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ABSTRACT

The efficiency of assimilating near-surface soil moisture retrievals from Advanced Microwave Scanning

Radiometer for Earth Observing System (AMSR-E) observations in a Land Data Assimilation System

(LDAS) is assessed using satellite rainfall forcing and two different satellite rainfall error models: a complex,

multidimensional satellite rainfall error model (SREM2D) and the simpler (control) model (CTRL) used in

the NASA Goddard Earth Observing System Model, version 5 LDAS. For the study domain of Oklahoma,

LDAS soil moisture estimates improve over the satellite retrievals and the open-loop (no assimilation) land

surface model estimates, exhibiting higher daily anomaly correlation coefficients (e.g., 0.36 in the open loop,

0.38 in the AMSR-E, and 0.50 in LDAS for surface soil moisture). The LDAS soil moisture estimates also

match the performance of a benchmark model simulation forced with high-quality radar precipitation.

Compared to using the CTRL rainfall error model in LDAS, using the more complex SREM2D exhibits only

slight improvements in soil moisture estimates.

1. Introduction

Soil moisture is a key variable of the hydrological

cycle and governs water and energy exchanges at the

land–atmosphere interface. Ground-based soil moisture

measurements are sparse, but satellite observations of

microwave brightness temperature and backscatter can

monitor soil moisture at large scales. However, satellite

measurements are sensitive only to the top few centi-

meters of the soil column and are subject to errors due to

sensor limitations and the parameterization of the re-

trieval algorithm. Land surface models, on the other

hand, can provide continuous and spatially distributed

soil moisture estimates, but model estimates are sus-

ceptible to errors in the model forcing, structure, and

parameters. The observational and modeling limitations

can be partially overcome through a Land Data As-

similation System (LDAS) that combines soil moisture

observations with land model estimates to maximize

spatial and temporal coverage, consistency, and accu-

racy (Reichle 2008). This is particularly relevant in the

context of current and planned satellite missions: the

SoilMoisture andOcean Salinity (SMOS)mission (Kerr

et al. 2010), the Soil Moisture Active Passive (SMAP)

mission (Entekhabi et al. 2010), and the Global Pre-

cipitationMeasurement (GPM)mission (Hou et al. 2008).

A key issue of data assimilation is that observational

and modeling uncertainties are poorly known, and in-

correct assumptions about these errors may compromise

LDAS efficiency (Crow and Van Loon 2006). It is thus

crucial to investigate the impact of the error character-

ization on the assimilation of soil moisture observations,

in particular because LDASs often use very simplistic

error models. As rainfall is the dominant meteorological

forcing input to the land surface model for soil moisture
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estimation, a more comprehensive characterization of

rainfall uncertainty may improve soil moisture estimates.

Since soil moisture temporally integrates antecedent

precipitation and is subject to lower and upper limits, the

variability of errors in soil moisture is typically smaller

than that of errors in precipitation. This error variance

relationship is not linear and depends on the error prop-

erties of the rainfall fields (Hossain andAnagnostou 2005).

Maggioni et al. (2011) showed that the use of a complex

error model to characterize the spatial variability of

rainfall errors could better capture soil moisture error

properties. Furthermore, in a synthetic numerical as-

similation experiment, Maggioni et al. (2012) demon-

strated that using the more elaborate rainfall error model

may slightly improve surface and root zone soil moisture

estimates obtained from assimilating soil moisture re-

trievals. This study expands the synthetic experiment of

Maggioni et al. (2012) by evaluating the assimilation of

near-surface soil moisture retrievals from the Advanced

Microwave Scanning Radiometer for Earth Observing

System (AMSR-E). In the following section we discuss

the domain and data used in this study. The models and

methodology used to generate and evaluate the assimi-

lation estimates are described in section 3. Results and

conclusions are discussed in sections 4 and 5.

2. Study region and data

The study domain comprises a 250 km 3 550 km mod-

eling grid with 252 km2 resolution covering Oklahoma,

United States (Fig. 1). The study period is three years,

1 January 2004 to 31 December 2006. Two rainfall prod-

ucts, a radar and a satellite-based rainfall dataset, are used

to force the land surface model along with supplemental

surface meteorological forcing data from the Global

LandDataAssimilation System (GLDAS) project (Rodell

et al. 2004). The radar rainfall dataset is the most accu-

rate available surface rainfall product and is used here

for a benchmark model simulation. It is extracted from

the offline Stage IV National Weather Service Weather

Surveillance Radar-1988 Doppler (hereinafter Stage IV)

precipitation estimation algorithm that involves rain gauge

adjustment and postprocessing of radar data (Fulton

1998). A rainfall climatological parameter derived from

radar rainfall (Maggioni et al. 2012) is shown in Fig. 1.

The rainfall spatial pattern exhibits a west to east gra-

dient, which is used in this study to define wet and dry

climatological regimes. The satellite rainfall is provided

by the NOAA Climate Prediction Center morphing

(CMORPH) product (Joyce et al. 2004), which combines

passive microwave retrievals from low earth-orbiting

satellites and geostationary satellite infrared data. In

this study, CMORPH rainfall fields are adjusted to the

radar rainfall mean climatology to meet the LDAS as-

sumption of unbiased forcing. Climatological bias ad-

justment based on long-term ground observations is now

used by a number of satellite retrievals (Huffman et al.

2007; Xie and Xiong 2011).

The study domain is covered by the Oklahoma Me-

soscale Network (hereinafterMesonet) (Brock et al. 1995),

which is a dense network of meteorological stations

(see Fig. 1) that provide soil moisture measurements at

5-cm-, 25-cm-, 60-cm-, and 75-cm depths every 30 min.

Mesonet measurements at the 60-cm and 75-cm depths

are sparse and of insufficient quality during the study pe-

riod; therefore, only the 5-cm and 25-cm data are used in

this study to provide independent verification of the

model and satellite soil moisture estimates. The satellite

soil moisture estimates are from the AMSR-E Land Pa-

rameterRetrievalModel (LPRM) (Owe et al. 2008), which

uses one dual-polarized channel for the retrieval of surface

soil moisture and vegetation water content. Here we used

FIG. 1.Map of the rainfall climatology parameter (dimensionless), computed at each grid cell

with respect to the 3-yr domain average Stage IV rainfall (Maggioni et al. 2012), overlaid by the

25-km spatial interpolation grid of the study domain and the locations ofMesonet stations. The

black circle highlights the location from which soil moisture time series are shown in Fig. 3.
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retrievals based on X-band (10.7 GHz) brightness tem-

peratures from ascending and descending overpasses.

3. Methodology

The methodology, shown in Fig. 2, follows Maggioni

et al. (2012) with the difference that, in this study, we

used actual satellite soil moisture estimates. Namely, the

NASA Goddard Earth Observing System Model, ver-

sion 5 (GEOS-5) LDAS is used to correct soil moisture

generated by theCatchmentLand SurfaceModel (CLSM)

(Koster et al. 2000) toward AMSR-E soil moisture re-

trievals based on the ensemble Kalman filter (EnKF)

approach (Reichle et al. 2007). The AMSR-E retrievals

were scaled prior to data assimilation so that their cli-

matology matched that of CLSM surface soil moisture.

The EnKF dynamically updates model error covariance

information by producing an ensemble of model pre-

dictions. Each member of the ensemble experiences per-

turbations in the observed forcing fields (representing

forcing errors) and randomly generated noise added to

the prognostic variables (representing model errors).

To study the rainfall error complexity effect on data

assimilation, precipitation forcing error is introduced

using two different rainfall error models: the standard

model currently used as part of the GEOS-5 LDAS

(control model, henceforth CTRL) and the more com-

prehensive two-dimensional satellite rainfall error model

(SREM2D) of Hossain and Anagnostou (2006). Both

error models apply stochastic space–time formulations

to describe the satellite-retrieval error structure. While

CTRL assumes a perfect delineation of rainy and non-

rainy areas by simply scaling the precipitation forcing

with an ensemble of spatially distributed, mean-unity,

lognormal, multiplicative perturbations, SREM2D ex-

plicitly models the joint probability distribution of suc-

cessful delineation of rainy and nonrainy areas. The

result is that SREM2D, unlike CTRL, would introduce

rain in areas where the satellite does not detect rain

(missed rain) or assign zero rain where the satellite re-

trieves rain (false alarms), while nonzero rain rates are

perturbed as in CTRL. SREM2D and CTRL parame-

ters were calibrated to generate replicates of CMORPH

precipitation that stochastically reproduce the overall

variability of the satellite rainfall errors across different

spatial scales (Maggioni et al. 2011). Although in this

study calibration was based on high-quality reference

rainfall from the Stage IV product, application of the

techniques at the global scale may introduce ambiguities

in the calibration of the rainfall error model parameters,

FIG. 2. Schematic of the experimental setup.

370 JOURNAL OF HYDROMETEOROLOGY VOLUME 14



which would cause uncertainty in the estimation of mod-

eling error variance. In the absence of quality ground

validation rainfall data, error model parameters could

be estimated using the Tropical Rainfall Measuring Mis-

sion (TRMM) precipitation radar rainfall fields (Dinku

and Anagnostou 2005).

CTRL and SREM2D are used independently with

CMORPH rainfall estimates to generate precipitation

ensembles. Four experiments are performed: each of

the two satellite rainfall error model ensembles is used

in LDAS without assimilation [open-loop (OL) runs:

OL-CTRLandOL-SREM2D] andwith the assimilation of

AMSR-E soil moisture retrievals [assimilation runs (DA):

DA-CTRL andDA-SREM2D] using a one-dimensional

EnKF (Reichle et al. 2007). The retrieval (observation)

error standard deviation is 0.08 m3 m23 (Liu et al. 2011).

We use 24 ensemble members for each simulation. In ad-

dition, a fifth experiment, labeled ‘‘Stage IV,’’ is performed

by forcing CLSM with Stage IV radar rainfall to obtain

(single member, unperturbed) benchmarkmodel soil mois-

ture estimates (without assimilating AMSR-E retrievals).

For each of the five experiments, the simulated sur-

face (0–2 cm) and root zone (0–100 cm) soil moisture is

compared against Mesonet ground measurements at 5-cm

and 25-cm depth, respectively. The daily anomaly cor-

relation coefficient (ACC) is used as a quantitative

performance metric, where anomalies are defined as

differences between the daily values and the monthly

climatological average values of the 3-yr time series. For

each experiment (OL or DA), the ACC was computed

separately for each grid cell from the (ensemble mean)

simulated soil moisture anomalies and the correspond-

ing Mesonet data. Only time steps and model grid cells

for which satellite observations were assimilated are

included in the computation. For each ACC estimate

a 95% confidence interval is calculated using a Fisher

transformation (Hawkins 1989). Because soil moisture

anomaly time series are autocorrelated, the number of

degrees of freedom is smaller than the number of ob-

servations included in the ACC calculations. We account

for this through the use of an effective sample size defined

asNeff 5N(12 rxry)/(11 rxry), whereN is the number of

samples and rx and ry are the lag-one autocorrelations of

the two time series (Dawdy and Matalas 1964).

4. Results and discussion

Figure 3 shows soil moisture anomaly time series for

1 March 2005 to 31 October 2005 for a single Mesonet

station located at 99.738W, 35.558N (see Fig. 1) and the

corresponding model grid cell. Modeled soil moisture

anomalies are largely consistent with anomalies of ground

observations and satellite retrievals. As expected, DA

(using either CTRL or SREM2D) brings surface soil

moisturemodel predictions closer to the satellite surface

soil moisture observations, which in most cases leads to

better agreement with ground data. For example, during

June 2005, DA estimates of surface soil moisture anom-

alies are closer to the Mesonet anomalies than the OL

predictions. For root zone soil moisture, model soil

moisture anomaly time series are consistent with the

Mesonet time series, with DA exhibiting better agree-

ment than the OL time series (e.g., September 2005).

Notably, DA often performs better than the benchmark

Stage IV simulation at both soil moisture depths. No

significant improvement is detected when SREM2D is

adopted compared to the CTRL rainfall error model.

Next, we quantitatively verify for the entire domain

and experiment period what is qualitatively presented in

Fig. 3 for a single station and a single summer. Figure 4

shows the domain-average ACCs calculated against

Mesonet data and computed from all model grid cells

where both satellite and ground observations were

available, along with 95% confidence intervals. Anomaly

correlation coefficient values are shown to increase sig-

nificantly when assimilating satellite near-surface soil

moisture data. Specifically, for surface soil moisture the

mean ACC increases from 0.36 in the OL simulations to

0.50 in the DA experiments for both rainfall error

models (39% relative improvement due to DA). In the

case of root zone soil moisture, the improvement ob-

tained from DA is slightly lower. Specifically, ACC is

0.35 (0.34) in theOL-CTRL (OL-SREM2D) experiment,

and it increases to a value of 0.44 for both DA experi-

ments, for a relative ACC improvement of 26% (29%)

for CTRL (SREM2D). The increases are significant at

the 5% confidence level (nonoverlapping 95% confi-

dence intervals). These results are consistent with the

findings of Maggioni et al. (2012), who showed signifi-

cantly improved estimates of soil moisture due to the

assimilation of synthetic satellite soil moisture obser-

vations but only slight improvements due to the use

within LDAS of the more complex rainfall error model.

The mean ACC of the AMSR-E retrievals is 0.38,

which is slightly better than the OL performance and

significantly lower than the mean ACC in DA for both

rainfall errormodels (Fig. 4). This indicates the ability of

DA to filter two poorer estimates into a superior soil

moisture estimate. The performance of the DA esti-

mates is comparable to what is obtained by forcing the

model with the most accurate available rainfall product

(i.e., Stage IV). For surface soil moisture, DA exhibits

better ACC values (0.50) than those achieved using the

benchmark simulation (0.45). For root zone soilmoisture,

the meanACC for the Stage IV simulation is 0.44, which

is equal to that of DA-CTRL and DA-SREM2D.

FEBRUARY 2013 MAGG ION I ET AL . 371



Analogously to the study byMaggioni et al. (2012), we

separated the domain into climatologically drier and

wetter areas (negative and positive values shown in Fig. 1)

for additional analysis. The corresponding performance

metrics, also shown in Fig. 4, demonstrate that all sim-

ulations (benchmark, OL, and DA) perform better for

the wetter conditions. In most cases, the difference be-

tween ACCs in the drier and wetter conditions is sta-

tistically significant at the 5% confidence level, as the 95%

confidence intervals are distinct for almost all simulations.

For both surface and root zone soil moisture, the

relative improvement in ACCs due to DA with respect

to the OL simulation is larger in drier conditions. In

particular, for surface soil moisture the relative im-

provement is equal to 44% (47%) under drier condi-

tions and 38% (40%) under wetter conditions when

CTRL (SREM2D) is considered. Analogously, for root

zone soil moisture the ACC relative improvement equals

37% (40%) in drier regimes and 28% (32%) in wetter

regimes for the CTRL (SREM2D) case. It is worth noting

that in all cases SREM2D provides a slightly higher rel-

ative improvement than CTRL, consistent with the find-

ings of the Maggioni et al. (2012) synthetic experiment.

As satellite-based rainfall accumulations are prone to

false positives, especially in arid and semiarid areas (due

to below-cloud evaporation in dry atmospheres and

potential effects of soil wetness on the detection of low

rain rates by microwave techniques), it is encouraging

that SREM2D adds slightly more marginal value in the

drier climatological regime than in the wetter regime.

Future studies should investigate the significance of

these improvements.

Overall, DA improves the performance of the model

in both wetter and drier regions, making it comparable

to the benchmark simulation. When analyzing the rela-

tive improvement due to DA with respect to the bench-

mark Stage IV-forced simulation, for surface soil moisture

the relative improvement is larger in the drier regime,

which is encouraging as model estimates are generally

poorer under this condition: 14% (16%) under drier

FIG. 3. (a),(b) Surface and (c),(d) root zone soil moisture anomalies (m3 m23) calculated for the Mesonet station

located at 99.738W, 35.558N; the Stage IV benchmark simulation; andOL andDA results when the (a),(c) CTRL and

(b),(d) SREM2D rainfall error models are used in LDAS.
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conditions and 9% (7%) under wetter conditions for

DA-CTRL (DA-SREM2D). On the other hand, for root

zone soil moisture we note slight improvement in the

wetter regimes (3% for both rainfall errormodel), whereas

in drier conditions DA exhibits worse performances than

the benchmark run. SREM2D provided slightly better

results than CTRL in this regime.

5. Summary and conclusions

This study investigated the efficiency of assimilating

satellite near-surface soil moisture retrievals into CLSM

with the GEOS-5 LDAS. Specifically, five experiments

were considered: a benchmark simulation forced with

Stage IV radar rainfall and four experiments obtained

by perturbing satellite rainfall fields (i.e., CMORPH)

with two rainfall error models of different complexity:

with and without the assimilation of AMSR-E soil

moisture retrievals. Surface and root zone soil moisture

outputs from each experiment were compared against

Mesonet ground measurements.

Results show that the assimilation of satellite soil

moisture retrievals provides a significant improvement

of surface and root zone soil moisture estimates, indicating

the ability of the model update to propagate to deeper soil

levels. The improvement due to assimilation is apparent

also in comparison to the AMSR-E retrievals themselves;

that is, starting from two poorer estimates of soil moisture,

DA provides a superior estimate. We also note that soil

moisture estimates fromDA exhibited correlations higher

than, or at least as high as, those estimated from themodel

forced with the most accurate rainfall (i.e., Stage IV). The

use of a more complex rainfall error model leads to only

marginally better soil moisture analyses, which suggests

that the simpler rainfall error model may be adequate in

soil moisture data assimilation. Nevertheless, the use of

a more sophisticated error model, such as SREM2D, is

suggested in future land data assimilation studies in order

to provide a more realistic representation of the sources

and nature of errors in precipitation retrievals. Further-

more, comparison of the two error modeling techniques

across various hydroclimatic conditions is needed to pro-

vide a comprehensive understanding about the use of

SREM2D in land data assimilation.

The results are encouraging toward the use of satellite

retrievals (of both soil moisture and precipitation) in

LDAS, especially because of the increasing availability

of satellite soil moisture and rainfall observations from

the Soil Moisture and Ocean Salinity (SMOS), Soil

Moisture Active and Passive (SMAP), and Global Pre-

cipitation Measurement (GPM) missions. In summary,

LDAS driven by satellite observations can greatly ben-

efit soil moisture estimates in areas where ground-based

precipitation observations are sparse and thereby sup-

port, for example, studies of land–atmosphere inter-

actions or seasonal prediction.

Acknowledgments. V. Maggioni was supported by

a NASA Earth System Science Graduate Fellowship.

R. Reichle was supported by the NASA research program

‘‘The Science of Terra and Aqua’’ and the SMAP Science

Definition Team. E.Anagnostouwas supported byNASA

Precipitation Science Team Grant NNX07AE31G. Com-

puting was supported by the NASAHigh End Computing

Program.

REFERENCES

Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J.

Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma

mesonet: A technical overview. J. Atmos. Oceanic Technol.,

12, 5–19.

FIG. 4. Domain-average of daily ACCs (dimensionless) calcu-

lated against Mesonet station observations for (a) surface and

(b) root zone soil moisture with 95% confidence intervals for all

grid cells and binned by dry and wet conditions.

FEBRUARY 2013 MAGG ION I ET AL . 373



Crow, W. T., and E. Van Loon, 2006: Impact of incorrect model

error assumptions on the sequential assimilation of remotely

sensed surface soil moisture. J. Hydrometeor., 7, 421–432.

Dawdy, D., and N. Matalas, 1964: Statistical and probability anal-

ysis of hydrologic data. Part III: Analysis of variance, co-

variance and time series.Handbook of Applied Hydrology: A

Compendium of Water-Resources Technology, McGraw-Hill,

8.68–8.91.

Dinku, T., and E. N. Anagnostou, 2005: Regional differences in

overland rainfall estimation from PR-calibrated TMI algo-

rithm. J. Appl. Meteor., 44, 189–205.

Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active

Passive (SMAP) mission. Proc. IEEE, 98, 704–716.

Fulton, R. A., 1998: WSR-88D polar-to-HRAP mapping. National

Weather Service Hydrologic Research Laboratory Tech.

Memo., 33 pp.

Hawkins, D. L., 1989: Using U statistics to derive the asymptotic

distribution of Fisher’s Z statistic. Amer. Stat., 43, 235–237,

doi:10.2307/2685369.

Hossain, F., and E. N. Anagnostou, 2005: Numerical investigation

of the impact of uncertainties in satellite rainfall estimation

and land surface model parameters on simulation of soil

moisture. Adv. Water Resour., 28, 1336–1350, doi:10.1016/

j.advwatres.2005.03.013.

——, and ——, 2006: A two-dimensional satellite rainfall error

model. IEEE Trans. Geosci. Remote Sens., 44, 1511–1522.
Hou, A. Y., C. Kummerow, G. Skofronick-Jackson, and J. M.

Shepherd, 2008: Global precipitation measurement. Precip-

itation: Advances in Measurement, Estimation and Prediction,

Springer-Verlag, 131–169.

Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite

precipitation analysis (TMPA): Quasi-global, multiyear,

combined-sensor precipitation estimates at fine scales. J. Hy-

drometeor., 8, 38–55.
Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004:

CMORPH: A method that produces global precipitation

estimates from passive microwave and infrared data at high

spatial and temporal resolution. J. Hydrometeor., 5, 487–

503.

Kerr, Y. H., and Coauthors, 2010: The SMOSmission: New tool for

monitoring key elements of the global water cycle. Proc.

IEEE, 98, 666–687, doi:10.1109/JPROC.2010.2043032.

Koster, R. D., J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar,

2000: A catchment-based approach to modeling land surface

processes in a general circulation model: 1. Model structure.

J. Geophys. Res., 105, 24 809–24 822.

Liu, Q., and Coauthors, 2011: The contributions of precipitation

and soil moisture observations to the skill of soil moisture

estimates in a land data assimilation system. J. Hydrometeor.,

12, 750–765.

Maggioni, V., R. H. Reichle, and E. N. Anagnostou, 2011: The

effect of satellite rainfall error modeling on soil moisture

prediction uncertainty. J. Hydrometeor., 12, 413–428.

——, ——, and ——, 2012: The impact of rainfall error charac-

terization on the estimation of soil moisture fields in a land

data assimilation system. J. Hydrometeor., 13, 1107–1118.
Owe, M., R. de Jeu, and T. Holmes, 2008: Multisensor historical

climatology of satellite-derived global land surface moisture.

J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.

Reichle, R. H., 2008: Data assimilation methods in the earth

sciences. Adv. Water Resour., 31, 1411–1418, doi:10.1016/

j.advwatres.2008.01.001.

——, R. D. Koster, P. Liu, S. P. P. Mahanama, E. G. Njoku, and

M. Owe, 2007: Comparison and assimilation of global soil

moisture retrievals from the Advanced Microwave Scanning

Radiometer for the Earth Observing System (AMSRE) and

the Scanning Multichannel Microwave Radiometer (SMMR).

J. Geophys. Res., 112, D09108, doi:10.1029/2006JD008033.

Rodell, M., and Coauthors, 2004: The Global Land Data Assimi-

lation System. Bull. Amer. Meteor. Soc., 85, 381–394.

Xie, P., and A.-Y. Xiong, 2011: A conceptual model for con-

structing high-resolution gauge-satellite merged precipita-

tion analyses. J. Geophys. Res., 116, D21106, doi:10.1029/

2011JD016118.

374 JOURNAL OF HYDROMETEOROLOGY VOLUME 14


