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ABSTRACT

The downwelling shortwave radiation on the earth’s land surface is affected by the terrain characteristics of

slope and aspect. These adjustments, in turn, impact the evolution of snow over such terrain. This article

presents amultiscale evaluation of the impact of terrain-based adjustments to incident shortwave radiation on

snow simulations over twomidlatitude regions using two versions of theNoah land surfacemodel (LSM). The

evaluation is performed by comparing the snow cover simulations against the 500-m Moderate Resolution

Imaging Spectroradiometer (MODIS) snow cover product. The model simulations are evaluated using cat-

egorical measures, such as the probability of detection of ‘‘yes’’ events (PODy), whichmeasure the fraction of

snow cover presence that was correctly simulated, and false alarm ratio (FAR), whichmeasures the fraction of

no-snow events that was incorrectly simulated. The results indicate that the terrain-based correction of ra-

diation leads to systematic improvements in the snow cover estimates in both domains and in both LSM

versions (with roughly 12% overall improvement in PODy and 5% improvement in FAR), with larger im-

provements observed during snow accumulation andmelt periods. Increased contribution to PODy and FAR

improvements is observed over the north- and south-facing slopes, when the overall improvements are

stratified to the four cardinal aspect categories. A two-dimensional discrete Haar wavelet analysis for the two

study areas indicates that the PODy improvements in snow cover estimation drop to below 10% at scales

coarser than 16 km, whereas the FAR improvements are below 10% at scales coarser than 4 km.

1. Introduction

The importance of snow cover estimates for a variety

of hydrologic and water resources applications is well

recognized (Barnett et al. 2005). Through its high albedo

and low thermal conductivity, snow cover exerts strong

influences on land atmosphere energy exchanges and

on the evolution of atmospheric conditions (Cohen and

Entekhabi 1999). The seasonal and interannual variability

of snow cover affects the seasonal freeze and thaw of the

ground and the timing and duration of snowmelt processes.

The snowmelt, in turn, impacts the soil moisture and runoff

fields, which are important for several end-use applications

such as water resources and agricultural management.

Spaceborne sensors have been employed since the

1960s to generate estimates of fractional snow cover
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area (fSCA) and its distribution over continental and

hemispheric scales. Visible and infrared sensors are

typically used to provide measurements of fSCA at high

spatial resolutions such as 250 m (Hall et al. 2002).

These sensors, however, are limited to observing under

cloud-free conditions, introducing significant gaps in the

measurements (Ackerman et al. 1998). Furthermore,

these retrievals are also subject to measurement noise

and errors in retrieval models. Alternatively, land sur-

face models (LSMs) and data assimilation systems are

used to generate estimates of snow conditions. Though

LSMs can be configured to simulate spatially and tem-

porally continuous estimates of snow conditions at the

desired resolutions, they also suffer from uncertainties

in model inputs and in their representation of physical

processes. For example, forcing inputs or the meteoro-

logical boundary conditions for the LSMs are typically

available at coarse spatial resolutions as they are often

prescribed from the outputs of global atmospheric

models. As a result, these inputs must be appropriately

downscaled to finer spatial and temporal resolutions

before employing them for high-resolution snow model

simulations.

Among different meteorological inputs to the LSMs,

the incident radiation from the sun is the primary source

of energy to the snowpack and is modified based on the

slope and aspect of the land surface (Whiteman 2000).

Several snow modeling studies have explored statistical

relationships between snow estimates, meteorological

variables, and topographic features (Evans et al. 1989;

Elder et al. 1998; Winstral et al. 2002; Erickson et al.

2005). In the Northern Hemisphere, north-facing slopes

receive less radiation from the sun during the winter

relative to the south-facing slopes. Over the east- and

west-facing slopes, the terrain influences on the amount

of incident radiation aremostly diurnal adjustments. For

example, the east-facing slopes receive radiation from

the sun in the morning when the air temperatures are

colder, while the west-facing slopes receive sunshine in

the afternoon when the air temperatures are warmer.

These local terrain effects significantly impact the evo-

lution of snow over terrain slopes. These topographic

effects on solar input are generally included only in

distributed models at fine spatial scales (Dozier 1979;

Tarboton et al. 1995; Cline 1997; Luce et al. 1998; Liston

et al. 1999; Liston and Elder 2006; Helbig and Löwe 2012).

In a recent study, Barlage et al. (2010) examined the

effects of terrain-based adjustments to solar radiation

inputs using Noah LSM. This study was focused on

evaluating the modeled snow water equivalent (SWE)

estimates from Noah LSM against in situ and the Snow

DataAssimilation System (SNODAS) analysis products

from the National Operational Hydrologic Remote

Sensing Center (NOHRSC). In their comparisons con-

ducted over a domain in Colorado at 2-km spatial res-

olution, the improvements from terrain corrections were

found to be small. Here we extend this analysis to the

evaluation of snow cover estimates by comparing against

a satellite-based product at 1-km spatial resolution.

Large land surface modeling efforts such as the Global

Land Data Assimilation System (GLDAS; Rodell et al.

2004) and the North American Land Data Assimilation

System (NLDAS; Mitchell et al. 2004) run model simu-

lations at coarser scales, 25 km globally and 12.5 km over

the continental United States, respectively. Similarly,

land data assimilation systems used in operations at the

National Centers for Environmental Prediction (NCEP;

Saha et al. 2010) and at the Air Force Weather Agency

(AFWA) run global land analyses at approximately 38-

km and 25-km resolution, respectively. Furthermore,

these operational centers also run regional domain

simulations at various spatial resolutions (1–25 km) to

initialize the weather forecast models. For these differ-

ent applications, it is beneficial to quantify how the im-

pacts of terrain effects on incident shortwave radiation

and the corresponding improvements in snow simula-

tions translate to the relevant spatial scale. This study

provides a multiscale evaluation of the topographic cor-

rection of shortwave radiation on snow cover simula-

tions to address this objective.

The importance of characterizing the effects of spatial

scale has been an active area of hydrological research

(Gupta et al. 1986; Wood et al. 1990; Sivapalan and

Kalma 1995; Seyfried and Wilcox 1995; Bloschl and

Sivapalan 1995; Wood et al. 1988). The scale impacts for

snow hydrology, in particular, have also been examined

in a number of studies (e.g., Bloschl 1999; Erickson et al.

2005; Trujillo et al. 2009) using techniques ranging from

statistical modeling to analysis methods in the spectral

domain. In this article, we use a scale decomposition

approach using two-dimensional discrete Haar wavelet

analysis to quantify how the improvements in snow

cover simulations through topographic adjustments of

solar input translate to different spatial scales.

Two midlatitude regional domains with complex to-

pography at 1-km spatial resolution over Afghanistan

and Colorado in the United States are chosen as the

study areas. Two versions of the Noah LSM are used to

simulate the fractional snow cover estimates. The sim-

ulations are conducted with and without topographic

adjustments to the input radiation, over three snow

seasons. The simulated snow cover fields are evaluated

against the high-resolution snow covered area product

from the Moderate Resolution Imaging Spectroradi-

ometer (MODIS) optical sensor on the Terra spacecraft.

In addition to evaluating the impact of spatial scales on
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snow cover improvements, a separate analysis is con-

ducted to assess the relative importance of precipitation

inputs and the topographic correction to radiation on

snow cover simulations.

This paper is organized as follows. We first describe

the methodology for applying terrain adjustments to the

downwelling shortwave radiation in section 2. This is

followed by the description of experiments conducted

over two study areas in section 3. Section 4 describes the

evaluation methods and the results, and conclusions are

presented in section 5.

2. Approach

To correct the downward incident surface solar radi-

ation on a flat surface under given atmospheric condi-

tions for terrain slope and orientation (aspect), it is first

separated into direct and diffuse components. The direct

component is able to penetrate through the atmosphere

without getting attenuated by the particulates and clouds.

The diffuse radiation, on the other hand, gets scattered

by gases in the atmosphere. The parameterizations de-

veloped by Goudriaan (1977) and used by Sellers et al.

(1986) for the Simple BiosphereModel (SiB) are used to

partition the incident shortwave radiation (SWY) into

direct (SWdirect) and diffuse (SWdiffuse) components. The

slope-aspect correction is then applied to correct the

SWdirect component. The diffuse component is assumed

to have no directional dependence by the time it reaches

the earth’s surface and no topographical adjustments are

made to it.

The direct component is corrected for terrain based

on slope and aspect (Dingman 2002; Frankenstein and

Koenig 2004). The corrected direct shortwave flux is

computed as

SW0
direct5 SWdirect

�
cos(b)1

sin(u) sin(b) cos(ar)

cos(u)

�
, (1)

where b is the slope of the surface, u is the solar zenith

angle, and ar is the relative aspect defined as the dif-

ference (a 2 ao) between the aspect of the surface a

relative to the north and solar aspect ao relative to the

north. The solar aspect ao is calculated as

ao 5 cos21[sin(L) cos(u)2 sin(d)]

cos(L) sin(u)
, (2)

whereL is the latitude and d is the declination of the sun.

The corrected downward shortwave flux for a sloping

surface is then computed as

SW0Y5 SW0
direct1 SWdiffuse . (3)

As explained in the following sections, land surface

model simulations are conducted with and without the

correction to the downward shortwave flux, and the cor-

responding impacts on the snow cover simulations are

examined.

3. Experiment setup

The influence of terrain aspect for radiation adjust-

ment is most important in the midlatitudes. At the

equatorial regions, all slopes receive the same amount of

radiation, as the sun is nearly overhead throughout dif-

ferent seasons. Over the arctic latitudes, the sun is too

low on the horizon during the winter to provide enough

radiation, whereas during the summer and spring, all

slopes receive radiation of similar intensity when

summed through the long solar days. During the winter

season in the Northern Hemisphere, the amount of in-

cident radiation on the north-facing slopes is less com-

pared to that on the south-facing slopes. These effects

are reversed in the Southern Hemisphere, with south-

facing slopes receiving less radiation than the north-fac-

ing slopes. Here we consider two midlatitude regional

domains in the Northern Hemisphere (Fig. 1) at 1-km

spatial resolution: 1) a domain of 1600 km 3 1200 km

for the Colorado headwater region (CHR) centered

around Colorado and 2) a domain of 1200 km 3 1000 km

over Afghanistan (AFG). The terrain in both simulation

domains is complex, with the elevation ranges from 1000

to 6000 m. In CHR, the western and central parts are

dominated by the mountainous terrain of the Rocky

Mountains, whereas the Hindu Kush and Pamir moun-

tains dominate the northeast parts of the AFG domain.

The LSM simulations are conducted using the Na-

tional Aeronautics and Space Administration (NASA)

Land Information System (LIS; Kumar et al. 2006) with

two versions of the Noah LSM (versions 2.7.1 and 3.1;

Ek et al. 2003), forced with both the corrected and the

uncorrected radiation inputs. Noah includes a single

layer snow submodel, which simulates the physical pro-

cesses of temporally varying snow density and SWE.

The fractional snow cover is then diagnosed from SWE

(Koren et al. 1999; Livneh et al. 2010). The newer version

of the Noah LSM (version 3.1) includes several snow

physics–related enhancements, such as improvements to

snow albedo specification andmodifications to roughness

length in the presence of snow (Barlage et al. 2010). The

use of the different versions of the model also enables

the evaluation of the impacts of these recent changes to

the Noah snow physics. Noah requires the following

meteorological variables as boundary conditions: down-

ward shortwave radiation, downward longwave radia-

tion, near-surface air temperature, near-surface specific
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humidity, surface pressure, wind, and precipitation. The

LSMs are driven with meteorological data from the

Global Data Assimilation System (GDAS), the global

meteorological weather model of NCEP (Derber et al.

1991). In addition, the precipitation inputs for the

model simulations are provided from the National Oce-

anic and Atmospheric Administration (NOAA) Climate

Prediction Center’s (CPC) operational global 2.58 5-day
Merged Analysis of Precipitation (CMAP) (Xie and

Arkin 1997), which is a product that employs blended

satellite (IR and microwave) and gauge observations.

The GDAS modeled precipitation fields are used to dis-

aggregate the CMAP fields spatially and temporally to

match the Noah model simulation resolutions. To in-

vestigate the impact of improved precipitation inputs

on the simulations, the NLDAS Phase 2 (NLDAS-2; Xia

et al. 2011) products are employed in a separate set of

simulations. The LSM simulations use a time step of

30 min and are used to generate estimates of snow con-

ditions (pixel SWE, pixel fSCA, and pixel snowdepth) for

three winter seasons, from 1 November 2007 to 1 May

2010. The model outputs are generated daily at the local

MODIS overpass time [1030 local time (LT)] for each

simulation domain.

The global, high-resolution (30-m resolution) eleva-

tion data from the Shuttle Radar Topography Mission

(SRTM; Rodriguez et al. 2005) are used to derive the

topography datasets of elevation, slope, and aspect at

1-km spatial resolution. These SRTM-based topography

datasets are used to perform the spatial downscaling

of downward shortwave fluxes, using the approach de-

scribed in section 2.

Satellite-based and in situ measurements of snow

conditions are used to evaluate the LSM simulations.

The fractional snow cover extent global 500-m product

[MODIS/Terra Snow Cover Daily L3 Global 500-m

Grid (MOD10A1) version 5] (Hall et al. 2006), based on

an algorithm of Salomonson and Appel (2004), from the

MODIS instrument on the Terra spacecraft is used as

the reference data for evaluating the snow cover simu-

lations. The MOD10A1 product is aggregated (by sim-

ple averaging) to 1-km spatial resolution for enabling

the comparisons presented in this article. In the CHR

domain, in situ measurements of SWE are available

from theNatural Resources Conservation Service (NRCS)

SnowpackTelemetry (SNOTEL)meteorological stations.

We employ these observations to evaluate the SWE fields

from the model simulations.

4. Methods

a. Evaluation of snow cover simulations using
categorical measures

Similar to the strategy followed in Dong and Peters-

Lidard (2010), categorical verification measures are used

to evaluate the snow cover simulations. Using a 2 3 2

contingency table approach (e.g., Painter et al. 2009) and

a prescribed threshold, the snow cover model output and

the MOD10A1 data are converted to a dichotomous

(‘‘yes’’ or ‘‘no’’) form. For example, if the threshold is

defined as 0.1 for fractional snow cover, then all model

fSCA outputs with values .0.1 are categorized as yes

events and all values with ,0.1 are categorized as no

FIG. 1. The two study domains with 1-km terrain elevation as the background: (left) CHR domain and (right) AFG domain. The circles in

the CHR domain represent the locations of the SNOTEL stations.
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events. Similarly, the corresponding observational data

are categorized into yes and no events to complete the

entries of the contingency table, shown in Table 1. Note

that, effectively, a binary form of the MOD10A1 prod-

uct that simply stipulates the presence or absence of

snow is used in the comparisons presented in the article.

TP represents true positives (when both the fSCA from

the model and the observation are above the specified

threshold), TN represents true negatives (when both

fSCA from the model and observation are below the

specified threshold), FN denotes false negatives (where

fSCA from the model and observation are below and

above the specified threshold, respectively), and FP rep-

resents false positives (where fSCA from the model and

observation are above and below the specified thresh-

old, respectively). The appendix describes a number of

categorical skill measures based on the contingency ta-

ble that are used in the analysis (Jolliffe and Stephenson

2012).

We focus primarily on two metrics: 1) the probability

of detection of yes events (PODy), which measures the

fraction of snow cover presence that was correctly sim-

ulated, and 2) false alarm ratio (FAR), which measures

the fraction of no-snow events that was incorrectly sim-

ulated. As MODIS snow estimation over forested do-

mains is known to have problems (Hall and Riggs 2007),

we exclude the comparisons over grid points with forest

cover. Grid points with cloud obscuration are masked

out based on the MODIS cloud mask data product

(MOD35_L2). In the comparisons, the model outputs

are matched to the local overpass time of the satellite

measurements, which is assumed to be at 1030 LT in

each domain. Note that all categorical metrics are com-

puted separately for each grid point in the domain,

though the following sections primarily focus on the

presentation of domain averages. The number of pixels

used to calculate the metric values depends on the

number of available MODIS snow cover pixels. For the

AFG and CHR domains, roughly 15% and 40%, re-

spectively, of the domain has cloud-free observations.

To reduce the statistical artifacts of the number of

sampled points in computing domain averages, we ap-

plied a minimum threshold of available grid points to

be 10% and 20% of the total domain for AFG and

CHR, respectively, for determining valid estimates of

performance metrics.

To quantify the improvements due to the topographic

correction, we define a ‘‘Delta metric’’ as the difference

between the metric values of the model simulations

with and without topographic correction. An improved

model should increase POD and decrease the FAR. For

the PODy, ‘‘DeltaPODy’’ is defined as the PODy of the

integration with correction minus the PODy of the in-

tegration without correction. For FAR, ‘‘DeltaFAR’’ is

defined as the FAR of the simulation without correction

minus the FAR of the simulation with correction. As a

result, if the topographic correction improves the metric

(increases PODy and reduces FAR), then DeltaPODy

and DeltaFARwill be positive. On the other hand, Delta

metrics will be negative if the topographic correction

degrades the snow cover estimates.

b. Scale decomposition analysis of improvements in
snow cover simulation

The intensity-scale approach of Casati et al. (2004),

originally developed for the spatial verification of pre-

cipitation forecasts, is used to perform the scale de-

composition of the snow cover improvement fields for

PODy and FAR. Using a predefined threshold, the

PODy and FAR fields from the corrected (C) and un-

corrected (UC) simulations are converted into binary

fields, IC and IUC, respectively. In the comparisons

presented here, a threshold value of 0.1 was used. The

difference between these intensity fields is then defined

as the binary error field (Z 5 IC 2 IUC).

A two-dimensional Haar wavelet decomposition is

performed to decompose the binary error field into the

sum of components at different spatial scales, which are

orthogonal (Mallat 1989). As the algorithm computes

successive decompositions by the powers of 2, the size of

the initial binary field must also be a power of 2. The

binary field Z (defined at 1 km in this instance) is first

converted into a field of 2L 3 2L grid points by padding

the domain with fill data to the nearest dimension of

2L. In these comparisons, zeroes are used to pad the

domain. Applying the Haar wavelet filter decomposes

this binary field into ‘‘father’’ and ‘‘mother’’ wavelet

components, representing the coarser mean field and

the variation-about-the-mean fields, respectively (at

2-km spatial resolution). The father wavelet compo-

nent is further decomposed into a coarser (4-km res-

olution) field by applying the Haar wavelet transform.

This process is repeated L times, generating father

and mother wavelet components at each step. The

binary field Z can be expressed as the sum of the

mother wavelet components at the spatial scales l 5
1, . . . , L.

TABLE 1. The 2 3 2 contingency table used to define the skill

measures.

Model output

fSCA .
Threshold

fSCA #

Threshold

MOD10A1
fSCA . Threshold TP FN

fSCA # Threshold FP TN
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In the intensity-scale verification method proposed by

Casati et al. (2004), the mean squared error (MSE) of

the binary field is computed at each spatial scale, as the

average of the squared differences over all the grid

points in the domain. The MSE of the binary field is

equal to

MSE5 �
L

l51

MSEl , (4)

where MSEl 5Z2
l is the MSE of the lth spatial scale

component of the binary field.

5. Results

a. Evaluation of snow cover simulations using
categorical measures

Figure 2 shows the time series of domain-averaged

DeltaPODy and DeltaFAR for both AFG and CHR do-

mains. The Delta values are computed using the weekly

average of daily PODy and FAR values. In this com-

parison, a detection threshold of 0.8 is used to compute

the PODy and FAR values. For example, a correct

simulation of fSCA is assumed when both model and

observations indicate fSCA values above 0.8. Sensitivity

of the results to other threshold values was also exam-

ined and is described below. Figure 2 indicates that the

Delta metric is generally positive throughout the 3-yr

simulation time period, suggesting that the topographic

correction to shortwave radiation translates to system-

atic improvements in the snow cover simulations. The

observed improvement trends are similar in both ver-

sions of Noah, which suggest that the improvements to

snow cover simulation through topographic adjustments

are retained as added enhancements on top of the newer

physics. The terrain-based correction of radiation pro-

vides the most improvements in snow cover simulations

during the snow accumulation and melt periods. The

improvements in PODy and FAR for the three snow

seasons are compared here to demonstrate that the to-

pographic adjustments to radiation lead to systematic

FIG. 2. Time series of the DeltaPODy [PODy(C) 2 PODy(UC)] and DeltaFAR [FAR (UC) 2 FAR(C)] of snow cover from the LSM

simulations compared against MOD10A1: (top) AFG domain and (bottom) CHR domain.
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improvements in snow cover fields, irrespective of the

interannual variations in the snow cover estimates.

Figure 3 shows the performance of the model simu-

lations in the receiver operating characteristic (ROC)

space when different threshold values are used to com-

pute the contingency-table-based metrics. ROC space is

used to compare the true positive rate (PODy) against

false positive rate (POFD). The threshold values used to

compute the metrics are varied from 0.1 to 0.9, and the

resulting pairs of PODy and POFD values are plotted in

the ROC space. The predictions close to the upper-left

corner (0, 1) of the ROC space represent a small number

of false negatives and a high number of true positives.

The diagonal and lower triangular regions of the ROC

space represent areas with no skill and worse skill, re-

spectively. As seen in Fig. 3, all model simulations are in

the upper-left corner, indicating high skills in snow cover

simulations. The topographic correction further pushes

these pairs closer to the (0, 1) corner, representing the

added improvement from topographic correction on

snow cover simulations. These trends are observed in

both AFG and CHR domains, for both LSMs, with the

contrast between the corrected and uncorrected set of

points more distinct in the AFG domain results. More

importantly, the ROC space in Fig. 3 also demonstrates

that skill improvements are obtained regardless of the

chosen threshold value, though we use the value of 0.8

for describing most of the results in this manuscript.

The improvements in PODy and FAR stratified to the

four cardinal aspect categories in each domain are

shown in Fig. 4. The figure indicates that improvements

in both PODy and FAR are obtained in all four aspect

categories. As might be expected, the improvements in

PODy are more prominent over the north-facing slopes

in both domains, whereas the improvements in FAR are

more prominent over the south-facing slopes. The effect

of the terrain-based adjustments is to reduce the amount

FIG. 3. Comparison of the influence of different detection

thresholds in evaluating modeled snow cover estimates. The plot-

ted points in the ROC space characterize the tradeoffs between

POFD and PODy when different detection thresholds are used

to compute the metrics: (top) AFG domain and (bottom) CHR

domains.

FIG. 4. The improvements in (top) PODy and (bottom) FAR

stratified by the four cardinal aspect directions for both study re-

gions and two land surface models, Noah version 2.7.1 (N271) and

Noah version 3.1 (N31).
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of incident radiation on the north-facing slopes. As

a result, the amount of snowmelt (over the north-facing

slopes) in the corrected simulations will be less, leading

to higher PODy values. Conversely, the terrain-based

correction increases the amount of incident radiation on

the south-facing slopes, leading to more snowmelt. This,

in turn, leads to reducing the FAR estimates. These

characteristics are seen in the improvement trends in

Fig. 4, which show higher contribution to DeltaPODy

values from the north-facing slopes and higher contri-

bution to DeltaFAR values from the south-facing slopes.

In the AFG domain, the percentage of west-facing slopes

is higher, whereas the percentage of east-facing slopes is

higher in the CHR domain. The larger number of grid

points in these aspect categories contributes to the cor-

responding increased contribution to PODy and FAR

improvement values for these categories (Fig. 4).

Table 2 presents the domain-averaged statistics of

various categorical measures from the suite of simula-

tions (using a detection threshold of 0.8) for both mod-

eling domains across the 3-yr analysis period. The table

also lists the associated 95% confidence intervals asso-

ciated with each metric. Note that any spatial autocor-

relation of the skill values across the domain is ignored

in computing these confidence intervals. The intervals

reported here are likely to be larger if allowance for

spatial autocorrelation of errors is included in the con-

fidence interval computations. Except in the case of the

POFD metric for the CHR domain (where there is a

marginal degradation), topographic correction provides

improvements across all evaluation metrics, for both

LSMs. The improvements in snow cover detection are

confirmed by the increase in PODy and reduction in FAR

and POFD. The improvement in accuracy is demon-

strated by the increase in values of accuracy measure

(ACC), critical success index (CSI) and equitable threat

score (ETS) metrics. Generally, Noah 2.7.1’s perfor-

mance is better than that of Noah 3.1 over AFG, but

over CHR Noah 3.1 simulations are improved over

Noah 2.7.1, consistent with the findings of Barlage et al.

(2010) and Livneh et al. (2010). Nevertheless, the to-

pographic correction of radiation provides improve-

ments in both LSM versions. Further, all improvement

trends are observed to be statistically significant. Note

that these summary statistics are computed across the

whole domain and across the whole 3-yr simulation pe-

riod. As most of the improvements due to topographic

correction occur during the accumulation and melt pe-

riods (Fig. 2), the summary statistics in Table 2 are re-

computed by excluding the peak winter months of

December, January, and February and are shown in

Table 3. The improvements in snow cover simulations are

more magnified if the analysis is restricted to transient

snow periods. For example, over Afghanistan there is an

overall 13% improvement in PODy and 6.4% improve-

ment in FAR for Noah 2.7.1. For the same LSM and

domain, these improvements increase to 40.2% in PODy

and 14% in FAR, if only the transient snow periods

are considered. Similar trends can be observed in other

metrics in Tables 2 and 3, providing further confirmation

that the topographic adjustments to radiation are more

beneficial during the accumulation and melt periods.

TABLE 2. Domain-averaged skill metrics (all with 95% confidence intervals) for both AFG and CHR domains. The percent change is

computed by subtracting the corrected column from the uncorrected column.

Afghanistan

Noah 2.7.1 Noah 3.1

Uncorrected Corrected Change (%) Uncorrected Corrected Change (%)

PODy 0.700 61 3 1023 0.791 61 3 1023 13.0 0.697 61 3 1023 0.773 61 3 1023 10.9

FAR 0.202 61 3 1023 0.189 61 3 1023 26.4 0.209 61 3 1023 0.198 61 3 1023 25.2

POFD 0.131 65 3 1024 0.108 65 3 1024 217.5 0.134 65 3 1024 0.113 65 3 1024 215.7

ACC 0.793 65 3 1024 0.821 65 3 1024 3.5 0.790 65 3 1024 0.813 65 3 1024 2.9

CSI 0.581 68 3 1024 0.630 68 3 1024 8.4 0.572 67 3 1024 0.615 67 3 1024 7.5

ETS 0.371 61 3 1023 0.429 61 3 1023 15.6 0.365 61 3 1023 0.411 61 3 1023 12.6

Colorado headwater region

Noah 2.7.1 Noah 3.1

Uncorrected Corrected Change (%) Uncorrected Corrected Change (%)

PODy 0.354 61 3 1023 0.398 61 3 1023 12.4 0.372 61 3 1023 0.411 61 3 1023 10.5

FAR 0.233 61 3 1023 0.224 61 3 1023 23.9 0.298 61 3 1023 0.284 61 3 1023 24.7

POFD 0.017 61 3 1024 0.018 61 3 1024 5.9 0.019 61 3 1024 0.020 61 3 1024 5.3

ACC 0.880 61 3 1024 0.883 61 3 1024 0.3 0.878 61 3 1024 0.880 61 3 1024 0.2

CSI 0.143 63 3 1024 0.144 63 3 1024 0.7 0.109 63 3 1024 0.110 63 3 1024 0.9

ETS 0.035 61 3 1024 0.036 61 3 1024 2.9 0.034 61 3 1024 0.037 61 3 1024 8.8
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In addition to the evaluation of snow cover estimates,

in situ measurements of snow conditions are used to

evaluate the modeled SWE estimates. The summary of

the evaluation of the SWE fields from the model simu-

lations against in situ measurements is presented in

Table 4. The SNOTEL stations in the CHR domain are

chosen such that they are located over pixels with large

slopes (and not over flat terrain), where the topographic

correction would affect the incident solar radiation. The

locations of the stations are shown in Fig. 1. Table 4

presents the domain-averaged RMSE and bias errors

from different model simulations compared against

these in situ measurements, along with the associated

95% confidence intervals. The errors in the SWE esti-

mates are large, possibly because of the representa-

tiveness errors introduced by the coarse forcing inputs

and the spatial resolution of the modeling domain.

Nevertheless, statistically significant and systematic re-

duction in RMSE and bias errors are observed in the

modeled SWE fields as a result of the terrain-based

correction of radiation. These trends confirm that the

terrain-based correction of radiation helps in not only

improving snow cover simulations, but also in improv-

ing the SWE estimates. The snow depth measurements

fromNOAA’s Cooperative Observer Program (COOP)

(Quayle et al. 1991) stations were also used to evaluate

themodeled snow depth fields. The trends in snow depth

fields were found to be statistically insignificant, as a re-

sult of the lack of adequate sampling density in the

measurements from the available COOP stations. As

a result, these comparisons are not shown. Table 4 also

indicates that there is only a marginal improvement in

the Noah 3.1 SWE simulation compared to the Noah

2.7.1 estimates, and these trends are not statistically

significant. In this instance, the improvements in SWE

simulations from topographic adjustments to solar in-

puts are more significant than the improvements due to

model physics changes.

b. Scale decomposition analysis of improvements
in snow cover simulation

To analyze how the improvements in snow cover es-

timates obtained at 1 km translate to other spatial res-

olutions, we apply the scale decomposition analysis. For

simplicity, we limit the analysis to the DeltaPODy and

DeltaFARmetrics only. Using the approach mentioned

in section 4, the two-dimensional Haar wavelet de-

composition is used to decompose the 1-km fields of

DeltaPODy and DeltaFAR to sum the components at

different spatial scales (at 2, 4, 8, 16, up to 1024 km). The

mean squared error of the binary fields at each spatial

scale is computed and the percentage contribution of

each spatial scale to the total improvement is computed

as (MSEl 3 100)/MSE, for l 5 1, . . . , L, with L being

9 (29 5 1024).

TABLE 3. As in Table 2, but stratified for the transient snow periods.

Afghanistan

Noah 2.7.1 Noah 3.1

Uncorrected Corrected Change (%) Uncorrected Corrected Change (%)

PODy 0.485 62 3 1023 0.680 62 3 1023 40.2 0.541 62 3 1023 0.691 61 3 1023 27.7

FAR 0.243 62 3 1023 0.209 62 3 1023 214.0 0.231 61 3 1023 0.199 61 3 1023 213.8

POFD 0.092 65 3 1024 0.075 65 3 1024 218.5 0.101 65 3 1024 0.085 65 3 1024 215.8

ACC 0.800 67 3 1024 0.830 67 3 1024 3.8 0.809 65 3 1024 0.830 65 3 1024 2.6

CSI 0.292 61 3 1023 0.359 61 3 1023 22.9 0.326 61 3 1023 0.379 61 3 1023 16.3

ETS 0.126 61 3 1023 0.181 61 3 1023 43.7 0.145 61 3 1023 0.189 61 3 1023 30.3

Colorado headwater region

Noah 2.7.1 Noah 3.1

Uncorrected Corrected Change (%) Uncorrected Corrected Change (%)

PODy 0.181 61 3 1023 0.285 62 3 1023 57.5 0.246 61 3 1023 0.389 62 3 1023 58.1

FAR 0.173 61 3 1023 0.153 61 3 1023 211.6 0.176 63 3 1023 0.162 62 3 1023 28.0

POFD 0.003 61 3 1024 0.003 61 3 1024 0.0 0.006 64 3 1025 0.006 64 3 1025 0.0

ACC 0.943 61 3 1024 0.946 61 3 1024 0.30 0.946 61 3 1024 0.950 61 3 1024 0.40

CSI 0.049 62 3 1024 0.052 62 3 1024 6.1 0.071 63 3 1024 0.078 63 3 1024 9.9

ETS 0.005 61 3 1024 0.007 61 3 1024 40.0 0.017 61 3 1024 0.021 61 3 1024 23.5

TABLE 4. Domain-averaged error metrics (all with 95% confi-

dence intervals) for the CHR domain compared against in situ

SNOTEL SWE measurements.

Noah 2.7.1 Noah 3.1

Uncorrected Corrected Uncorrected Corrected

RMSE (mm) 276 618 248 618 269 618 246 620

Bias (mm) 2188 613 2163 613 2183 613 2160 615
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Figure 5 shows the result of scale decomposition of the

total improvement fields for PODy and FAR for both

domains using the two land surface models. The bars in

the figure present the percentage contribution of each

scale to the total improvement. The trends in scale de-

composition of DeltaPODy and DeltaFAR fields are

similar across both LSMs and the two domains. As ex-

pected, most of the improvements in PODy and FAR

are provided by the fine scales, and it decreases rapidly

at coarser scales. Approximately 30% of the improve-

ments in PODy and 50% of the improvements in FAR

are a function of the 1-km scale alone. At resolutions

coarser than 16 km, the percentage contribution of the

scale drops to below 10% for PODy. For FAR, the

contribution of the spatial scale is largely limited to

resolutions 4 km and finer. This result provides an in-

dicator of the spatial scale at which improvements can

be expected as a result of topographic correction to ra-

diation. For example, land surface modeling domains

such as NLDAS, which use a spatial resolution of 12.5 km,

should include the topographic adjustments to radiation,

as the expected PODy improvements in snow cover

simulation are above 10%.

c. Evaluation of the relative influence of precipitation

As seen in Fig. 2, the trends in the improvements of

PODy and FAR indicate significant interannual vari-

ability. These variations can be caused by several fac-

tors, including the interannual variability in the forcing

meteorology. Since precipitation is a key input that

affects the evolution of snow fields, here we investigate

its relative influence on the improvement trends of cat-

egorical metrics using the factor separation analysis of

Stein and Alpert (1993).

To assess the sensitivity of snow cover estimates to

precipitation, a set of additional model simulations is

conducted over the CHR domain by changing the pre-

cipitation input to the NLDAS-2 (Xia et al. 2011) data

but keeping all other meteorological inputs same as

those described in section 3. As above, model simula-

tions are conducted using both versions of the Noah

LSM, with and without the topographic correction of

radiation. These sets of experiments allow the inves-

tigation of the sensitivity of three factors contributing

to the snow evolution: 1) influence of precipitation,

2) influence of topographic correction to radiation, and

3) the joint influence of precipitation and topographic

correction to radiation. Table 5 presents the setup of

experiments conducted with each LSM. The categorical

metric values (e.g., PODy and FAR) are computed for

each experiment, and the corresponding contribution

factors ( f1, f 2, and f12) are computed.

Figure 6 presents the results of the factor separation

analysis for both versions of the Noah LSM. The results

indicate that the influence of precipitation (factor f1) is

most significant across all of the evaluation metrics and

that the contribution due to topographic correction of

radiation (factor f 2) is smaller compared to the pre-

cipitation influence. Finally, the influence of the joint

influence term (factor f12) is also small in all evaluation

metrics. The NLDAS precipitation is generally consid-

ered to be a higher-quality product compared to CMAP

(Matsui et al. 2010). The NLDAS-2 precipitation over

the continental United States uses monthly Parameter-

Elevation Regressions on Independent Slopes Model

(PRISM) (Daly et al. 1994) adjustments for orographic

precipitation impacts. This analysis suggests that the

FIG. 5. Percentage contribution to the total improvements in

PODy and FAR at different spatial scales generated by a two-

dimensional discrete Haar wavelet analysis: (top) AFG domain

and (bottom) CHR domain.

TABLE 5. Structure of experiments for the factor separation analysis

and the definition of contribution factors.

Factor

Precipitation

forcing

Topographic

correction

F0 CMAP No

F1 CMAP Yes

F2 NLDAS No

F12 NLDAS Yes

Difference Represents

f1 5 F1 2 F0 Contribution of topographic

correction

f 2 5 F2 2 F0 Contribution of precipitation

f125 F122 (F11 F2)1 F0 Contribution of the joint

influence of topographic

correction and precipitation
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improvements in snow cover simulations obtained with

the use of a more accurate precipitation input has a

greater impact than the topographic correction of radi-

ation on snow cover simulations. Nevertheless, in areas

such as Afghanistan where high-quality precipitation

inputs are not typically available, the terrain-based ad-

justments to radiation can be a viable approach for

generating improvements in snow cover estimates.

6. Summary

This article presents a multiscale evaluation of the

impact of terrain-based correction of shortwave radia-

tion on snow simulations. The evaluation is performed

over two midlatitude domains at 1-km spatial resolution

near Afghanistan and the Colorado headwater region

using two versions of the Noah land surface model. The

snow cover simulations are evaluated by comparing

them against the snow cover observations fromMODIS.

The evaluations indicate systematic improvements in

snow cover estimates in both LSMs, with increased

PODy and reduced FAR in the simulations that employ

terrain-corrected shortwave radiation inputs. The im-

provements to PODy and FAR are more significant

during the snow accumulation and melt periods; the

improvements are consistently observed when different

detection thresholds are used to compute the evaluation

metrics.

The terrain-based correction to the shortwave radia-

tion adjusts the downwelling radiation by reducing the

incident amount over north-facing slopes, increasing the

incident amount over south-facing slopes, and causing

diurnal adjustments over east- and west-facing slopes.

Improvements in snow cover estimates were observed in

all four cardinal slope directions as a result of the radi-

ation adjustments. More improvements for PODy and

FAR are observed over the north- and south-facing

slopes, respectively. Similar trends confirming the posi-

tive impact of terrain-based correction of shortwave ra-

diation are observed when accuracy measures such as

critical success index and equitable threat scores are

used to evaluate the simulations. Finally, the compari-

son of the modeled SWE fields against in situ SNOTEL

observations further confirms that the terrain-based ad-

justments to radiation also translate to systematic, sta-

tistically significant improvements to the simulated SWE

fields.

To understand how the improvements in snow cover

simulations from terrain-based correction of radiation

translate at other spatial scales, a two-dimensional dis-

crete Haar wavelet analysis is conducted. The analysis

separates the improvement field at 1 km into orthogonal

subcomponents at coarser scales. For both domains, the

contribution of the scale to PODy improvement falls

below 10% at resolutions coarser than 16 km. For FAR,

at resolutions coarser than 4 km, the contribution to the

total improvement is less than 10%. Therefore, one can

conclude from this analysis that land surface modeling

domains with a horizontal spatial resolution of 16 km or

finer over midlatitudes (e.g., NLDAS) should include

topographic adjustments to radiation. To assess the rel-

ative influence of precipitation in the interannual varia-

tions, sensitivity experiments are conducted by using

precipitation data from the NLDAS-2 project to force

the LSMs over the CHR domain. A factor separation

analysis conducted to quantify the relative influence of

topographic correction and precipitation indicates the

stronger influence of precipitation inputs in the snow

estimates.
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APPENDIX

Definition of Categorical Skill Measures

Probability of detection of yes events (PODy) is

PODy5
TP

TP1FN
. (A1)

PODy measures the fraction of observed events that

were correctly predicted by the model. PODy ranges

from 0 to 1 with a perfect simulation having a value of 1.

False alarm ratio (FAR) is

FAR5
FP

TP1FP
. (A2)

FAR measures the fraction of model predictions that

were observed to be nonevents. The range of FAR is

from 0 to 1, with 0 being the desired value.

Probability of false detection (POFD) is

POFD5
FP

TN1FP
. (A3)

POFD measures the fraction of false alarms given the

event did not occur. Similar to FAR, the range of POFD

is from 0 to 1, with a perfect simulation having a value

of 0.

Accuracy measure (ACC) is

ACC5
TP1TN

TP1FP1FN1TN
. (A4)

ACC measures the fraction of events that were either

true positives or true negatives. Its value ranges from

0 to 1,with a perfect simulation having anACCvalue of 1.

Critical success index (CSI) is

CSI5
TP

TP1FP1FN
. (A5)

CSI defines the ratio of the number of times the ob-

served event was correctly simulated to the number of

times it was either simulated or observed. ACSI value of

1 indicates perfect model output. CSI accounts for both

false alarms and missed events.

Equitable threat score (ETS) is

ETS5
TP2C

TP1FP1FN2C
, (A6)

where

C5
(TP1FP)(TP1FN)

TP1FP1FN1TN
. (A7)

ETS is a modified form of the CSI metric, corrected for

the true positives that would be expected by chance. A

perfect simulation will have an ETS value of 1.
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