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ABSTRACT

This study evaluates the performances of seven single-column models (SCMs) by comparing simulated

surface precipitation with observations at theAtmospheric RadiationMeasurement Program SouthernGreat

Plains (SGP) site from January 1999 toDecember 2001. Results show that althoughmost SCMs can reproduce

the observed precipitation reasonably well, there are significant and interesting differences in their details. In

the cold season, the model–observation differences in the frequency andmean intensity of rain events tend to

compensate each other for most SCMs. In the warm season, most SCMs produce more rain events in daytime

than in nighttime, whereas the observations have more rain events in nighttime. The mean intensities of rain

events in these SCMs are much stronger in daytime, but weaker in nighttime, than the observations. The

higher frequency of rain events during warm-season daytime in most SCMs is related to the fact that most

SCMs produce a spurious precipitation peak around the regime of weak vertical motions but rich in moisture

content. The models also show distinct biases between nighttime and daytime in simulating significant rain

events. In nighttime, all the SCMs have a lower frequency of moderate-to-strong rain events than the ob-

servations for both seasons. In daytime, most SCMs have a higher frequency of moderate-to-strong rain

events than the observations, especially in the warm season. Further analysis reveals distinct meteorological

backgrounds for large underestimation and overestimation events. The former occur in the strong ascending

regimes with negative low-level horizontal heat and moisture advection, whereas the latter occur in the weak

or moderate ascending regimes with positive low-level horizontal heat and moisture advection.

1. Introduction

Precipitation is one of the most poorly parameterized

physical processes in numerical weather prediction and

general circulation models (GCMs). While the double

intertropical convergence zone (ITCZ) phenomenon is

probably the most outstanding problem confronting

GCMs for properly simulating precipitation climatology

(Lin 2007), there are long-standing challenges for GCMs

to simulate precipitation features as fundamental as the

diurnal variation, and the frequency and intensity asso-

ciated with individual weather systems. For example,

most GCMs exhibit substantial biases in simulating the

diurnal cycle of warm-season precipitation, producing

too much precipitation in daytime but too little precip-

itation in nighttime over land, and wrong timing of con-

vective precipitation events in general (e.g., Ghan et al.

1996; Dai 2006; Lee et al. 2007; Lee and Schubert 2008).

It is also common thatmodels substantially overestimate

the frequency of light precipitation and underestimate

the intensity and/or frequency of heavy precipitation

(e.g., Dai and Trenberth 2004; Sun et al. 2006). Even
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without considering the inevitable influence on the at-

mospheric circulation, the sheer bias in simulating the

probability distribution of precipitation should cast doubt

on the model’s capability to predict high-impact hydro-

logical events.

One of the difficulties with modeling precipitation

stems from the fact that in addition to large-scale circu-

lation, precipitation is affected by a variety of complex

processes that need to be parameterized in large-scale

models, for example, deep convection, planetary bound-

ary layer processes, and cloud microphysics (Dai 2006). It

is not trivial to identify deficient aspects of the parame-

terizations, andmany approaches have been proposed for

this purpose. One of the commonly used approaches is to

performand evaluate simulations of corresponding single-

column models (SCMs) driven by the same large-scale

forcing (e.g., Randall et al. 2003; Neggers et al. 2012).

The SCM approach is also a key strategy of the U.S.

Department of Energy’s Atmospheric Radiation Mea-

surement (ARM) and Atmospheric System Research

(ASR) programs (Stokes and Schwartz 1994; Ackerman

and Stokes 2003). ARM organized several SCM inter-

comparisons using surface observations at the ARM

sites. However, most of the previous studies have been

focused on special cases, or week-to-month-long periods

(e.g., Ghan et al. 2000; Xie et al. 2002, 2005). The scopes

of such studies are often limited by the availability of

large-scale forcing needed to drive the SCM simulations.

Xie et al. (2004) have constructed multiyear (1999–

2001) continuous large-scale forcing data over the

Southern Great Plains (SGP) site using an objective

variational analysis method constrained by surface and

top-of-the-atmosphere (TOA) observations. Together

with other observations, the multiyear continuous large-

scale forcing data permit long-term SCM-based evalua-

tion of the parameterized physics with much improved

statistics. Kennedy et al. (2010) have lately evaluated

the Goddard Institute for Space Studies (GISS) SCM-

simulated clouds by taking advantage of the 3-yr large-

scale forcing data. Driven by these observationally

constrained continuous large-scale forcing data, we have

further carried out 3-yr (1999–2001) SCM simulations of

seven GCMs participating in the Fast-Physics System

Testbed and Research (FASTER) project at the ARM

SGP site, with the aid of the FASTER SCM testbed.

(Detailed information on the FASTER project and the

testbed can be found at http://www.bnl.gov/faster/.)

This study focuses on the statistical aspects that bear

relevance to main existing issues of precipitation simula-

tion (e.g., diurnal cycle, seasonal variation, and convective/

stratiformpartitioning), including differingmodel biases in

frequency and mean precipitation intensity between day-

time and nighttime, between warm and cold seasons, and

between convective and stratiform partition. In addition,

we also attempt to demonstrate the relationship between

surface precipitation and vertical-pressure velocity, pre-

cipitable water, and relative humidity, and to investigate

the large-scale backgrounds against which the model

biases occur through the studies of extreme events.

The rest of the paper is organized as follows: section 2

describes the model and data used in this study. The

main results are presented in sections 3 and 4. Section 5

summarizes the major results.

2. Model description and evaluation data

a. Participating models

ThreemainU.S.GCMs—theCommunityAtmosphere

Model (CAM), the Geophysical Fluid Dynamics Labo-

ratory (GFDL) Atmospheric Model (AM), and the

GISS Model E2—and one European GCM—the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) Integrated Forecast System (IFS)—participate

in the FASTER project. To further enhance the param-

eterization diagnosis and track the model improvement,

the CAM and GFDL AM also include multiple ver-

sions (CAM, versions 3, 4, and 5; GFDLAM, versions 2

and 3). Note that the GFDL AM3 here is not the full

version of GFDL AM3 (Donner et al. 2011), which uses

48 vertical levels with aerosol activation (double moment

for cloud droplets) and comprehensive chemistry. The

AM3 here is close to the AM2 with the same vertical

levels and cloud scheme. The major change of the AM3

from the AM2 is the convection scheme. The AM2 uses

the relaxed Arakawa–Schubert scheme (Moorthi and

Suarez 1992) for both deep and shallow convections, while

the AM3 uses the Donner cumulus scheme (Donner et al.

2001, 2011) for deep convection and University of Wash-

ington (UW) scheme (Bretherton et al. 2004a; Zhao et al.

2009) for shallow convection.

Table 1 lists the seven GCMs used in the intercom-

parison study, their precipitation-related parameteriza-

tion schemes, the corresponding references, and their

SCM vertical and temporal resolutions. All the deep

convection schemes of the seven GCMs are based on

the mass-flux approach, with differences in their clo-

sure assumptions, trigger mechanisms, and formulations

for convective updrafts and downdrafts. Previous studies

show that the deficiency in the convective trigger mech-

anism is one of the major reasons for different timing of

precipitation occurrences (e.g., Xie and Zhang 2000;

Betts and Jakob 2002; Zhang 2003; Bechtold et al. 2004;

Lee et al. 2008). There are four kinds of convection

triggers in the seven GCMs: convective available po-

tential energy (CAPE) threshold triggers for the GFDL
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AM3 andCAM3, cloud work function threshold triggers

for the GFDL AM2, dilute CAPE threshold triggers for

the CAM4 and CAM5, and parcel-lifting-based triggers

for the GISS-E2 and ECMWF models. Dilute CAPE

and cloud work function for entraining clouds are closely

related, though the quantitative values of entrainment

may vary widely. The SCM intercomparison study of

Xie et al. (2002) indicates that the models using CAPE-

only triggers generally produce the least agreement

with the observations in surface precipitation. The plan-

etary boundary layer (PBL) schemes also differ among

themodels. TheCAM3 andCAM4use a dry and surface-

driven PBL scheme and produce a very shallow PBL,

while the ECMWF model uses an eddy-diffusivity/mass-

flux approach and produces a deeper and better mixed

PBL (Hannay et al. 2009). More information on the pa-

rameterization schemes can be found in the related ref-

erences given in Table 1.

b. Model configuration and setup

The basic thermodynamic configuration for the SCM

consists of two prognostic equations about temperature

T and specific humidity q:

›T(p, t)

›t
52y � $T2v

›T

›p
1

v

cp
a1PT 1

Tobs 2T

ta
and

›q(p, t)

›t
52y � $q2v

›q

›p
1Pq 1

qobs 2 q

ta
,

where the overbar denotes the large (model grid)-scale

mean, y is the large-scale horizontal wind velocity, v is

the large-scale vertical pressure velocity, 2y � $T and

2y � $q are the large-scale horizontal advection ten-

dencies, 2v(›T/›p) and 2v(›q/›p) are the large-scale

vertical advection tendencies, and a is the specific vol-

ume. Here, PT and Pq are the parameterized physics

tendencies and (Tobs 2T)/ta and (qobs 2 q)/ta are the

relaxation terms, with Tobs and qobs being the observed

values of T and q respectively, and ta being the re-

laxation time scale, which is set to 3 h based on previous

studies (e.g., Hack and Pedretti 2000).

Since SCMs do not predict the interaction with the

environment outside of the target column, nor do they

predict the vertical motion within the column, both the

large-scale horizontal and vertical advection tendencies,

along with surface forcings, are prescribed using the

TABLE 1. Participating SCMs and related parameterizations, where AS is Arakawa and Schubert (1974) and ZM is Zhang and

McFarlane (1995). The single-column version of GISS-E2 uses a 1-moment cloud microphysics scheme, while the full GISS-E2 uses

a 2-moment microphysics scheme. Also, the implementation of the deep cumulus parameterization in GFDL AM3 differs from Donner

et al. (2001), as described in Donner et al. (2011). Finally, the single-column version of AM3 differs from the GCM described in Donner

et al. (2011) by using a specified droplet concentration of 300 cm23 instead of interactive aerosols and chemistry.

Model Convection scheme Cloud scheme PBL

Resolution

Levels Minutes

GISS-E2 Bulk mass flux, deep and shallow

(Del Genio and Yao 1993;

Del Genio et al. 2007) and

cumulus microphysics

(Del Genio et al. 2005)

Micro/macrophysics (Del Genio

et al. 1996; Schmidt et al. 2006;

G. A. Schmidt et al. 2012,

unpublished manuscript)

Local TKE and counter

gradient (Schmidt

et al. 2006)

40 30

GFDL AM2 Relaxed AS, deep and shallow

(Moorthi and Suarez 1992)

1-moment microphysics (Rotstayn

1997) and cloud macrophysics

(Tiedtke 1993)

K-profile scheme

(Lock et al. 2000)

24 30

GFDL AM3 Donner, deep (Donner et al.

2001, 2011) and UW, shallow

(Zhao et al. 2009)

1-moment microphysics (Rotstayn

1997) and cloud macrophysics

(Tiedtke 1993)

K-profile scheme

(Lock et al. 2000)

24 30

ECMWF IFS Bulk mass flux, deep and shallow

(Tiedtke 1989; Gregory

et al. 2000)

1-moment microphysics and cloud

macrophysics (Tiedtke 1993;

Gregory et al. 2000)

Eddy-diffusivity/mass-flux

scheme (K€ohler 2005)

91 5

CAM3 Simplified AS, deep (Zhang and

McFarlane 1995) and Hack,

shallow (Hack 1994)

1-moment microphysics (Rasch

and Kristjansson 1998) and

cloud macrophysics (Zhang et al. 2003)

Non-local K-profile

scheme (Holtslag and

Boville 1993)

26 20

CAM4 Modified ZM, deep (Neale et al.

2008) and Hack, shallow

(Hack 1994)

1-moment microphysics (Rasch

and Kristjansson 1998) and

cloud macrophysics (Zhang et al. 2003)

Non-local K-profile

scheme (Holtslag

and Boville 1993)

26 20

CAM5 Modified ZM, deep (Neale

et al. 2008) and UW, shallow

(Park and Bretherton 2009)

2-moment microphysics (Morrison

and Gettelman 2008) and cloud

macrophysics (S. Park et al. 2010,

unpublished manuscript)

UW diagnostic TKE

(Bretherton and

Park 2009)

30 20
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ARM variational analysis product (Xie et al. 2004). The

variational analysis product was generated by constrain-

ing the National Oceanic and Atmospheric Administra-

tion (NOAA) Rapid Update Cycle, version 2 (RUC-2),

analyses with ARM surface and TOA measurements.

The relaxation terms relax the simulated T and q to-

ward the observations at each time step. They are un-

physical and may appear to hide the errors in model

physics (Ghan et al. 1999). However, Randall and Cripe

(1999) found that error in SCM is conserved and the use

of relaxation does not hide model problems. Relaxation

can also suppress the model’s sensitivity to initial con-

dition (Hack and Pedretti 2000) and act to adaptively

correct the error in large-scale forcing. Precipitation in

SCM is strongly constrained by the forcing. When the

SCM is simply forced with the continuous large-scale

forcing, the simulated precipitation cannot stray too far

from the observed precipitation, even when the model’s

thermodynamic state has large accumulated biases

(e.g., Randall and Cripe 1999; Hack and Pedretti 2000).

This would render the SCM framework ineffective in

evaluating the underlying precipitation physics. Use

of relaxation under such circumstances serves to un-

lock the strong link between large-scale forcing and

precipitation.

For the 3-yr simulations from January 1999 to

December 2001, all seven SCMs are reinitialized at the

beginning of each month and integrated for each whole

month. The seven SCMoutputs are averaged over 1 h to

match the temporal resolution of evaluation data (see

Table 1 for the original SCM temporal resolutions).

c. Evaluation data

The precipitation data used in this study for evalua-

tion are the SGP domain-averaged surface precipitation

rates included in the continuous forcing data derived

by Xie et al. (2004). They are the hourly Arkansas–Red

Basin River Forecast Center (ABRFC) 4-km rain gauge–

adjusted Weather Surveillance Radar-1988 Doppler

(WSR-88D) measurements averaged over the varia-

tional analysis domain.

Fields of vertical pressure velocity, specific humidity,

relative humidity, horizontal thermal advection, hori-

zontal moisture advection, surface latent heat (LH) flux,

and sensible heat (SH) flux in the continuous large-scale

forcing data (Xie et al. 2004) are also used in this study.

3. Results

a. Seasonal and diurnal variations of precipitation

Precipitation at the SGP site has strong seasonal and

diurnal variations. For the seasonal variation (Fig. 1a),

all seven SCMs can reproduce the bimodal pattern in

the observations, with the primary peak precipitation

in June, the secondary peak precipitation between

September and October, and a minimum precipitation

in August and betweenNovember and January for years

1999–2001. The precipitation rates in the three single-

column atmosphere models (SCAMs) are quite close to

the observations during all the seasons, while those in

the GISS-E2 and GFDL AM2 SCMs are much smaller

than the observations, especially during the warm season

FIG. 1. (a) Seasonal and (b) warm-season diurnal variations of total precipitation (Pr) in observations and 7 SCMs

averaged for years 1999–2001. Note that GISS refers to model GISS-E2 (here and in subsequent figures).
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from May to October. Note that the monthly mean pre-

cipitation rate in the GISS-E2 SCM shown in Fig. 1a is

different from that in Kennedy (2011), which can largely

be explained by the difference in the simulation setups.

The GISS-E2 SCM simulations in Kennedy (2011) were

forced by the continuous forcing without relaxation,

whereas the simulations here include the relaxation of

temperature and specific humidity. The relaxation tends

to produce a net drying of the PBL, and thereby leads to

a decreased precipitation rate.

For the diurnal variation in the warm season (Fig. 1b),

the maximum precipitation rate in the observations oc-

curs around 0200 LT (SGP local time5UTC2 6 hours)

and the minimum occurs around noon. Only the GISS-

E2 and GFDL AM2 SCMs can reproduce the observed

diurnal phases, although the amplitude is only about

half of the observed. The other SCMs do produce

a weak peak around the time of the observed maxi-

mum, but more noticeable is the spurious peak near

noontime. Their mean magnitude of diurnal variation

is, however, comparable to the observed, except for the

CAM3 SCM. The existence of the spurious noontime

precipitation peak, as seen in Fig. 1b, is similar to many

previous studies (e.g., Xie and Zhang 2000; Betts and

Jakob 2002; Zhang 2003; Bechtold et al. 2004; Lee and

Schubert 2008).

The contrasting performances of different models in

simulating the phase and magnitude of warm-season

diurnal variation are further substantiated in Table 2,

which summarizes the relative differences of mean in-

tensity, standard deviation, and correlation coefficient,

and the relative Euclidean distance between the seven

SCMs and observed precipitation for all seasons, the

warm season (May–October), and the cold season

(November–April) respectively in years 1999–2001.

Relative Euclidean distance is a nondimensional mea-

sure gauging the overall agreement between two sets of

data in terms of their mean, standard deviation, and

correlation coefficient, with zero indicating a perfect

agreement between the model and observations and

increasing as the agreement degrades (Wu et al. 2012;

Liu et al. 2013). Table 2 confirms that the overall per-

formance (relative Euclidean distance) of different

models may have very different reasons. For example,

the main contributors to the disagreement with obser-

vations are the mean bias for the GISS-E2 and GFDL

AM2 SCMs (too weak precipitation intensity), but are

the poor correlation coefficients (wrong phase) for the

three CAM SCMs (hereafter referred to as SCAM3,

SCAM4, and SCAM5, respectively). Furthermore, all

the SCMs perform much better in the cold than warm

season, and all the SCMs (except for SCAM5 in the

cold season) underestimate the variability of preci-

pitation compared to the observation.

Preceding results indicate that different models likely

perform differently under different conditions. Next we

will further investigate the model performances under

different conditions by analyzing the contrast of pre-

cipitation characteristics between daytime and night-

time and between the cold and warm seasons. The

results will also indirectly expose the differences in

underlying physical parameterizations of the different

SCMs responsible for the simulated precipitation di-

urnal variations.

TABLE 2. Summary of relative differences of mean intensityM, std dev S, correlation coefficient C, and relative Euclidean distance D

between the 7 SCMs and observations of precipitation for all season, warm season, and cold season during years 1999–2001. Equations

used to calculate the variables are provided at the bottom of the table.

SCM

Season Variable GISS-E2 GFDL AM2 GFDL AM3 ECMWF IFS CAM3 CAM4 CAM5

All M 20.49 20.46 20.21 20.28 0.13 0.09 0.07

S 20.24 20.30 20.15 20.20 20.05 20.08 20.04

C 0.20 0.17 0.34 0.25 0.40 0.21 0.25

D 0.59 0.57 0.43 0.41 0.42 0.24 0.26

Warm M 20.59 20.54 20.15 20.26 0.15 0.06 0.06

S 20.29 20.42 20.18 20.22 20.04 20.12 20.08

C 0.24 0.16 0.46 0.34 0.52 0.28 0.32

D 0.70 0.70 0.52 0.48 0.54 0.31 0.34

Cold M 20.34 20.33 20.32 20.31 0.08 0.13 0.09

S 20.15 20.10 20.09 20.17 20.07 20.001 0.01

C 0.14 0.14 0.15 0.09 0.18 0.10 0.12

D 0.40 0.37 0.37 0.37 0.21 0.16 0.15

M5
mean (PrSCM)2mean (Probs)

mean (Probs)
C5 12 cor (PrSCM, Probs)

S5
std dev (PrSCM)2 std dev (Probs)

std dev (Probs)
D5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 1 S2 1C2
p
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b. Frequency distribution of model biases

To investigate the capability of SCMs to reproduce

the observed precipitation at different precipitation in-

tensities, we first analyze the difference of precipitation

intensity between the SCMs and observation.

Figure 2a shows the frequency distribution of themodel–

observation differences in total precipitation intensity

for all-time and daytime data, respectively. The fre-

quency distribution for the nighttime data can be in-

ferred from the all-time and daytime patterns. Here,

daytime is defined as solar insolation at TOA being

larger than 0.01 W m22 (otherwise nighttime). Several

points are evident. First, the absolute model biases are

mostly less than 1 mm day21, with the total frequency

about 70% and above (Table 3). Second, the SCMs

FIG. 2. Frequency of specified model biases in total precipitation for all-time (solid lines) and daytime-only (dashed

lines) data for (a) all season, (b) warm season, and (c) cold season.

TABLE 3. The total frequency (%) of events with jmodel biasj, 1 mm day21 and jmodel biasj. 10 mm day21 during years 1999–2001 in 7

SCMs. Model bias is the precipitation rate in SCM minus precipitation rate in observations.

Model events

Season jBiasj (mm d21) GISS-E2 GFDL AM2 GFDL AM3 ECMWF IFS CAM3 CAM4 CAM5

All ,1 79.96 79.55 77.59 76.33 71.46 69.94 70.93

.10 5.15 4.79 7.76 6.51 8.84 5.72 6.27

Warm ,1 74.89 73.51 69.85 71.67 65.30 62.73 62.93

.10 7.35 6.69 12.42 10.36 14.03 8.90 9.61

Cold ,1 84.67 85.21 84.93 80.31 77.25 76.97 78.66

.10 3.05 2.97 3.25 3.27 3.77 2.65 3.05
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underestimate the observed precipitation intensity more

frequently than they overestimate. Third, while the

frequencies of having large negative biases are compa-

rable among the models, the likelihood of having large

positive biases is much more distinguishable. Finally,

large positive biases much more frequently happen in

the daytime than in the nighttime, except for the GISS-

E2 and GFDL AM2 SCMs, which have much fewer

large overestimation events anyway.

The frequency distribution of the model biases in pre-

cipitation intensity for the warm and cold seasons are

shown in Figs. 2b and 2c, respectively. It is seen that the

frequencies of large precipitation biases, especially day-

time overestimation events, are much higher in the warm

than cold season, implying that most SCMs perform

better in the cold than warm season. Again, there are

very few overestimation events in the GISS-E2 and

GFDL AM2 SCMs for both the warm and cold seasons.

Figure 2b and Table 3 also reveal that the discrepancy

in frequency of large positive biases among the models

as seen in Fig. 2a happens in the warm season.

The above analyses show that although all seven SCMs

can produce the observed precipitation reasonably well

[more than 70% of the time the models have very small

biases, and largemodel biases occur only less than 10%of

the time (Table 3)], they tend to underestimate the ob-

served precipitation intensity more frequently than they

overestimate, with more striking model differences be-

tween the daytime and nighttime and between warm and

cold seasons.

c. Frequency versus intensity analyses

The total precipitation amount during a period can be

expressed as a product of the number of all precipitation

events and the mean precipitation intensity of all pre-

cipitation events during that period. Similarly, the bias

in model precipitation may be attributed to biases in

precipitation intensity and/or frequency of precipitation

events. This section examines the SCM performance

from this perspective. Bias analysis of precipitation in-

tensity and/or frequency may also shed light on de-

ficiencies in the treatment of the underlying physical

processes, particularly the relative roles of convective

and stratiform precipitating processes in contributing to

the total precipitation and its biases. It is noteworthy

that while it is well known that GCMs (e.g., Dai and

Trenberth 2004) tend to overestimate the frequency of

light precipitation and underestimate the frequency of

heavy precipitation, in those unconstrained model simu-

lations the difference in simulated frequency occurrence

of precipitating weather regimes and their maintenances

could also be an important factor. Use of SCMs driven

by the same observed large-scale forcings in this study

minimizes the influences of potential biases from large-

scale atmospheric and surface conditions.

Figure 3 compares the frequency of occurrence and

mean intensity of rain events in the seven SCMs and

observations for all season, warm season, and cold sea-

son. Here, a rain event is defined by the hourly surface

total precipitation intensity larger than 0.1 mm day21,

and frequency is the ratio of the number of rain events to

the total number of samples. In the observations, rain

occurs about 28% of the time in both daytime and

nighttime (Fig. 3a). Compared with the observations,

the three SCAMs produce more rain events while the

two GFDL AM and ECMWF SCMs produce much

fewer rain events. Except for the GISS-E2 SCM, the

other six SCMs rain more frequently in the daytime than

in the nighttime. Yet the mean hourly precipitation in-

tensities in most SCMs are weaker than the observed,

especially in the nighttime. The observed mean precip-

itation intensity is stronger in the nighttime than in the

daytime, which is opposite in the GFDLAM3 and three

SCAMs. The distributions of frequency and mean in-

tensity of rain events in the warm and cold seasons are

quite different. In the warm season (Fig. 3b), the three

SCAMs have more rain events than the observations

in the daytime, but most SCMs have fewer rain events

than the observations in the nighttime. Among the three

SCAMs, nighttime precipitation frequency improves

from SCAM3 to SCAM4 and SCAM5, but the daytime

overestimated precipitation frequency is biased further

higher. In general among the SCAMs, the higher the pre-

cipitation frequency a model has, the lower the mean

precipitation intensity, suggesting some compensating

errors between precipitation intensity and frequency in

the SCAMs. The GISS-E2 and GFDL AM2 SCMs tend

to underestimate frequency and intensity in both day-

time and nighttime, while theGFDLAM3 andECMWF

SCMs underestimate the frequency but overestimate

the mean intensity in both daytime and nighttime. In

the cold season (Fig. 3c), the GISS-E2 SCM and three

SCAMs have higher precipitation frequency but weaker

precipitation intensity relative to the observations, which

is true for both daytime and nighttime conditions. The

two GFDL and ECMWF SCMs have much lower fre-

quency but stronger intensity than the observations in

daytime.

The existence of compensating errors between pre-

cipitation frequency and mean intensity becomes more

evident in Fig. 4, which shows the relationship between

the relative differences in precipitation frequency and

mean intensity for all season (Fig. 4a), warm season (Fig.

4b), cold season (Fig. 4c), and those with an absolute

value of model precipitation bias less than 5 mm day21

(Fig. 4d). The diagonal line is indicative of perfect error
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compensation between the frequency and mean intensity

of rain events to produce the same amount of preci-

pitation. Evidently, the existence of compensating errors is

best illustrated by Fig. 4d, which demonstrates that even

for those events that all the SCMs simulate the total pre-

cipitation reasonably well (jmodel biasj , 5 mm day21),

the apparent good precipitation simulations may result

from error compensation between the total number and

mean intensity of the rain events.

More detailed frequency distributions of the hourly

precipitation intensity are shown in Fig. 5. Overall, the

frequency of precipitation occurrence decreases with

increasing precipitation intensity in both the observa-

tions and the models. The model bias characteristics,

however, vary between different seasons and daytime

or nighttime conditions. In the warm season, compared

with the observations, the nighttime frequencies for

moderate-to-strong precipitation (Pr . 5 mm day21)

are lower for all models, while daytime frequencies for

stronger precipitation are mostly higher except for the

GISS-E2 and GFDL AM2 SCMs. The frequencies of

light precipitation (Pr , 1 mm day21) in the warm sea-

son are higher only in GISS-E2 and SCAM5, which is

true for both daytime and nighttime conditions. In the

cold season, the light-to-moderate precipitation events

(Pr , 5 mm day21) occur more frequently in both day-

time and nighttime for GISS-E2 and the three SCAMs.

The two GFDL and ECMWF SCMs have a lower fre-

quency occurrence for the entire precipitation spectrum.

In addition, in the daytime the GISS-E2 SCM has much

FIG. 3. Frequency (lhs y axis) andmean intensity (rhs y axis) of rain events (Pr. 0.1 mm day21)

for (a) all season, (b) warm season, and (c) cold season.
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higher frequency of precipitation events stronger than

1 mm day21 in the cold than warm season, while the ob-

servations and most other SCMs have a higher frequency

of mild-to-strong precipitation events (stronger than

1 mm day21 andweaker than 50 mm day21) in the warm

than cold season. Another noteworthy point is that the

frequency differences between each SCM and observa-

tions are smaller in the cold than warm season for strong

precipitation events (Pr . 20 mm day21).

d. Partition between convective and stratiform
precipitation

Modeled total precipitation is the sum of convective

and stratiform precipitation from the convection scheme

and large-scale macro-/microphysical schemes, respec-

tively. Previous comparison studies showed that the

intermodel difference in convective precipitation is gen-

erally larger than that in total and stratiform precipitation

(Xie et al. 2005). To examine the relative contributions of

convective and stratiform precipitating processes to the

total precipitation biases, Fig. 6 shows ratios of the con-

vective to total precipitation in the seven SCMs at each

specified total precipitation range, for thewarm and cold

seasons, respectively. In general, the relative contribu-

tion to total precipitation bymodel convective process is

larger during the warm season and more so in the day-

time than in the nighttime to some extent, though in the

observation, if the frequency of stronger precipitation is

FIG. 4. Scatterplots of relative intensity difference and relative frequency difference of 7 SCMs for rain events

(Pr. 0.1 mm day21) for (a) all season, (b) warm season, (c) cold season, and (d) all season with model bias in total

precipitation (,5 mm day21). Relative intensity (frequency) difference is defined as themodel intensity (frequency)

bias normalized by the observed intensity (frequency) of rain events.
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any indication, there exists no such a tendency in either

the warm or cold season.

It is also worth noting that the performances of the

two GFDL SCMs are significantly different in that the

AM2 SCM has much higher ratios of convective to total

precipitation in the rain events weaker than 5 mm day21,

while theAM3SCMhasmuch higher ratios of convective

to total precipitation in the rain events stronger than

20 mm day21. The ratios of the convective to total pre-

cipitation in the three SCAMs are also quite different.

The convective precipitation ratio is higher in SCAM3

and lower in SCAM5, especially in the nighttime. Other

than GFDL AM2, the convective scheme in general

has a relatively small role in light precipitation events,

though the role is relatively larger for most models in

the daytime and warm season. Under all conditions, the

convection scheme in the GISS-E2 model plays a much

smaller role, relative to the other six models, in producing

total surface precipitation. This issue will be further dis-

cussed later in section 4a.

Figure 7 shows the frequency of convective precip-

itation events (convective precipitation intensity larger

than 0.1 mm day21) in the seven SCMs at each specified

total precipitation range, for the warm and cold seasons,

respectively. Convective precipitation occurs more fre-

quently in the daytime than in the nighttime for most

SCMs, especially those with CAPE-based triggers. Events

of convective precipitation are mainly with a total pre-

cipitation rate less than 50 mm day21. Another notice-

able point is the occurrences of convective precipitation

in GISS-E2 SCM are more frequent in the cold than

warm season.

4. Further analyses

a. Relationship between precipitation and possible
influencing factors

The above analysis shows that although most models

can reproduce the observed total precipitation reasonably

FIG. 5. Frequency of daytime total precipitation for the (a) warm and (b) cold seasons. Frequency of nighttime total

precipitation for the (c) warm and (d) cold seasons.
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well, there are significant and interesting differences in

their details. This section examines possible factors that

likely influence the detailed model performances.

Figure 8 compares the relationships between the total

precipitation and 500-hPa vertical pressure velocity

for rain events only. Total precipitation is tightly cou-

pled to the large-scale vertical motion in the observa-

tions, especially in the warm season (Figs. S1, S2 in the

supplemental material). The warm season also has more

frequent extreme upward motions and precipitation in

nighttime than in daytime. Note that the close correla-

tion between total precipitation and vertical motion

likely arises from the fact that the vertical pressure ve-

locity derives from the variational algorithm constrained

by surface precipitation (Xie et al. 2004). However, these

two quantities aremuch less tightly coupled in themodels

and the relationship differs in different SCMs. Relative to

the observations, there exists a significant precipitation

bias in most models when vertical motions are weak, and

the bias occurs predominantly in the daytime (Figs. 9, 10)

and in the warm season. It is interesting to note that

GFDL AM3 SCM and SCAM3 still have some biases in

the cold season. On average, themodel coupling between

total precipitation and large-scale vertical motion is

stronger in the cold than warm season, even after ex-

cluding the large precipitation bias at the weak vertical-

motion regime. It is worth emphasizing that this seasonal

difference is completely opposite to that in the observa-

tions. Relative to the other models, the GISS-E2 and

GFDL AM2 SCMs do not exhibit a significant precip-

itation bias in the weak vertical-motion regime (Fig. 9).

Strong precipitation in the model in the absence of

substantial large-scale ascending motions is presumed

to be caused by convection parameterizations. CAPE is

the key ingredient in any cumulus convection. Figure 11

shows the joint probability distribution function (PDF)

of CAPE and total precipitation for weak vertical-

motion regimes (jv500j, 50 hPa day21) inwhich theblack

FIG. 6. Ratios of convective to total precipitation by each range of total precipitation in daytime for the (a) warm and

(b) cold seasons, and in nighttime for the (c) warm and (d) cold seasons.
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lines are the averaged total precipitation for each CAPE

bin. In the observationsweak precipitation can frequently

occur in a broad range of CAPE with intensity slightly

decreasing with increasing CAPE. The GISS-E2 SCM

shows a similar pattern as the observation. In GFDL

AM2 SCM, most events have a small total precipita-

tion, which increases mildly with CAPE values. In other

SCMs, especially GFDL AM3, ECMWF, and SCAM3,

the occurrences of large CAPE are accompanied by a

strong total precipitation. The total precipitation around

the weak vertical-motion regimes stems mainly from

the convective precipitation in SCMs (Fig. S3 in the

supplemental material). Relative to SCAM3, the large

precipitation biases and strong dependence of total pre-

cipitation on CAPE are markedly reduced in SCAM4

and SCAM5, with quite similar patterns. The similarity

between SCAM4 and SCAM5 is understandable because

the main difference between CAM4 and CAM3 is the

deep convection scheme, whereas the CAM4 and CAM5

differ in all other parameterization schemes except the

deep convection scheme. The major change from GFDL

AM2 to AM3 is also the deep convection scheme. The

significant differences in the joint PDFs between SCAM4,

SCAM5, and SCAM3, as well as that between AM2 and

AM3, suggest that the deep convection scheme is the

main culprit for themodel bias in producing the spurious

strong precipitation around the weak vertical-motion

regimes. Kennedy et al. (2011) showed that the contin-

uous large-scale forcing data used in driving the SCM

simulations have a moist bias in the boundary layer when

compared with the ARM Climate Modeling Best Esti-

mate (Xie et al. 2010) soundings. This moist bias likely

influences the model convective precipitation, especially

for SCMs with CAPE-based triggers. A moister bound-

ary layer should yield higher CAPEs and likely leads to

a higher frequency of convection. This will probably in-

fluence other convective parameterizations as well, such

as reducing convective inhibition (CIN) and making

FIG. 7. Frequency of convective precipitation binned by each range of total precipitation in daytime for the (a) warm

and (b) cold seasons, and in nighttime for the (c) warm and (d) cold seasons.
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parcel lifting easier. Although the influence of such

moist biases in the boundary layer on model precip-

itation warrants further investigation, the large differ-

ences among the models in this weakly forced dynamical

regime suggest that this influence is at most secondary

relative to the convection parameterizations themselves.

Properties of PBL may also affect convective activity.

Amodel with too shallow aPBLor too strong an inversion

FIG. 8. Scatterplots of 500-hPa vertical pressure velocity (v500) and total precipitation for precipitation events only

(Pr. 0.1 mm day21) inARMobservations and 7 SCMs for daytime (red dots) and nighttime (blue dots). Correlation

coefficients between v500 and total precipitation for daytime (red) and nighttime (blue) are marked in each panel.
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FIG. 9. Joint PDF binned by v500 and model bias in total precipitation (Pr.SCM2 Pr.Obs) for daytime precipitation

events only (Pr . 0.1 mm day21) in 7 SCMs.
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FIG. 10. As in Fig. 9, but for nighttime.
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FIG. 11. Joint PDF (shaded) binned by CAPE and total precipitation and averaged total precipitation (black line)

binned by CAPE for precipitation events only (Pr . 0.1 mm day21) in ARM observations and 7 SCMs when jv500j ,
50 hPa day21.
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might not convect even if its cumulus parameteriza-

tion was perfect. Previous studies (e.g., Hannay et al.

2009) showed that models shared a common problem

of having a PBL depth too shallow relative to obser-

vations. Our examination of the SCM simulations

confirms this finding (Fig. S4 in the supplemental

material). The shallower PBL, which implies weaker

turbulence and smaller turbulent kinetic energy (TKE),

may indeed be a factor for the GISS-E2 SCM that uses

parcel-lifting-based triggers for convection and ex-

hibits weaker convective activities. However, the overly

active convections in the other models, as mentioned

above, suggest that the role played by PBL parame-

terization in this aspect, if any, is minor. It can be fur-

ther confirmed by Table 4 that model precipitation has

a much stronger dependence on the CAPE than the

PBL height.

Bretherton et al. (2004b) showed a tight relationship

between surface precipitation and precipitable water

(vertically integrated specific humidity) over the tropical

oceanic regions using satellite data, and suggested that

such a relationship can provide a useful constraint on

the parameterization of tropical deep convection. To see

if there is a certain relationship between the two vari-

ables in the observations over midlatitude land and

how well the models capture this relationship, we ana-

lyze and compare the relationships between precipita-

tion and precipitable water (PW) at the ARM SGP site

in the observations and seven SCMs. Figure 12 depicts

the averaged total, stratiform, and convective precipita-

tion binned by PW in the daytime and nighttime. Total

precipitation rates increase with PW in both the obser-

vations and the SCMs. However, the increase of precipi-

tation with increasing PW is off beyond PW; 20 mm in

the observations in the daytime, whereas GFDL AM3,

ECMWF, and SCAMs do not capture this behavior. It is

mainly caused by the excessive precipitation from their

convection schemes. Again the models have a better

agreement with the observations in the nighttime. The

primary contributor to the relationship is the convection-

induced precipitation except for the GISS-E2 SCM and

SCAM5, whose stratiform schemes play larger roles in

accounting for this relationship. For the GISS-E2 model,

as also reported in Kennedy (2011), this is likely because

a little bit of convection detrains lots of water for the

stratiform scheme to consume, or the stratiform scheme

produces clouds/precipitation in response to large verti-

cal motions in the forcing.

To further investigate how the 500-hPa vertical-

pressure velocity and PW are related to precipitation, the

joint PDF of 500-hPa vertical pressure velocity and PW

is shown in Fig. 13, along with the averaged total pre-

cipitation intensity for each joint bin. It is clear that the

most frequent events occur around the weaker vertical-

motion regimes with PW ranging from 10 to 50 mm.

The frequency peak with larger PW occurs in the warm

season and with smaller PW occurs in the cold season

(Figs. S5, S6 in the supplemental material). On the other

hand, PW also increases with the strengthening as-

cending velocity. In the observations, the increase of the

averaged total precipitation intensity mostly coincides

with the increasing vertical velocity, while in most SCMs,

except for the GISS-E2 and GFDL AM2 SCMs,

a stronger influence of PW is evident indicated by the

tilting of isopleths of 5 and 10 mm day21 around the

weak vertical-motion regimes, especially in the daytime

(Figs. S7, S8 in the supplemental material). This may be

one of the reasons that the model precipitation is not

coupled with the large-scale vertical motion as tightly

as the observations shown in Fig. 8. The stronger de-

pendence of modeled precipitation on the PW is mostly

because of the treatment of the convective process,

which is illustrated in Fig. 12. The value of PWmeasures

the total available water vapor in the whole air column;

another moisture variable that is better related to con-

densation and conversion to precipitation is the air

column relative humidity (RH). The joint PDF for the

column-averaged RH and PW in the weak vertical-

motion regimes (magnitudes of vertical pressure

velocity are smaller than 50 hPa day21), and the av-

eraged total precipitation for each joint bin are shown

in Fig. 14. The joint PDF demonstrates that the most

frequent events are associated with a column RH of

about 50% and PW of about 40 mm in the observations

and most SCMs. The precipitation intensity is quite

small in the observations for all joint bins, while in most

TABLE 4. Correlation coefficients (cor.) between (top two rows) precipitation and CAPE, and (bottom two rows) between precipitation

and PBL height, for jv500j , 50 hPa day21 [daytime (4939) and nighttime (4252)] events.

Data

Cor. of variables Time OBS GISS-E2 GFDL AM2 GFDL AM3 ECMWF IFS CAM3 CAM4 CAM5

Pr, CAPE Day 0.01 20.01 0.27 0.46 0.22 0.66 0.38 0.43

Night 0.13 0.09 0.34 0.28 0.09 0.35 0.22 0.20

Pr, PBL_H Day 20.05 20.07 20.09 0.08 20.03 20.10 20.05 20.04

Night 0.09 20.07 0.15 0.09 20.04 0.12 0.11 0.18
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FIG. 12. Averaged total precipitation, stratiform precipitation, and convective precipitation binned by PW for

(left) daytime and (right) nighttime precipitation events (Pr . 0.1 mm day21).
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FIG. 13. Joint PDF (shaded) and averaged total precipitation (contours) binned by v500 and PW for precipitation

events only (Pr . 0.1 mm day21) in ARM observations and 7 SCMs.
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FIG. 14. Averaged total precipitation (shaded) and joint PDF (contours) binned by RH and PW for precipitation

events only (Pr . 0.1 mm day21) in ARM observations and 7 SCMs when jv500j , 50 hPa day21.
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SCMs there is some intense rain in the events with large

RH and PW, which is mostly contributed by the con-

vective precipitation (Fig. 15) in the daytime (Figs. S9,

S10 in the supplemental material).

The analysis in this section shows that 1) the large

difference between the observed and SCM-simulated

precipitation is mainly around the weak vertical-motion

regime. This spurious precipitation bias produced by

most SCMs has a strong dependence on the CAPE,

which is true especially for those models with deep con-

vection parameterizations using CAPE-based triggers. 2)

Most SCMs produce strong precipitation (mainly from

convective precipitation) when there are large PW and

RH around the weak dynamical regimes, which is not

seen in the observations. This difference implies that the

observed surface precipitation at the SGP site is mainly

controlled by large-scale vertical uplift, while the pro-

duction of precipitation in most of the models from

the cumulus/stratiform schemes is also significantly af-

fected by the handling of convective triggers.

b. Analysis of extreme events

To further pin down the conditions under which the

models tend to underestimate or overestimate the ob-

served precipitation, this section focuses on a number

of special events with substantial precipitation biases.

Particularly interesting are the two extreme categories

of events: 1) all the SCMs underestimate the observed

precipitationmore than 20 mm day21, and 2)most SCMs

overestimate the observed precipitation more than

10 mm day21 (the events that SCMs overestimate the

observed precipitation more than 20 mm day21 are

very few in the nighttime). Note that since there are

very few overestimate events in the GISS-E2 and

GFDL AM2 SCMs (Fig. 2), there are no events that

all the SCMs overestimate the observed precipitation

simultaneously.

Figure 16 compares the total precipitation and con-

vective precipitation rates for the two categories, in day-

time and nighttime. For the category whereby all the

SCMs underestimate precipitation (38 events in day-

time and 69 events in nighttime), the total precipitation

rates in the seven SCMs are quite similar in both day-

time and nighttime, all being much weaker than the

observation. For the category whereby some models

overestimate by more than 10 mm day21 (36 events in

daytime and 4 events in nighttime), the events occur

when the observations have weak (daytime) or mod-

erate (nighttime) precipitation. The convective precip-

itation rates are excessively large in most SCMs in the

daytime.

Figure 17 further compares the profiles of averaged

vertical pressure velocity, horizontal thermal advection,

horizontal moisture advection, and surface LH and SH

fluxes in the large-scale forcing data for the two cate-

gories of events. For the model underestimation events,

the large-scale meteorological backgrounds in the

daytime and the nighttime are quite similar, with strong

upward motions, weak horizontal thermal advection,

and negative low-level horizontal moisture advection.

For the model overestimation events, in the daytime

there are weak vertical motions while in the nighttime

there are moderate upward motions. There are strong

positive low-level horizontal thermal advection, weak

negative mid-to-high-level thermal advection, and strong

positive low-level horizontal moisture advection in both

the daytime and nighttime with much stronger intensity

in the nighttime. In the daytime there are very strong

surface LH and SH fluxes, providing sufficient moisture

supplies. The low-level warm and moist air convergence

builds up a favorable condition for most SCMs (espe-

cially those with CAPE-triggered convection) to pro-

duce strong convective precipitation, especially in the

daytime.

The results from this section highlight the depen-

dence of model performance on large-scale environ-

ments. The model underestimation events occur in the

strong ascending regimes with negative low-level hor-

izontal heat and moisture advection. The model over-

estimation events occur in the weak (in the daytime) or

moderate (in the nighttime) ascending regimes with

positive low-level horizontal heat and moisture ad-

vection. Moisture is supplied mainly by the surface

evaporation in the daytime and by the positive hori-

zontal moisture advection in the nighttime for model

overestimation events. While the overestimation events

are clearly related to overactive convective activities

and have stronger dependence on the CAPE in the

models, it is much less clear why those large under-

estimation events occur when ascending conditions

are strong and the observations actually record sub-

stantial precipitations. One possible reason is that the

observed precipitation is short-lived; a slight time shift

in the models may cause them to miss the major pre-

cipitation event at the observed time. Another possible

reason is that the large-scale forcings, as shown in

Fig. 17, tend to reduce CAPE and increase CIN making

convection in the models less likely to be triggered,

while the observed may indeed be convective in nature

and triggered by other mechanisms. There is also a

possibility that the majority of the precipitating hy-

drometeors are advected into the column in the ob-

servations, instead of locally generated. The models

lack such hydrometeor sources because large-scale

forcings of hydrometeors are not available from the

observations.
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FIG. 15. As in Fig. 14, except for convective precipitation in 7 SCMs and total precipitation in ARM observations.
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5. Summary

This study quantitatively evaluates the statistical per-

formances of the seven SCMs by comparing simulated

precipitation with observations from 1999–2001 at the

ARM SGP site. The 3-yr-long evaluation permits im-

proved statistical evaluation of many aspects. It is found

that although most SCMs can reproduce the observed

total precipitation reasonably well, there are significant

and interesting differences in their details, including

differences between daytime and nighttime, between

the warm and cold seasons, between frequency and

mean precipitation intensity, and between convective

and stratiform partition. First, in the warm season, most

SCMs produce more rain events in the daytime than

in the nighttime while the observations have more rain

events in the nighttime. The mean intensities of rain

events in most SCMs are much stronger (weaker) in the

daytime (nighttime) than the observations. In the cold

seasons, the model–observation differences in the fre-

quency and mean intensity of rain events tend to com-

pensate each other for most SCMs. In the daytime, most

SCMs have a higher frequency of moderate-to-strong

precipitation events (10–50 mm day21) than the obser-

vations in the warm season. In the nighttime, all the

SCMs have lower frequency of moderate-to-strong

precipitation events (.10 mm day21) than the obser-

vations for both the warm and cold seasons. Even for

the precipitation events that all the SCMs simulate the

total precipitation well, different SCMs achieve the

good performance by different combinations of com-

pensating errors between the number of precipitation

events and the mean precipitation intensity.

Second, the higher frequency of warm-season daytime

precipitation events in most SCMs is related to the fact

that most SCMs produce a spurious precipitation peak

around the regime of weak vertical motions. The spuri-

ous precipitation peak is mainly produced by the strong

convective precipitation when precipitable water and rel-

ative humidity are large. This spurious precipitation

bias has strong dependence on the CAPE, especially

for those models with deep convection parameteriza-

tions using CAPE-based triggers.

Third, analyses of extreme events reveal distinct meteo-

rological backgrounds for model underestimation and

overestimation events. The model underestimation events

occur in the strong ascending regimes with negative low-

level horizontal heat and moisture advection, whereas

model overestimation events occur in the weak (in the

daytime) or moderate (in the nighttime) ascending regimes

with positive low-level horizontal heat and moisture ad-

vection.Moisture is suppliedmainly by surface evaporation

in the daytime and by the positive horizontal moisture ad-

vection in the nighttime for model overestimation events.

The different SCM performances and associations

with large-scale forcing and thermodynamic factors

shed useful insights on convection parameterizations

and future development as well. For example, the

analysis also reveals that the convective precipitation

is much weaker in the GISS-E2 SCM (Figs. 6, 12). Ac-

cording to Del Genio and Wolf (2012), the weaker

convective precipitation may be related to the parcel-

lifting-based trigger used in the convection scheme.

The GISS-E2 SCM often cannot convect under the

observed thermodynamic structure at the time the

observed precipitation begins because the turbulent

kinetic energy is not strong enough to provide up-

drafts to lift the air parcel to the level of free con-

vection against large CIN within one time step. On

the other hand, the models using CAPE-based trig-

gers can produce convective precipitation even un-

der large CIN. However, there is no observational

support for such CAPE-based triggers (Jakob et al.

2011). Moreover, the relevant forcing for many con-

vective situations at the SGP site is mesoscale in nature

and is thus absent or inaccurately represented in both

the forcing and the parameterizations themselves

(Del Genio et al. 2012). Whether the SCM with

today’s cumulus parameterizations, which are forced

with the large-scale information and parameterize only

cloud-scale response to that forcing, should convect at

the SGP site is still an open question.More investigation

is in order along this line.

FIG. 16. Averaged total precipitation amounts in 7 SCMs and

ARM observations for events with total precipitation difference

(dPr) , 220 mm day21 for all the SCMs, dPr . 10 mm day21 for

certain SCMs in the daytime (indicated by D) and nighttime (in-

dicated by N). The dPr is defined as Pr in SCM minus Pr in Obs.

Asterisks represent the averaged convective precipitation amounts

in 7 SCMs.
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