.01 m3 m23 decrease

in soil moisture for incidence angles around 408 and for

low vegetation regions (Jackson 1993; Schmugge and

Jackson 1994; Chanzy et al. 1997; Jackson et al. 1999).

Figure 4 shows the time–space average change in mod-

eled TbH(42.58) for a 0.01 m3 m23 increase in soil

moisture for different parameter sets. The values are an

annual mean over the full validation year (thus experi-

encing a range of soil moisture conditions) and averaged

over moderate to low vegetation only (IGBP classes

CSH, OSH, WSV, SAV, GRS, CRP, and CRN; see

Table 1 for definitions). The sensitivity to soil moisture

over forested areas is an order of magnitude smaller.

Without calibration, the sensitivity for Lit1 is realistic at

about 22.5 K (0.01 m3 m23)21, but at the expense of

a high bias in Tb (Figs. 1, 2). The average sensitivity for

the Lit3 setup is unrealistically low at around 20.3 K

(0.01 m3 m23)21, mainly because of the high uniform h5
1.66. Lit2 is again in between Lit1 and Lit3.

During the calibration, the constraint on the temporal

Tb variability indirectly imposes a realistic sensitivity of

Tb to soil moisture. As a result, all calibrated scenarios

show a similar average sensitivity comparable to that

of Lit2, ranging from 21.3 to 21.6 K (0.01 m3 m23)21

for H polarization (Fig. 4) and from 20.7 to 21.1 K

(0.01 m3 m23)21 for V polarization (not shown) at 42.58

FIG. 3. Hovm€oller plots of calibrated (CalD2) minus SMOS Tb (K) for 1 Jan 2010 to 1 Oct 2012, averaged over six incidence angles

(32.58, 37.58, 42.58, 47.58, 52.58, 57.58): (a) ascending H polarization, (b) ascending V polarization, (c) descending H polarization, and

(d) descending V polarization.
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incidence angle. Clearly, h has a profound impact on the

Tb sensitivity, as shown in the large increase in sensi-

tivity when going from Lit3 to CalA3 (Fig. 4), which

both have the same parameters, except for h. The rela-

tively higher sensitivity of Tb to soil moisture for cali-

bration scenarios with Lit1 prior constraints is attributed

to the relatively lower (prior or calibrated) vegetation

opacity t.

c. Calibrated RTM parameter values

The results in the previous subsection show the

modeled and observed Tb. Here, we further analyze the

RTM parameter values for the different calibration

scenarios. Ultimately, we want to choose a single cali-

bration scenario, with some assurance that the optimal

parameters are not too dependent on the calibration

setup. For example, we hope to find similar spatial pa-

rameter patterns, regardless of the choice of prior con-

straint values and the selection of calibrated parameters.

1) LOCALLY CALIBRATED PARAMETERS

Given the interaction between the selection of the

calibrated and uncalibrated parameters, the different

prior value constraints, and the random search during

the calibration, it can be expected that each calibration

scenario will lead to slightly different sets of calibrated

RTM parameters. Figure 5 shows the globally averaged

microwave roughness, vegetation opacity, and scatter-

ing albedo for each of the three sets of literature values

and each of the 12 calibration scenarios. The h and t

values are presented as time-mean parameters (h�i) over
the calibration year, because h is diagnosed based on

the dynamic soil moisture [Eq. (B1)] and t is based

on the time-variant LAI [Eq. (5)]. For t, we present the

average of tH and tV because we found them to be

similar in magnitude for most vegetation classes. This

is not unreasonable for the relatively coarse (43 km)

scale of SMOS observations, where vegetation struc-

ture effects are averaged for a variety of vegetation

types.

To facilitate the interpretation of the results in Fig. 5,

bear in mind that a higher h, a higher t, or a lowerv tend

to result in higher Tb values. The calibrated hhi values
always exceed those of Lit1, because Lit1 mainly reflects

the geometric roughness, whereas the calibration is per-

formed for coarse-scale (36 km) heterogeneous pixels.

The effective roughness after calibration is therefore

FIG. 4. Sensitivity of ascending TbH(42.58) to soil moisture

[(K (0.01 m3 m23)21] before calibration (Lit) and after calibra-

tion (CalA, CalB, CalC, CalD), with prior parameter constraints

from Lit1, Lit2, and Lit3. The statistics are averaged over non-

forested and nondesert areas only (IGBP classes CSH, OSH,

WSV, SAV, GRS, CRP, and CRN) during the validation period

(1 Jul 2010 to 1 Jul 2011).

FIG. 5. Globally averaged (a) time-mean hhi, (b) time-mean hti,
and (c) time-invariant v before calibration (Lit) and after cali-

bration (CalA, CalB, CalC, CalD), with prior parameter con-

straints from Lit1, Lit2, and Lit3. Time-mean values are for the

calibration period (1 July 2011 to 1 July 2012).
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linked to the SMOS scale and not solely determined

by the real dielectric properties that vary at the sub-

wavelength scale. The values of hhi are higher when t

is lower or v is higher, which reflects the expected trade-

off between vegetation and soil characteristics in the

simulation of Tb. The difference in hhi between CalA2

and CalA3 is driven by the difference in Nrp. In scenario

B, hhi is slightly higher because v is calibrated to higher

values. More complexity is added in scenarios C and D

where bp is calibrated [Eq. (5)]. Values of tp appear to be

underestimated in Lit1 and are increased through cali-

bration, whereas the calibrated tp values are generally

reduced through calibration when Lit2 or Lit3 values are

used as prior constraints.

The deviation of the calibrated (effective) parameters

from those obtained through calibration of small-scale

experimental data (i.e., prior values) may reflect the

heterogeneity of the land surface conditions within the

low resolution simulation pixels. In addition, uncertainty

in the calibrated parameters may originate from inac-

curacies in the simulated soil moisture, temperature, and

other geophysical fields.

The above assessment of global average values

roughly explains the interaction between the parame-

ters, but the optimal parameters exhibit considerable

spatial variability as shown by the large spatial standard

deviation markers in Fig. 5. Figure 6 shows the global

spatial correlation of hhi (or hti or v) for values from
different literature and calibration scenarios (ignoring

scenarios with uncalibrated parameters). The literature

values for hhi show little mutual spatial correlation

(Fig. 6a). However, after calibration, the spatial pat-

terns of hhi correlate reasonably well between all cali-

bration scenarios, except for CalA2 and CalA3. In

scenario A, all discrepancies between simulated and

observed Tb have to be absorbed by hhi, but the un-

calibrated (vegetation) parameters from Lit2 and Lit3

do not allow an optimal hhi estimate. When calibrat-

ing more parameters in scenarios B, C, and D, the hhi
patterns become more consistent across calibration

scenarios, with spatial correlations generally greater

than 0.5.

The spatial patterns of hti are quite strongly corre-

lated without calibration because of the LAI signature.

The patterns become somewhat less coherent after cal-

ibration (C, D), but still agree well. The correlations in

bp (not shown) show positive values between and within

calibration scenarios C and D, but zero or negative

correlation with the lookup table values. Lastly, v also

shows a positive correlation (.0.5) between most cali-

brated scenarios, whereas the resulting pattern is not

correlated with any of the prior constraints. In summary,

the calibrated parameter values show spatial patterns

FIG. 6. Spatial correlation between pairs of prior and/or cali-

brated global parameter fields for (a) time-mean hhi, (b) time-

mean hti, and (c) time-invariant v. Trivially perfect correlations

(identical prior values) or scenarios where the particular parameter

is not calibrated are left blank. Time-mean values are for the cal-

ibration period (1 Jul 2011 to 1 Jul 2012).
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that are not overly tied to the prior parameter patterns

(based on vegetation classes), and the different cali-

bration scenarios tend toward similar spatial patterns.

2) PREFERRED CALIBRATION SCENARIO (CALD2)

The above analysis suggests that calibration scenario

D avoids the situation in which one parameter com-

pensates unrealistically for an uncalibrated and sub-

optimal parameter. Because the Lit2 prior constraint is

in many ways a compromise between Lit1 and Lit3,

and because of the slightly lower bias after calibration

(see section 4d), we select CalD2 as the preferred

scenario. The downside of CalD2 compared to the

other CalD scenarios is the relatively lower sensitivity

of Tb to soil moisture (Fig. 4) and higher bias in stan-

dard deviation (see Fig. 9). This is caused by uncalibrated

positive Nrp values, which effectively decrease the

rough surface reflectivity, increase Tb, and decrease its

variability.

Figure 7 shows literature and calibrated (CalD2)

values for hhi, hti, andv, binned by vegetation class. The
calibrated hhi values are generally higher for forested

areas (IGBP classes ENF, EBF, DNF, ENF, and MXF)

and similar to the values suggested in Lit2. The higher

values may be related to the typically uneven terrain

underlying these less cultivated areas. The higher hhi
may also compensate for a wet bias in CLSM soil

moisture, which may be because there are errors in

CLSM soil parameters or because the SMOS-observed

signal is affected by a drier litter layer that is not simu-

lated by CLSM. For shorter vegetation, the calibrated

hhi values are somewhat higher than for Lit2, which

agrees with Panciera et al. (2009a) and Sabater et al.

(2011), who suggested that the default h values in

L-MEB (cf. Lit2) are low for areas with limited vege-

tation. The calibrated t values distinguish between

higher and lower vegetation, more so than for Lit1, but

less strongly than for Lit2 and Lit3 (Fig. 7). The effective

albedo v assumes values in the range provided in Lit1

for forests, but for low vegetation classes, an increased v

is found that effectively reduces the contribution of

vegetation to Tb.

For reference, Table 3 lists the corresponding aver-

ages and spatial standard deviations of the calibrated

(CalD2) values for the parameters hmin, hmax, bH, and

bV that are underlying the diagnosed hhi and hti values
(Fig. 7), as well as the calibrated v. It is important to

note that the calibrated bp parameter depends on the

source of LAI data and the preset LEWT values. The

bp-parameter will also compensate for water in branches,

which is not necessarily a linear function of LAI. Fur-

thermore, interception is not taken into account. In

a separate experiment (not shown) we found that the

calibrated bp values are slightly lower when interception

water is added to theVWC. The difference between hmin

and hmax is substantial, which corroborates the de-

pendency of h on soil moisture [Eq. (B1)]. However, the

dependency may also result from a mismatch between

the actual soil depth contributing to the emission mea-

sured by SMOS and the assumed constant soil depth

contributing to the simulated Tb (Escorihuela et al.

2010).

Finally, Fig. 8 illustrates t retrievals from SMOS and

estimates from CalD2 for two watersheds in the United

States with different vegetation characteristics. The

calibrated t values roughly match the magnitude of the

retrieved values. However, the retrievals are typically

very noisy, whereas the calibrated t shows a more re-

alistic, smoother seasonal pattern. It should be recog-

nized that the simulated hti is based on a climatological

LAI, that is, the calibrated t values lack interannual

FIG. 7. (a) Time-mean hhi, (b) time-mean hti, and (c) time-

invariant v before calibration (Lit1, Lit2, Lit3) and after calibra-

tion (CalD2), spatially averaged by vegetation class. Thin gray lines

extending above the bars indicate the spatial standard deviation

within each vegetation class. Time-mean values are for the cali-

bration period (1 Jul 2011 to 1 Jul 2012).
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variability by design. At continental scales, the cali-

brated RTM parameters show realistic spatial patterns

that reflect the general vegetation classification, but the

patterns differ from the uniform values for each vege-

tation class that would be obtained from typical lookup

table values (not shown).

3) AGGREGATE PARAMETERS

Although in the previous subsection we presented the

calibrated parameters by vegetation class, we again

emphasize that the local calibration minimizes the bias

at each grid cell individually and that average parameter

values for a vegetation class are not necessarily optimal

for all locations within that class. When we apply the

forward RTM with such aggregated parameter values

based on CalD2, the global average biases are smaller

than for the uncalibrated Lit1, Lit2, and Lit3. However,

the local biases increase substantially compared to

what is obtained with local CalD2 parameters. For

example, the global average absolute bias for the vali-

dation period is 7.1 K when aggregated CalD2 pa-

rameters are used, compared to 2.7 K for local CalD2

parameters [TbH(42.58), Fig. 2i]. In a separate calibra-

tion exercise, we optimized the RTM parameters per

vegetation class, that is, with an additional sum in Jh�i,o
and Js[�],o [Eq. (6)] to include all grid cells within one

vegetation class. In all other respects, this separate

calibration was identical to CalD2. With the resulting

parameters, the global average absolute bias in as-

cending TbH(42.58) is 6.9 K, and the bias pattern is very

similar to what is obtained when we use parameters

that are aggregated by vegetation class (after local

calibration).

Taken together, these results indicate that locations

within the same vegetation class, but with different soil

classes or in different climate zones, may require dif-

ferent RTM parameters. Furthermore, climatological

land cover maps do not necessarily represent the actual

local vegetation conditions, and the effective parame-

ters may compensate for unresolved spatial heteroge-

neity in vegetation. Nevertheless, parameters that have

been aggregated by vegetation class (after local cali-

bration) could serve as good initial estimates in regions

where reliable SMOS observations are not available

for local calibration (because of RFI contamination),

while SMAP observationsmay become available for data

assimilation.

d. Calibration performance

In this subsection we analyze the components of the

objective function and the convergence of the optimi-

zation. Figure 9 shows the global average total objective

function J along with its individual components before

and after calibration; Jh�i,o and Js[�],o are the first and

second terms in Eq. (6) and represents the weighted

mean square difference between the climatological

mean values and standard deviations, respectively. For

all scenarios, the largest component of J is Jh�i,o, followed
by Js[�],o. The smallest contribution is made by the pa-

rameter constraint Ja. The spatial variability of the J

components is large (not shown), especially for the Lit

and A scenarios. Through calibration of hmin and Dh
alone (CalA), a considerable variability in the biases

across the globe persists. When more parameters are

calibrated (CalB, CalC, and CalD), the Jo components

and their spatial variability are reduced further, most so

for Jh�i,o; Js[�],o is less reduced, because the temporal

variability in the Tb simulations is mostly determined by

the land surface conditions, while the RTM parameters

have only a second-order effect on the temporal standard

deviation in simulated Tb. Furthermore, adjusting the

parameters to limit the bias in the mean is not always

optimal for controlling the bias in the standard de-

viation. The reduction in Js[�],o is thus compromised by

the reduction in Jh�i,o (e.g., an increase in h causes

warmer Tb with a reduced temporal variability). As

FIG. 8. Time series of SMOS-retrieved (symbols) and Cal2D

(lines) vegetation opacity t, for the Walnut Gulch CalVal water-

shed in Arizona (black) and the Little River CalVal watershed in

Georgia (gray).

TABLE 3. Average and spatial standard deviation of calibrated

(CalD2) RTM parameters for each IGBP vegetation class.

IGBP

Class average Standard deviation

hmin hmax v bH bV hmin hmax v bH bV

1 ENF 0.81 1.12 0.12 0.19 0.14 0.39 0.39 0.04 0.06 0.06

2 EBF 1.13 1.48 0.09 0.20 0.18 0.46 0.49 0.02 0.09 0.10

3 ENF 0.74 1.00 0.11 0.24 0.16 0.39 0.40 0.02 0.05 0.05

4 DBF 0.87 1.14 0.11 0.22 0.19 0.55 0.62 0.04 0.09 0.10

5 MXF 0.93 1.26 0.11 0.16 0.10 0.38 0.39 0.03 0.06 0.06

6 CSH 0.66 0.93 0.16 0.41 0.38 0.45 0.45 0.10 0.16 0.17

7 OSH 0.68 0.92 0.13 0.38 0.37 0.37 0.37 0.08 0.18 0.19

8 WSV 0.63 0.95 0.15 0.39 0.35 0.53 0.59 0.07 0.12 0.15

9 SAV 0.47 0.89 0.14 0.34 0.31 0.42 0.49 0.09 0.12 0.15

10 GRS 0.35 0.65 0.08 0.32 0.31 0.34 0.42 0.09 0.19 0.21

12 CRP 0.19 0.49 0.12 0.23 0.24 0.25 0.38 0.09 0.13 0.13

14 CRN 0.48 0.94 0.17 0.21 0.21 0.40 0.46 0.07 0.12 0.10

16 BAR 0.20 0.35 0.07 0.08 0.08 0.18 0.15 0.05 0.09 0.10
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expected, the parameter penalty Ja is always smallest,

with Lit2 as prior constraints.

Next, we analyze the convergence of the optimization

algorithm to assess the effectiveness of the PSO algo-

rithm in finding the optimal parameter values. Conver-

gence could reflect the closeness of the swarm’s best

position to the optimum (accuracy) or the contraction of

the initial swarm (some measure of precision). There is

no reason why precision and accuracy would occur to-

gether, that is, a swarm could contract around a local

optimum, or a swarm may be spread all over the search

space with only a single particle reaching an optimum

value (Pedersen and Chipperfield 2010). Here we

roughly approximate the convergence by calculating the

‘‘ensemble’’ spread (standard deviation) (i) across the

25 swarm particles when reaching the optimum or (ii)

across the three optimal particles, obtained from three

repetitions. These measures for ensemble spread could

be interpreted as ad hoc estimates of the parameter

uncertainty, which depend on the choice of PSO pa-

rameters (section 3). An independent parameter un-

certainty assessment using Bayesian techniques (e.g.,

Vrugt et al. 2009) is beyond the scope of this paper and

will be addressed in future research.

Figure 10 shows the global average of the prior and

posterior ensemble parameter spread for three param-

eters calibrated in CalD2. The dashed horizontal line is

the prior parameter spread, which is based on Table 2,

and equal for all grid cells. The black bars show the final

spread per vegetation class after the particle swarm has

contracted during the iterations (within one PSO repe-

tition). The swarm contracts to half its prior spread for

hmin in low vegetation areas and for v in high vegetation

areas. Interestingly, this exactly reflects the importance

of each parameter in more and less vegetated areas, that

is, the soil roughness is arguablymore important in areas

with less vegetation and scattering mainly applies to the

vegetation portion in Eq. (1). The spread for bH also

reduces, by up to half of the prior swarm spread. The Dh
and Db parameters keep a large swarm spread, which

highlights their relatively limited importance, that is,

slightly different values for Dh or Db could yield equally

good results in terms of Tb biases (not shown).

The same conclusions hold for the convergence

measured by the spread in the three repetitions (white

bars in Fig. 10). Note that by analyzing the global av-

erage we mitigate the limitation of having only three

repetitions. The spread across the optimal parameters is

always smaller than the spread across the swarm, be-

cause of the limited amount of repetitions and the ten-

dency to pull the optimal parameter for each repetition

into the same subsearch space. The limited sample size

also causes a larger spatial uncertainty (gray lines) on

FIG. 9. Globally averaged objective function (a) J and (b)–(d)

its components [Eq. (6)] before calibration (Lit) and after cali-

bration (CalA, CalB, CalC, CalD), with prior parameter con-

straints from Lit1, Lit2, and Lit3. Note the different limits on the

vertical axes.
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the uncertainty estimates. We also find that for calibra-

tion scenarios with fewer parameters (CalA, CalB, CalC;

not shown), the spread reducesmore strongly than for the

D scenarios where five parameters are calibrated simul-

taneously: with more parameters there are more options

to get equally good Tb results (equifinality). In general,

the uncertainty estimates in Fig. 10 indicate that the

calibrated parameters are not necessarily unique optimal

values, and that slightly different combinations of pa-

rameter values could result in similarly good results.

5. Conclusions

Azero-order (tau-omega)microwaveRTM is added to

the GEOS-5 CLSM for a global simulation of multi-

angular Tb at the scale of SMOS observations and under

nonfrozen conditions. When contrasting Tb simulations

with literature-based RTM parameters against SMOS

observations, large climatological biases up to;50 K are

found. The tested microwave RTM parameter sets are:

Lit1 proposed for SMAP L2/3 soil moisture products;

Lit2 used in earlier L-MEB research; and Lit3, which is

the same as Lit2 but with Nrp 5 0 and the roughness h5
1.66 as in the ECMWF monitoring for SMOS.

To obtain climatologically unbiased Tb simulations

for a radiance-based soil moisture data assimilation

system, the RTM parameters are calibrated at each in-

dividual location, using the one year (1 July 2011 to

1 July 2012) of observedmultiangular SMOSTb. During

the calibration, we minimize the difference in the cli-

matological mean values and standard deviations be-

tween simulations and SMOS observations at different

incidence angles and both polarizations. The constraint

on the temporal variability indirectly assures a realistic

sensitivity of Tb to soil moisture conditions. An addi-

tional parameter penalty term in the objective function

regularizes the calibration problem. After calibration,

the climatological biases are largely removed [e.g., the

global average absolute bias is 2.7 K for TbH(42.58)] for
all incidence angles. The latter is expected to also hold

true on average for the nonsampled incidence angles,

because the near-linear shape of the angular signature

observed in the SMOSdata has inherently been imposed

onto the simulations after calibration. Residual biases

remain, because of seasonal, diurnal, or persistentmodel

and observation errors, such as, for example, inaccurately

simulated soil moisture or unfiltered RFI.

A number of different calibration scenarios are ex-

plored, with different parameters selected for calibration

and different prior constraints (Lit1, Lit2, and Lit3).

Simulations with the prior parameters reveal under-

estimated roughness h in Lit1 and overestimated rough-

ness for Lit3. When only h is calibrated, the biases are

strongly reduced, but suboptimal parameter estimates are

found, because of compensation for the uncalibrated

vegetation opacity t and scattering albedo v. Inclusion of

these latter parameters in the calibration yields more

optimal parameter sets that result in the lowest global

average Tb biases. However, the parameter convergence

is slightly reduced when more parameters are calibrated.

The spatial patterns of the locally calibrated RTM

parameters are more realistic than the values corre-

sponding to typical lookup tables, and the resulting spa-

tial variability in the parameters facilitates lower local

biases.When theRTM is usedwith calibrated parameters

that are averaged by vegetation classes, the global Tb

biases remain small, but local Tb biases increase [e.g., the

global average absolute bias is 7.1 K for TbH(42.58)].
It is important to note that the calibrated parameters

depend on the specific land surface conditions simulated

by the GEOS-5 system. These effective parameters de-

viate from parameters that have been determined in field

experiments or from parameter calibration at small

scales, probably because of unresolved heterogeneity in

the coarse-scale simulations. Furthermore, calibration of

FIG. 10. Measures of convergence for (a) hmin, (b) bH, and (c) v,

calibrated with CalD2. The dashed line shows the prior assumed

parameter uncertainty. The posterior parameter uncertainty is shown

in averages (bars)61 spatial standard deviation (gray vertical lines)

per vegetation class. The ensemble standard deviation [S(�)] is cal-
culated across the swarm at the end of the PSO iterations (black) and

the three optimal values obtained from three repetitions (white).
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RTM parameters may compensate for local climatologi-

cal biases in simulated soilmoisture, surface temperature,

and vegetation characteristics. A change in any of these

factors would require a recalibration of the system.

Likewise, a change in any module of the RTM itself, such

as, for example, for the dielectric constant, may require

a recalibration in order to keep the Tb simulations un-

biased. Nevertheless, the calibration of the microwave

RTM parameters is a necessary prerequisite for the suc-

cessful application of the modeling system to the assimi-

lation of L-band Tb from SMOS and SMAP.

The calibrated RTM for GEOS-5 is an essential part

of the prototype assimilation system for the generation

of the SMAPL4_SM product. As the SMOS data record

increases through time, the RTM parameters will be

locally recalibrated to fill remaining gaps across the

globe. In the future, the calibration will be conducted at

the finer 9-km model resolution to facilitate the 9-km

SMAP L4_SM analysis product. In areas with in-

sufficient SMOS data to calibrate the RTM parameters

locally, vegetation class–averaged parameters will be

used as an initial guess. The use of SMOS observations

in this approach therefore facilitates the assimilation of

SMAP observations as soon as they become available.
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APPENDIX A

Soil Moisture Evaluation

This section provides a brief comparison of CLSM and

SMOS soil moisture estimates and a validation against in

situ observations. Figure A1 shows the mean difference

(MD), unbiased RMSD (ubRMSD; that is, the RMSD

after removing the mean difference), and correlation

coefficient (R) between SMOS and CLSM soil moisture

estimates averaged by vegetation class. The global av-

erage mean difference is 0.07 m3 m23, with the model

being wetter than SMOS. This bias comes from both the

model and SMOS retrievals: the latter may be slightly

dry, as suggested by initial validation studies (Al Bitar

et al. 2012; Collow et al. 2012; Lacava et al. 2012), and

the model is likely too wet. The ubRMSD is also

;0.07 m3 m23 across the globe. Note that these sta-

tistics only include observed pixels that passed quality

control: for example, only half of the forested area on

the globe is included. Higher correlations are found in

low vegetation areas. The correlation is high across the

United States and negative in the high northern lati-

tudes (not shown). Low correlations between retrievals

and simulations are also found in forested areas and in

the African desert, where errors in the retrievals are

generally larger (de Jeu et al. 2008). The low correla-

tions between SMOS and GEOS-5 may also be due to

a lower quality of model precipitation forcings over

some of these areas.

Further analysis of the CLSM estimates and SMOS

retrievals against ground measurements from four

U.S. Department of Agriculture Agricultural Research

Service watersheds (Jackson et al. 2010) for the year

2010 is summarized in Table A1. These four ‘‘CalVal’’

watersheds include Reynolds Creek (Idaho), Walnut

Gulch (Arizona), Little Washita (Oklahoma), and

Little River (Georgia). The sensor networks in these

areas measure surface soil moisture at the spatially

FIG. A1. Evaluation of GEOS-5 vs SMOS soil moisture: MD,

ubRMSD, and R for both ascending and descending orbits during

1 Jan 2010 to 1 Oct 2012. Statistics are computed at each grid cell

and then averaged by vegetation class.

TABLE A1. Correlation R (–) with 95% confidence interval, bias

(m3 m23; SMOS or model minus CalVal), and unbiased RMSE

[ubRMSE (m3 m23)] for SMOS-retrieved and model-simulated

soil moisture vs CalVal watershed-averaged observations for the

year 2010.

R Bias ubRMSE

Reynolds Creek SMOS 0.61 60.09 20.018 0.048

Model 0.68 60.08 0.073 0.040

Walnut Gulch SMOS 0.72 60.06 0.013 0.043

Model 0.87 60.03 0.058 0.016

Little Washita SMOS 0.75 60.05 0.013 0.047

Model 0.80 60.04 0.026 0.033

Little River SMOS 0.50 60.09 0.080 0.061

Model 0.51 60.09 0.098 0.045
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distributed watershed scale of model and satellite es-

timates and have been verified in extensive field cam-

paigns, thereby limiting the usual scale discrepancies

and other shortcomings of comparisons between model

estimates or satellite retrievals versus measurements

from in situ sensor networks (Jackson et al. 2010; Liu

et al. 2011). The SMOS observations correlate well

(R. 0.7) with in situ observations atWalnut Gulch and

Little Washita. Slightly lower correlations are found

for Reynolds Creek and Little River (R 5 0.61 60.09

and 0.5060.09). The performance for CLSM in terms of

correlation is best at Walnut Gulch (R5 0.8760.03) and

comparable to that of SMOS for the remaining three

watersheds. The bias in the SMOS observations is always

smaller than in the CLSM simulations. In general, CLSM

overestimates soil moisture by 0.05 m3 m23 or more for

various reasons: for example, atWalnutGulch the CLSM

estimates do not account for surface rocks and therefore

appear much wetter than the in situ measurements that

have been corrected for rocks (Cosh et al. 2008).

APPENDIX B

RTM Parameterization

Table 1 summarizes the Lit1, Lit2, and Lit3 values of

the microwave RTM parameters. The parameters that

determine the soil contribution to Tb are h and Nrp. The

values for the microwave soil roughness h differ greatly

across the three sets of literature values. The lower h

values of Lit1 reflect an interpretation of roughness as

actual surface height variations (commonly known as

geometric roughness). In contrast, the higher h values of

Lit3 reflect an effective roughness that accounts for

spatial soil moisture heterogeneity and volume scatter-

ing (Mo and Schmugge 1987; Wigneron et al. 2001;

Merlin et al. 2009). The Lit3 value is calculated as h 5
(2ks)2 5 1.66 (Choudhury et al. 1979), where s (cm) is

the standard deviation of the surface roughness equal to

2.2 cm (Sabater et al. 2011) and k 5 2p/l (cm21) is the

wavenumber, with l the wavelength (cm). The h values

for Lit2 are mainly based on Wigneron et al. (2007) and

range between Lit1 and Lit3.

A multitude of physically based and semiempirical

schemes suggest that h depends on soil moisture, in-

cidence angle, and the model choice for the soil di-

electric constant (Wigneron et al. 2001; de Jeu et al.

2009; Panciera et al. 2009b; Sabater et al. 2011;

Escorihuela et al. 2010). For the parameter calibration,

we include the reported dependence of h on soil mois-

ture [SM (m3 m23)] through a stepwise linear expres-

sion [adapted from the proposed SMOS soil moisture

retrieval algorithm (CESBIO et al. 2011; Kerr et al.

2012)]:

h5

8><
>:
hmax if SM#wt

hmax1
hmin2 hmax

poros2wt
(SM2wt) if wt, SM# poros

, (B1)

where poros (m3 m23) and wt (m3 m23) are the porosity

and transition soil moisture, respectively. The latter is

modeled as wt 5 0.48wp 1 0.165 (Wang and Schmugge

1980) where wp (m3 m23) is the wilting point; hmin is the

value of h for soil moisture at saturation, whereas hmax is

the value of h for soil moisture at or below the transition

soil moisture. In Lit1, Lit2, and Lit3, h does not depend on

soil moisture, that is, h5 hmin 5 hmax. The exponent Nrp
is uniformly set to 0 for both Lit1 and Lit3 (Mo and

Schmugge 1987; Wigneron et al. 2001). However,

polarization-dependent values have been suggested in

more recent studies (Escorihuela et al. 2007; Wigneron

et al. 2007;Grant et al. 2007; Panciera et al. 2009a; Sabater

et al. 2011) and are included in the Lit2 parameter set.

Note that the currently operational SMOS retrieval al-

gorithm uses a similar linear piecewise relationship be-

tween h and soil moisture [Eq. (B1)] for nominal surfaces

(low vegetation and bare soil) using hmin 5 0.05, hmax 5
0.1, and an additional transition point at the field capacity

beyond which h5 hmax. For water bodies, wetland, urban

areas, and ice, h is uniformly set to 0. For forests and

barren areas, h is uniformly set to 0.3.

As shown in Eq. (5), we use LAI and LEWT to

characterize the vegetation opacity. The LEWT values

for Lit1 shown in Table 1 are based on Yilmaz et al. (2008,

and references therein) for different vegetation types.

Note that the SMAPLevel 2 passive soilmoisture products

use the Normalized Difference Vegetation Index (NDVI)

to parameterize t rather than the LAI, so LEWT values

for Lit1were not taken fromO’Neill et al. (2012).A typical

value for vegetation types other than forests is LEWT 5
0.5 kg m22 (Wigneron et al. 2002; Drusch et al. 2009),

which is used in Lit2 and Lit3. For forests we formally set

LEWT 5 1 kg m22. The vegetation structure parameter

bp depends not only on the vegetation type and stage,

but also on the polarization, wavelength (Jackson and

Schmugge 1991), and incidence angle (van de Griend

and Wigneron 2004). In Table 1, we assign time- and
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angle-independent bp values for L band based on Jackson

and O’Neill (1990), Jackson and Schmugge (1991), and

Crow et al. (2005) for Lit1. For Lit2 and Lit3, b values are

based on Pellarin et al. (2003) and deRosnay et al. (2009).

For the calibration, bp depends on the polarization.

The last vegetation-dependent parameter, the scat-

tering albedo vp, typically ranges between 0.05 and 0.12,

but Jackson and O’Neill (1990) and Jackson and

Schmugge (1991) use vp 5 0.0, whereas van de Griend

et al. (1996) also found higher values for L band. Here

we assign a polarization- and angle-independent v. In

Lit1, v depends on vegetation type (Crow et al. 2005),

whereas a uniform v 5 0.05 is used in Lit2 and Lit3

(Drusch et al. 2009; de Rosnay et al. 2009) (Table 1).
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