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ABSTRACT

The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM’s radiation code is

uniquely valuable for GCM evaluation because 1) comparing band-by-band CRE avoids the compensating

biases in the broadband CRE comparison and 2) the fractional contribution of each band to the LW

broadband CRE (fCRE) is sensitive to cloud-top height but largely insensitive to cloud fraction, thereby

presenting a diagnostic metric to separate the twomacroscopic properties of clouds. Recent studies led by the

first author have established methods to derive such band-by-band quantities from collocated Atmospheric

Infrared Sounder (AIRS) and Clouds and the Earth’s Radiant Energy System (CERES) observations. A

study is presented here that compares the observed band-by-band CRE over the tropical oceans with those

simulated by three different atmospheric GCMs—the GFDL Atmospheric Model version 2 (GFDL AM2),

NASA Goddard Earth Observing System version 5 (GEOS-5), and the fourth-generation AGCM of the

Canadian Centre for Climate Modelling and Analysis (CCCma CanAM4)—forced by observed SST. The

models agree with observation on the annual-mean LW broadband CRE over the tropical oceans within

61 W m22. However, the differences among these three GCMs in some bands can be as large as or even

larger than61 W m22. Observed seasonal cycles of fCRE in major bands are shown to be consistent with the

seasonal cycle of cloud-top pressure for both the amplitude and the phase.However, while the three simulated

seasonal cycles of fCRE agree with observations on the phase, the amplitudes are underestimated. Simulated

interannual anomalies from GFDL AM2 and CCCma CanAM4 are in phase with observed anomalies. The

spatial distribution of fCRE highlights the discrepancies between models and observation over the low-cloud

regions and the compensating biases from different bands.

1. Introduction

Since the 1980s, broadband radiative flux and cloud

radiative effect (CRE; the difference between all-sky

and clear-sky fluxes) have been extensively used in cli-

mate studies (e.g., Ramanathan et al. 1989;Wielicki et al.

2002; Wong et al. 2006), especially in the evaluation of

climate models and cloud feedback studies (e.g., Allan

et al. 2004; Allan and Ringer 2003; Raval et al. 1994;

Slingo et al. 1998;Wielicki et al. 2002; Yang et al. 1999). In

the development of a GCM for climate studies, one in-

evitable and important step is ‘‘tuning,’’ in which poorly

constrained parameters are adjusted using observations

and physical principles to ensure energy balance at the

top of atmosphere (TOA). This ensures that simulated

broadband quantities are generally consistent with the

observed counterparts at the TOA. However, it cannot

guarantee the consistency between band-by-band de-

compositions of observed and simulated radiation fluxes.

In fact, quite often the compensating biases from dif-

ferent absorption bands offset each other and lead to

a seemingly good agreement between modeled and ob-

served broadband fluxes [e.g., see the work in the ther-

mal infrared by Huang et al. (2006, 2007, 2008, 2010)].

Similar compensating biases can be expected in the

simulated broadband CRE as well. Therefore, directly

using band-by-band flux and CRE in model evaluation

can avoid the compensating errors and highlight the

biases in different bands since the flux and CRE of each
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individual molecular absorption band are calculated

directly in the GCM radiation scheme. Moreover, as il-

lustrated in Huang et al. (2010) with both a conceptual

model and numerical simulation, the fractional contri-

bution of each band to the broadband longwave (LW)

CRE (hereafter fCRE) is sensitive to cloud-top height but

largely insensitive to cloud fraction. The LW broadband

CRE can be written as CRELW 5 fc(Fclr 2 Fcld) where

F is the outgoing longwave flux at top of atmosphere, fc

is the cloud fraction, and subscripts clr and cld denote

clear sky and overcast cloudy sky, respectively. Corre-

spondingly, the ith band CRE can be written as CREi 5
fc(Fi

clr 2Fi
cld), and the superscript denotes the ith band.

The resulting expression for fCRE is

fCRE5
Fi
clr 2Fi

cld

Fclr 2Fcld

. (1)

Therefore, the common factor of cloud fraction cancels

and fCRE is only sensitive to cloud-top temperature,

making fCRE a useful quantity in diagnosing and evalu-

ating modeled CRE. The LW broadband CRE is sen-

sitive to both the cloud fraction and (mostly) cloud-top

height whereas the shortwave (SW) broadband CRE is

sensitive to both the cloud fraction and (mostly) the

cloud water path (i.e., cloud reflectance). Since the LW

fCRE is sensitive to cloud-top height but not to cloud

fraction, it provides a dimension to sort out the contri-

butions of cloud faction and cloud-top height to the

broadband CRE.

Huang et al. (2008, 2010) mainly focused on the al-

gorithm for deriving such band-by-band LW flux and

CRE from the Atmospheric Infrared Sounder (AIRS)

spectral radiances collocated with Clouds and the Earth’s

Radiant Energy System (CERES) observations from the

same Aqua spacecraft (AIRS is a grating spectrometer;

CERES consists of two broadband radiometers and one

narrow-band radiometer). Using one year of data and

corresponding simulations from a Geophysical Fluid

Dynamics Laboratory (GFDL) AGCM (AM2), both

studies also showed preliminary usage of such data in

GCM evaluation. To further explore and demonstrate

the potential of such band-by-band CRE in model eval-

uations, this study performs the first ever comprehen-

sive evaluations of GCM-simulated band-by-band CRE

from three different GCMs. The focus in this study is

utilizing multiple years of data to document and com-

pare the general features of climatology such as long-

term mean, seasonal cycles, and interannual variations

of CRE and fCRE of each LW band. Averages over

the tropical oceans will be studied and compared first

in section 3. Then the spatial distributions and com-

posite analyses with respect to large-scale circulation

(represented by 500-hPa vertical velocity) will be pre-

sented in section 4.

The data andGCMs used in this study are described in

section 2. Sections 3 and 4 present the comparison results.

Conclusions and further discussion are given in section 5.

2. Observations and GCM simulations

a. Observations

The algorithms in Huang et al. (2008, 2010) were de-

veloped for and validated against observations over the

tropical open oceans (308S to 308N). Hence here we em-

ploy the algorithms to derive clear-sky and all-sky spectral

fluxes at a 10 cm21 interval for the longwave spectrum (0–

2000 cm21) using the collocatedAIRS andAqua-CERES

observations over the tropical open oceans from 2003 to

2007. Themonthlymean spectral CRE is then calculated

in a similar way as the broadband CRE derived from

EarthRadiation Budget Experiment (ERBE) or CERES

observations. The scene type information from CERES

single satellite footprint (SSF) is used with predeveloped

spectral anisotropic distribution model (ADM) to invert

spectral flux for each AIRS channel, and a multilinear

regression scheme is then used to estimate the spectral

flux over spectral regions not covered by the AIRS chan-

nels. As shown in Huang et al. (2008, 2010), the outgoing

longwave radiation (OLR) derived by this approach

agrees well with the collocated CERES OLR and this

good agreement is found over different cloud scene types

(as distinguished by distinct cloud fractions and cloud-

surface temperature contrasts). Comparisons with syn-

thetic data showed that the algorithm can reliably estimate

spectral flux at 10 cm21 resolution with maximum frac-

tional difference less than 65% for clear-sky scenes and

;63.6% for cloudy-sky scenes. Details of the algorithm

and validation can be found in Huang et al. (2008, 2010).

Table 1 summarizes the comparison between OLR

derived by this spectral ADM approach with the collo-

cated CERES OLR for 2003 to 2007. AIRS version 5

calibrated radiances and CERES SSF edition 2 data

are used. The 2s radiometric calibration uncertainty of

CERES OLR is ;1%, which translates to ;2.5 W m22

for a typical OLR value in the tropics. Table 1 shows

that, for all the years, the mean difference between

CERES clear-sky OLR and our derived clear-sky OLR

is always below the 2s uncertainty. The cloudy-skyOLR

mean difference is about the same as the 2s uncertainty.

The standard deviations of these differences change

little from year to year.

b. GCMs

We used three atmospheric general circulation models

in this study, the GFDL AM2 model (Anderson et al.
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2004), the Fortuna 2.2 version of the National Aero-

nautics and Space Administration (NASA) Goddard

Earth Observing System version 5 (GEOS-5; Molod

et al. 2012), and the fourth-generation AGCM at the

Canadian Centre for Climate Modelling and Analysis

(CCCma), Environment Canada (CanAM4; von Salzen

et al. 2012, manuscript submitted to Atmos.–Ocean).

Each GCM is forced with observed SSTs over multiple

years. For eachmodel, clear-sky flux and all-sky fluxes of

the individual bands of the LW radiative transfer code

are directly saved in the output of simulations. ForGEOS-5

and CanAM4, the simulations were carried out for

2000–09, but only the 2003–07 period is analyzed and

compared with observations here. For AM2, because of

limited resources, the simulation was carried out only up

to 2005 so only the simulations from 2003 to 2005 are

analyzed here. As will be shown in the next section, the

year-to-year variations of band-by-band CRE and fCRE

are small so the different period in the AM2 simulations

has little effect on the comparisons of long-term mean

and mean seasonal cycle.

The longwave radiation scheme in the GFDL AM2

model follows Schwarzkopf and Ramaswamy (1999).

The LW spectrum is divided into eight bands, with two

water bands (far-IR and.1400 cm21) treated together,

in practice. Clouds are assumed to be nonscattering in

the LW. The LW radiation scheme in theNASAGEOS-5

is based on Chou et al. (2003). It divides the LW spec-

trum into nine bands and can be run at two accuracy

modes (the high accuracy mode is used here) using ei-

ther a k-distribution or lookup table approach to cal-

culate gaseous transmission functions. Cloud scattering

in the LW is handled empirically using a rescaling ap-

proach. In the CanAM4model, the optical properties of

gases are modeled using a correlated-k distribution (Li

and Barker 2005) while the radiative transfer is simu-

lated using the Monte Carlo independent column ap-

proximation and two-stream radiative transfer solutions

(von Salzen et al. 2012, manuscript submitted toAtmos.–

Ocean; Pincus et al. 2003; Li 2002). Scattering by clouds

droplets is included based on the absorption approxi-

mation (Li and Fu 2000). Note that both the GEOS-5

and CanAM4models take into account the scattering of

cloud in the longwave.

As in Huang et al. (2008, 2010), the spectral CRE

derived from the AIRS data is averaged onto the 28
latitude 3 2.58 longitude grid box, the same horizontal

resolution of the GFDL AM2 and NASA GEOS-5

models. The horizontal resolution of CCCma CanAM4

is 2.88 3 2.88.

c. Redefining the bands for comparison

Because of the different radiation schemes used in the

three GCMs, the number of bands and the bandwidth

for each band are not necessarily the same. In fact, GFDL

AM2 uses 8 bands in the LWwhile NASAGEOS-5 uses

10 bands and CanAM4 uses 9 (Table 2). To facilitate the

comparison, we define five new bands (Table 2) to be

used for comparisons between GCMs and between

GCMs and observations, each of which is either a band

common to theGCMradiative transfer schemes or some

combination of bands used in the GCMs. This ensures

the maximum compatibility among GCMs for the band-

by-band comparisons. As shown in Table 2, aftermerging

into five bands, the bandwidth structures ofGEOS-5 and

CanAM4 models are for the most part consistent with

each other and consistent with the five bands defined for

the observational analysis. AM2 bandwidths are slightly

different. To understand the effect of such intrinsic dif-

ferences in the bandwidths in theGCMs on the band-by-

band fluxes andCREs, we compute the flux of each band

(Fmodel_bnd) for a blackbody at a temperatureT using the

bandwidth from each GCM. This flux is then compared

to the flux of the band defined for this study (Fbnd). The

relative difference, (Fmodel_bnd 2 Fbnd)/Fbnd, is shown in

Fig. 1 forT5 220 K andT5 298 K, respectively. Except

for band 4 (ozone band, 980–1100cm21) and band 5

(1100–1400 cm21), the relative difference due to the

varying bandwidths is within 10% (Figs. 1a,b). By sub-

tracting the flux forT5 298 K from theflux forT5 220 K,

TABLE 1. Difference between OLR estimated from AIRS spectra with algorithms described in Huang et al. (2008, 2010), denoted as

OLRAIRS_huang, andOLR from collocated CERESmeasurements, denoted as OLRCERES. Only observations over the tropical oceans are

used here. Number of collocated observations as well as the mean difference and standard deviation are listed for each year as mean 6
standard deviation.

Clear sky over the ocean Cloudy sky over the ocean

Number of

observations OLRAIRS_huang 2 OLRCERES (W m22)

Number of

observations OLRAIRS_huang 2 OLRCERES (W m22)

2003 1.05 3 106 0.84 6 1.56 1.18 3 107 2.66 65.68

2004 1.08 3 106 0.67 61.52 1.24 3 107 2.15 65.51

2005 1.08 3 106 1.42 61.68 1.26 3 107 2.88 65.79

2006 1.08 3 106 1.55 61.74 1.27 3 107 2.94 65.92

2007 1.04 3 106 1.73 61.86 1.27 3 107 3.00 65.92
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which mimics the magnitude of LW CRE (Fig. 1c), we

find that the relative difference for each band in each

GCM’s radiation scheme is about the same. The largest

relative difference is ;33% and always occurs in the

ozone band. This larger error occurs because of the rapid

decrease of the blackbody curve between 220 and 298 K

over this band, which causes the small bandwidth dif-

ferences betweenAM2 andGEOS5–CanAM4 to lead to

large fractional difference in flux. For this reason, we

omit here the ozone band (band 4) in some analyses pre-

sented in sections 3 and 4. If an ozone band result is dis-

cussed, it must be interpreted with caution for the GFDL

AM2, which has a different bandwidth for the band from

the other two GCMs and the observations. For most of

the analysis, our focus is primarily on bands 1, 2, and 3,

for which the intrinsic bandwidth differences in the

GCMs yield nomore than 10% relative difference in the

flux, CRE, and fCRE.

3. Model intercomparisons and comparisons with
observations: Averages over the tropical ocean

Figure 2 shows the 5-yr averages of all-sky OLR and

LWCRE from theNASAGEOS-5 andCCCmaCanAM4

model simulations, 3-yr averages from the GFDL AM2

simulation, and the counterpart 5-yr averages from the

collocated AIRS and CERES observations (hereafter,

referred to as ‘‘observations’’ for brevity). Generally the

models and the observations are consistent with each

other on the broad spatial features of both all-sky OLR

TABLE 2. The LW bands used in each GCM as well as the five bands used in this study for the comparisons across all GCMs and

observations. The bandwidths are given in wavenumber (cm21). The major absorbers of each band are also listed.

Major absorber(s)

Band used in this

study (cm21) GFDL band ID GEOS-5 band ID CanAM4 band ID

H2O Band 1: 0–560

and .1400

Bands 1 and 8 (0–560

and .1400)

Bands 1 and 2 (0–540)

and bands 8 and 9 (.1380)

Bands 1–3 (.1400)

Bands 8 and 9 (0–540)

CO2 Band 2: 560–800 Band 2 (560–800) Bands 3 and 10 (540–800) Band 7 (540–800)

H2O continuum Band 3: 800–980 Band 3 and 4 (800–990) Band 4 (800–980) Band 6 (800–980)

O3 Band 4: 980–1100 Band 5 (990–1070) Band 5 (980–1100) Band 5 (980–1100)

H2O continuum;

CH4, N2O

Band 5: 1100–1400 Band 6 (1070–1200)

Band 7 (1200–1400)

Band 6 (1100–1215)

Band 7 (1215–1380)

Band 4 (1100–1400)

FIG. 1. (a) The percentage flux difference due to differences between intrinsic GCM band-

widths defined in each GCM and the bandwidths used in this study (refer to Table 2 for the

details). Flux is calculated for a blackbody at 220 K. (b) As in (a), but for a blackbody at 298 K.

(c) The flux difference between (a) and (b) expressed in percentage.
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and longwave CRE. In the tropical Pacific warm pool

east of the Maritime Continent, the AM2 and CanAM4

models have lower all-sky OLR than the observation

and the GEOS-5 model. Accordingly, their LW CREs

are higher than those in the observations and the GEOS-5

model. TheLWCRE is only;10 W m22 (or even smaller)

over the oceans west of major continents because these

regions are frequently covered by marine stratus with

cloud top ;1 km and thus have little thermal contrast

with surface. Judging from the LW broadband CRE here

alone, observations and all GCMs seemingly agree better

over the low-cloud regions than over the high-cloud re-

gions such as the ITCZ and Southern Pacific convergence

zone (SPCZ). However, as we shall show in the following

subsections, the fCRE over the low-cloud regions is indeed

quite different among theGCMs and between themodels

and observations.

a. Long-term means and seasonal cycles

Table 3 summarizes the multiyear means of the LW

broadband and band-by-band CREs averaged over the

entire tropical oceans. Observed long-term mean LW

broadband CRE is 28.5 W m22 while the model results

are slightly lower by 0.2–1.2 W m22 (i.e., 0.7%–4%

smaller). However, the absolute difference in the CRE

of a particular band could be easily as large as, or even

larger than, the absolute broadband difference (hence

fractional difference in a band could bemuch larger than

that in broadband). For example, the differences be-

tween observed and simulated CREs in band 2 (the

CO2 band) are ;20.6 to 0.7 W m22 (214% to 116%

difference). The difference between observed and

CanAM4-simulatedCRE in band 1 alone is;1.12 W m22

(;20% difference). Modeled broadband CREs are al-

ways smaller than the observed CRE, but modeled

CREs in a given band could be either larger or smaller

than their observed counterparts. Such compensation

among bands leads to an apparent good agreement of

the broadband LW CRE. Band-by-band CREs exposes

such compensation in a quantitative way and makes it

possible to further examine the sources of the compen-

sating biases.

FIG. 2. The multiyear mean of (left) all-sky OLR and (right) LW broadband LW CRE derived from collocated (top to bottom) AIRS

and CERES observations and the GFDL AM2, NASA GEOS5, and CCCma CanAM4 model simulations. Note that color scales are

different for the left and right panels.
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Among the five bands examined here, the largest

contributor to LW CRE is band 3, the first window re-

gion from 800 to 980 cm21, which is responsible for

;(32–36)% of LW CRE. There is a large discrepancy

in the CRE of band 4 (ozone band) between the AM2

model and the other two models and the observations.

As mentioned in section 2, the AM2 model has a dif-

ferent bandwidth for band 4 while others have identical

bandwidth. Second, the AM2 simulation here is done

with prescribed climatological ozone profiles at the 1990s

level obtained from a combination of ozonesonde and

satellite measurements (Paul et al. 1998; Anderson et al.

2004). In contrast, the GEOS-5 model ozone fields are

calculated online inside the GCM using a parameteriza-

tion described in Rienecker et al. (2008). The CanAM4

simulation used a zonally averaged version of the At-

mospheric Chemistry and Climate (AC&C)/Stratospheric

Processes and Their Role in Climate (SPARC) ozone

database that was prepared for phase 5 of the Coupled

Model Intercomparison Project (CMIP5) model simu-

lations (Cionni et al. 2011). Over the historical period,

the database consists of time-varying ozone fields based

on observations for the stratosphere and chemistry–

climate model simulations for the troposphere. Band 4,

the ozone band, never saturates, which makes it sensi-

tive to stratospheric and tropospheric ozone as well as

to surface and cloud temperatures. Moreover, ozone

spatial distribution is indeed affected by the large-scale

circulation and transport. Therefore, besides the band-

width discrepancies, whether realistic online ozone fields

are available or not could potentially affect the simu-

lated CRE results as well.

Seasonal cycles of CREs of bands 1–3 are shown in

Fig. 3. Compared to the mean values shown in Table 3,

the seasonal fluctuation is very small (;3.5% or even

smaller). For both models and observations, band CRE

seasonal cycles closely track one another. The observa-

tions show two peaks with one in April–May and the

other in November–December, which is related to the

movement of the sun as well as to the north–south

seasonal movement of ITCZ. The models also show

such semiseasonal cycles with similar phase except that

the first peak in the GEOS-5 is one month ahead of the

observations. Although the phases are generally con-

sistent with each other, the magnitudes of the seasonal

cycles are noticeably different by about a factor of 2,

with the observations and GEOS-5 having similar am-

plitudes and those of AM2 and CanAM4 being much

smaller.

The good phase syncing between CREs of different

bands is largely due to the fact that for all the LW bands

the surface and cloud-top temperature contrast is the

largest driver of CRE. Therefore, they all vary in phase

with the LW broadband CRE in terms of the absolute

magnitude. Seasonal cycle of the fCRE (Fig. 4) is differ-

ent because the LW broadband CRE is always nor-

malized to 100% for each month. In contrast to the

seasonal cycle of absolute band CRE (Fig. 3), for both

models and observations a single annual cycle is domi-

nant instead of a semiannual cycle. The seasonal cycle of

band 1 (water vapor band) fCRE is strongly anticorre-

lated with that of band 3 (the window region) fCRE. For

bothmodels and the observation, band 1 peaks inMarch–

April whereas band 3 peaks in July–August. This sug-

gests that any phase discrepancies shown in Fig. 3 are

likely dominated by differences in cloud fraction rather

than differences in cloud-top height (otherwise, the same

discrepancies would have appeared in such fCRE sea-

sonal cycles as well). For fCRE seasonal cycles, the GCMs

have similar amplitudes but are 2–3 times smaller than

the observed amplitude (Fig. 4).

Figure 4 also shows that the seasonal cycle of band 2

fCRE closely tracks that of band 1 but is anticorrelated

with that of band 3. Figure 5 plots the correlation co-

efficients between the seasonal cycle of band 1 fCRE and

the seasonal cycle of fCRE of the remaining bands.Models

and observations behave similarly in terms of such in-

terband correlations: window bands (bands 3 and 5) are

strongly anticorrelated with band 1. The observations

exhibit a moderate positive correlation between bands

TABLE 3. Multiyear means of LW broadband and band-by-band CRE averaged over the tropical oceans. The numbers in parentheses

are the fractional contribution to the total LW broadband CRE (fCRE). The AM2 results for band 4 are in italics to denote the prominent

bandwidth differences between the GFDL AM2 model and the other two GCMs and observations (refer to section 2 for detailed

discussions).

Observation (W m22) GFDL AM2 (W m22) NASA GEOS-5 (W m22)

CCCma CanAM4

(W m22)

LW broadband 28.5 (100%) 28.0(100%) 28.3 (100%) 27.3 (100%)

Band 1: 0–560 and .1400 cm21 5.59 (19.6%) 5.31 (19.0%) 5.11 (18.1%) 4.47 (16.3%)

Band 2: 560–800 cm21 4.33 (15.2%) 3.72 (13.3%) 5.07 (18.0%) 4.82 (17.6%)

Band 3: 800–980 cm21 9.25 (32.4%) 9.96 (35.6%) 9.03 (32.0%) 8.80 (32.2%)

Band 4: 980–1100 cm21 3.72 (13.0%) 1.68 (6.0%) 3.63 (12.9%) 3.75 (13.7%)

Band 5: 1100–1400 cm21 5.62 (19.7%) 7.32 (26.2%) 5.41 (19.2%) 5.50 (20.1%)
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2 and 1 while much stronger positive correlations are

seen for the GCMs. The largest discrepancies exist in

band 4 (the ozone band). As expected, band 4 fCRE in

observations, GEOS-5, and CanAM4 shows a strong in-

phase relation with band 3 fCRE, since cloud and surface

thermal contrast significantly affects both bands. For the

AM2 model, the correlation between band 4 and band 3

fCRE is weak, partly due to the prescribed climatological

ozone profiles. Such differences indicate the benefit of

having realistic or self-consistent ozone profiles in the

transient simulations.

b. Interpretation of the seasonal cycles

To understand the seasonal cycles shown in Figs. 3 and

4, it is instructive to look the seasonality of cloud mac-

roscopic properties averaged over the tropical oceans.

Figure 6a shows the International Satellite Cloud Cli-

matology Project (ISCCP; Rossow and Schiffer 1991,

1999) long-term mean seasonal cycles of cloud fractions

for high, middle, and low cloud, respectively. The peaks

of high-cloud fraction can be found during two periods:

April–May and November–January, the latter being also

the peak for middle-cloud fraction. The seasonality of

high-cloud and middle-cloud fraction is consistent with

the observed seasonal cycles of band-by-band CRE in

Fig. 3. Meanwhile, even though the low-cloud fraction

peaks in July–August, it contributes little to the observed

seasonal cycle of CRE because low clouds contribute

little to the absolute LW CRE or the absolute band

CRE.

Figure 6b shows the ISCCP mean seasonal cycle of

cloud-top pressure (CTP) averaged over the tropical

oceans. In contrast to the seasonality of cloud fractions,

it shows thatmean cloud top is highest inApril–May and

lowest in August–September. As shown in Fig. 7b in

Huang et al. (2010), the higher the cloud top, the larger

band 1’s contribution to the total LW CRE and the

smaller band 3’s contribution. This behavior is mainly

due to the shift of blackbody peak emission toward lower

frequency as the cloud-top temperature becomes colder

(i.e., Wien’s displacement law). Therefore, the season-

ality of CTP is consistent with the observed seasonality

of fCRE in Fig. 4. Note that even band 1 has one subband

(0–560 cm21) with frequency lower than band 3 and the

other subband (.1400 cm21) with frequency higher

than band 3, but the 0–560 cm21 subband always dom-

inates the flux of band 1 for the range of temperatures of

our interest. TheH2O v2 band (.1400 cm21) is at the far

tail of the branch of blackbody emission curve where

radiance is nearly exponentially decay with the fre-

quency. As a result, its contribution to the flux is always

small. For example, for a blackbody at 288 K, 84.8% of

band 1 flux originates from the 0–560 cm21 subband; for

a blackbody at 210 K, 97.8% of band 1 flux is from the

FIG. 3. The mean seasonal cycles of Band1 CRE (blue lines), Band2 CRE (green lines), and

Band3 CRE (red lines). Definitions of bandwidths can be found in Table 2. For better visu-

alization, CREs from the observation and GEOS-5 model are plotted on one scale (61 W m22)

and those from the AM2 and CanAM4 model are plotted on another scale (60.5 W m22).
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0–560 cm21 subband. This is why we can still useWien’s

displacement law to explain the relative importance of

the contributions of bands 1 and 3.

Given the strong anticorrelation between band 1 fCRE

and band 3 fCRE, it is worthwhile to explore to what

extent we can use the ISCCP mean seasonal cycle of

CTP to estimate the amplitudes of the seasonal cycles

of bands 1 and 3. For both seasonal cycles, we use the

standard deviation as a measure of the amplitude. Sim-

ilar to Huang et al. (2010), we assume a layer of opti-

cally thick cloud (t �1) and typical tropical sounding

profiles of temperature, humidity, and ozone (McClatchey

et al. 1972). Then we vary the cloud top from the

lower troposphere to the upper troposphere and use

MODTRAN5 (Berk et al. 2005) to calculate the fCRE of

bands 1 and 3 accordingly (Fig. 7a). When the cloud top

is lower than 600 hPa, band 1 fCRE is less than ;6%

whereas band 3 fCRE is more than 40%. As the cloud top

moves upward, the contribution from band 1 gradually

increases while that from band 3 decreases. When the

cloud top reaches 150 hPa, the contributions from both

bands are essentially equal (fCRE; 28%). Figure 7a also

shows that, above 600 hPa, the change of the fractional

contribution with respect to cloud-top pressure is nearly

linear. Therefore, we define the linear regression slope

for the ith band as

ri 5
df iCRE

dCTP
, (2)

where superscript i denotes the ith band; r1 and r3 are

then derived by linear regression of the curve shown in

Fig. 7a. Then the amplitude of seasonal cycle of band 1

(band 3) can then be estimated by multiplying r1 (r3)

by the standard deviation of ISCCP CTP seasonal cycle

in Fig. 6b, which is 12.2 hPa. Figure 7b shows the am-

plitudes estimated in this manner versus the real am-

plitudes derived from Fig. 4, top panel. The simple

estimations are 82% and 85% of the observed values for

bands 1 and 3, respectively. No cloud fraction values are

involved in this estimation, which corroborates the fact

that the fractional contribution of each band is largely

insensitive to cloud fraction but is mainly affected by

changes in cloud-top pressure. This behavior is very

different from that of the absolute amount of band-by-

bandCRE, which is largely influenced by the fractions of

high cloud and middle clouds.

Since the ISCCP CTP seasonality can largely explain

the observed seasonality of fCRE, themodel–observation

discrepancies shown in Fig. 4 should be largely due to

the difference in observed and simulated seasonal cy-

cles of CTP, especially the amplitudes. Using the same

slopes of r1 and r3 derived above, we estimate that the

FIG. 4. Themean seasonal cycle of fCRE, the fractional contribution of a band to the total LW

CRE. Bands 1–3 are plotted in blue lines, green lines, and red lines, respectively. (top to

bottom) AIRS and CERES observations and the GFDL AM2, NASA GEOS5, and CCCma

CanAM4 model simulations.
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amplitudes (the standard deviations) of CTP seasonal

cycles for AM2, GEOS-5, and CanAM4 models are 2.9,

3.7, and 4.7 hPa, respectively (in comparison to the

12.2 hPa derived from ISCCP’s mean CTP seasonal

cycle).

c. Interannual variations

Figure 8 shows the 5-month running means of de-

seasonalized time series of CRE along with the ENSO

index. Following several previous studies (Deser and

Wallace 1990; Fu et al. 1996; Klein et al. 1999), the ENSO

index is defined as the 5-month running mean of de-

seasonalized SST anomalies averaged over the tropical

eastern Pacific (defined as the area between 58S and 58N
and the South American coast and 1808W). The ampli-

tude of interannual variation of LW broadband CRE is

;0.5 W m22. The running-mean time series of observed

CRE and those of simulated by the AM2 and CanAM4

models are positively correlated with the ENSO index.

They tend to have positive anomalies when the eastern

Pacific SST anomalies are also positive (i.e., the El Niño

state). GEOS-5 (red line in Fig. 8a) shows a different

response to the ENSO index. The correlation between

GEOS-5 broadband LWCRE time series and the ENSO

index is slightly positive (;0.02) but not statistically

significant. The variation of each band CRE anomalies

with the ENSO index closely follows the variation of

LW broadband CRE anomalies, as shown in Fig. 8b for

band 1 (results from other bands not shown here).

When the 5-month running mean of the deseasonal-

ized anomalies of fCRE is correlated with the ENSO in-

dex (Fig. 9), all three models agree with the observation

on the signs of correlations over all bands except band 4

(the ozone band). The correlation with the ENSO index

is positive for band 1 (the H2O band) and negative for

bands 3 and 5 (the window bands). Correlations using

the observations tend to be smaller than those from the

simulations, which reflects either the noisy nature of the

observations or the model deficiencies that lead to overly

strong correlations between fCRE and ENSO index, or

both. The correlations in Fig. 9 indicate to a large extent

how the cloud-top height varies at the interannual time

scale with the ENSO index. Both the observation and

models suggest that, averaged over the entire tropical

ocean, the mean infrared effective cloud top averaged

over the tropical oceans tends to be elevated when the

ENSO index is positive (El Niño state) and vice versa.

4. Model intercomparisons and comparisons with
observations: Spatial distributions and
composite analysis

a. Spatial distributions

Discussions in the previous section were about the

averages over the entire tropical oceans. In this section,

spatial distributions of band-by-band CRE and fCRE are

to be discussed. As explained in section 1, the map of

FIG. 5. Correlation coefficients between the mean seasonal cycle of band 1 and that of all

other bands. The observed relation is plotted in blue. The GFDMAM2, NASA GEOS-5, and

CanAM4 models are plotted in green, red, and cyan lines, respectively.
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absolute CRE of a particular band largely resembles the

map of broadband LW CRE (right panels in Fig. 2) and

highlights the contrast of absolute CRE between regions

featuring high clouds [where broadband LW CRE is

;(60–80) W m22] and regions dominated by low clouds

[where broadband LWCRE is;(10–20)W m22 or even

less]. Therefore, in this section the focus is on the spatial

distributions of fCRE. Because the broadband and band-

by-band CRE provide similar information, we mainly

focus on the spatial distributions of fCRE in this section.

Figure 10a shows the observed band 1 fCRE. As ex-

pected, the largest values of fCRE [;(0.25–0.35)] are

found over the regions with frequent occurrence of high

clouds, such as ITCZ, SPCZ, and Indian monsoon re-

gions. The smallest values occur in regions frequently

covered by marine stratus (i.e., low cloud), such as the

Pacific coast off South America, the Namibia coast, and

the ocean region west of Australia. Figures 10b–d show

the differences between modeled and observed band 1

fCRE. Simulated climatological mean positions of ITCZ

over the equatorial Pacific and Atlantic are south of the

observed ones, and the widths of ITCZ are also differ-

ent, which accounts for the negative differences north

of 88N and the slight positive differences between 08 and
88N of the tropical Pacific and Atlantic. For regions

where low clouds are prevalent, modeled fCRE values

are usually higher than the observed ones but the three

models largely agree with each other.

For band 2 (CO2 band; Fig. 10e), the contrast in fCRE

between high-cloud and low-cloud regions (0.16 vs 0.11)

is much smaller than that of band 1 (0.3 vs 0.05). The

models largely disagree with each other (Figs. 10f–h) on

the spatial distribution of fCRE. Compared to the ob-

servation, AM2 considerably underestimates band 2

fCRE over the low-cloud regions but largely agrees with

observations over the rest of tropical oceans. GEOS-5

uniformly overestimates band 2 fCRE everywhere over

the tropical oceans by ;(0.02–0.04) with slightly larger

overestimates for parts of the low-cloud regions. CanAM4

exceeds observations by ;(0.02–0.04) for the tropical

oceans except the low-cloud region, where the differ-

ence is indeed slightly negative, between 20.02 and 0.

The observed band 3 fCRE (Fig. 11a) peaks over the

low-cloud regions and drops over the high-cloud re-

gions. This is consistent with the variation of band 3 fCRE

with cloud-top pressure (e.g., Fig. 7a). Compared to the

observation, the AM2 model overestimates band 3 fCRE

nearly uniformly over the entire tropical oceans by;0.04.

The GEOS5 and CanAM4, on the other hand, under-

estimate band 3 fCRE over the low-cloud regions and are

close to the observations for the rest regions of the do-

main with only slight positive or negative differences.

FIG. 6. (a) The ISCCP climatological seasonal cycle (deviations from the climatological

mean) of cloud fraction for high cloud (blue), middle cloud (green), and low cloud (red) av-

eraged over the tropical oceans. (b) The ISCCP climatological seasonal cycle of cloud-top

pressure averaged over the tropical oceans.
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These model–observation differences are opposite to

those for band 2, for which the GFDL AM2 under-

estimates over the low-cloud region and theGEOS5 and

CanAM4 overestimate over the majority of the tropical

oceans. This is another way to expose the compensating

biases among different bands in a GCM. As mentioned

in section 1 and Huang et al. (2010), such differences in

modeled fCRE can be attributed to the differences in

cloud-top temperature. The differences between the

AM2 and observations over both bands 2 and 3 consis-

tently indicate that, on average, the cloud-top temper-

ature over the low-cloud regions are higher thanobserved

ones, which leads to an overestimation of band 3 fCRE

and the underestimation of band 2 fCRE. Similarly, for

the GEOS-5, the mean cloud-top temperatures are lower

than the observed ones, accounting for the underesti-

mation of band 3 fCRE and the overestimation of band 2

fCRE. Note that it is known that there is still difficulty in

simulating temperature profiles in the low-cloud regions

(temperature inversion, boundary layer mixing, etc.). So

the differences between simulated and observed cloud-

top temperature could be due to cloud-top height dif-

ference as well as boundary layer temperature difference

between models and observations. For the CanAM4, the

overestimation for band 2 is generally smaller than in

GEOS-5 over the low-cloud regions but still noticeable

over certain areas, such as the Peru coast and Namibia

coasts, which suggests lower cloud-top temperature than

observed ones in these regions.

The observed spatial map of band 4 fCRE (ozone band;

Fig. 10e) is similar to that of band 3, owing to the fact

that the ozone band is sensitive to the cloud and surface

thermal contrast in a similar way as for neighboring

bands (i.e., bands 3 and 5). The ozone band in the AM2

model has a bandwidth 30 cm21 shorter than that used

in the observations and the GEOS-5 and CanAM4

models (Table 2), which accounts for the consistently

smaller contribution in the AM2 (Fig. 10f) than in the

observation. GEOS-5 agrees best with observations,

even though smaller biases can still be seen over low-

cloud regions consistent with those shown in band 3 over

the same region. The calculated online ozone profiles

continuously updated with the dynamical fields in the

GEOS-5 simulation probably contribute to such good

agreement. The spatial maps of band 5 fCRE and model-

observation difference (not shown here) are similar to

those of band 3 because the majority of the radiation of

band 5 comes from the second window region (1100–

1200 cm21).

As mentioned in section 2, the GFDL AM2 radiation

scheme assumes all clouds to be nonscattering in the LW

while the NASA GEOS-5 and CCCma CanAM4 ex-

plicitly take the scattering into account (although the

treatments are different in GEOS-5 and CanAM4).

Therefore, it is meaningful to estimate how much of the

difference shown in Figs. 10 and 11 is due to the in-

clusion of scattering. Similar to Fig. 7, we use the same

conceptual model to estimate such difference. In one

FIG. 7. (a) Change of band 1 fCRE and band 3 fCRE with respect to the cloud-top pressure in

a simple conceptual model in which cloud is assumed to be optically thick and typical tropical

sounding profiles are used. Radiative calculation is done with MODTRAN5. (b) Observed

standard deviations of the seasonal cycles of band 1 fCRE and band 3 fCRE vs estimated

counterparts. Black dashed line denotes the 1:1 slope.
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case cloud is assumed to be nonscattering and, in an-

other case, the scattering is solved by a four-stream

DISORT solver in the MODTRAN5 package (Berk

et al. 2005). The fCRE of the nonscattering case is shown

in Fig. 12a and the difference between the two cases

(scattering 2 nonscattering) is shown in Fig. 12b. For

clouds below 10 km, the difference is negligible except

for band 3 and cloud top below 4 km. For clouds above

10 km, there are noticeable differences in all five bands.

From 10 to 13 km, the difference is within 60.03. The

FIG. 8. (a) Five-month running means of deseasonalized anomalies of total LW CRE from

the observations (blue line), the GFDL AM2 (green line), NASA GEOS-5 output (red line),

andCCCmaCanAM4 (cyan line) simulations. TheENSO index is plotted as a gray dashed line.

(b) As in (a), but for the band 1 CRE instead of total LWCRE. Following previous studies, the

ENSO index is defined as the 5-month running mean of the SST anomalies averaged over the

region of 58S–58N and the South American coast to 1808W.

FIG. 9. Correlation coefficients between the ENSO index and the 5-month running means of

deseasonalized fCRE of each band. Results from observation and three models are shown in

different colors. A plus sign indicates a .90% confidence level.
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largest difference (;20.09) is seen in band 1 for cloud-

top height at 14 km. Such large negative difference can

be understood from two aspects: 1) according to Wien’s

displacement law, for a cloud-top height at 14 km (i.e.,

cloud-top pressure at ;150 mb and cloud-top temper-

ature around 210 K), the fractional contribution from

band 1 is as large as that from band 3 (Fig. 12a); and 2)

for ice, the imaginary part of the index of refraction has

a minimum value at 410 cm21 (Warren 1984; Warren

and Brandt 2008), which means that the inclusion of

scattering would lead to the strongest scattering effect

around this wavenumber. Overall, Fig. 12b indicates

that including scattering in the radiation scheme should

have minor or negligible impact on the fCRE, unless the

cloud top is very high ($14 km). Note that over the

tropical oceans, only a small fraction clouds can have

their tops at or above 14 km (;150 hPa). Cloud pro-

filing radar observations suggest that over the tropical

belt this fraction is ;5% or less and is concentrated in

the core of the ITCZ (Haynes and Stephens 2007). For

the GCMs examined here, the monthly mean cloud

fraction above 150 hPa is about the same as the ob-

served. Therefore, the discrepancies between models

and observations in either averages or spatial distribu-

tions are primarily due to the difference in the modeled

and observed cloud properties themselves, and not due

to the inclusion of scattering or the details of scattering

treatment in the radiation scheme.

b. Composite analysis

In addition to the comparisons of spatial fCRE, we

carry out a composite analysis to delineate the de-

pendence of monthly-mean fCRE with respect to the

monthly-mean 500-hPa vertical velocity (v500), an in-

dicator commonly used for the large-scale dynamical

regimes (Bony et al. 2004; Bony andDufresne 2005). For

each GCM, its own monthly-mean v500 fields are used

accordingly. For observation, the monthly-mean v500

from the interim European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-

Interim; Dee et al. 2011) are used. The results for bands

1–3 are summarized in Fig. 13. For the large-scale as-

cending regime (v500 , 0), the composite band 1 and 2

fCRE values gradually decrease as v500 approaches 0.

The sharpest change of fCRE is around v500 5 0 for the

change from the ascending regime to the subsidence

regime. The composited band 1 and band 2 fCRE of three

models all level off for strong large-scale subsidence

(v500 . 0.05 Pa s21). The observed band 1 and 2 fCRE

composites for such strong subsidence still gradually

FIG. 10. (a) Map of observed long-term mean of band 1 fCRE. (b)–(d) Maps of model–observation difference in the long-term mean of

band 1 fCRE for the GFDL AM2, NASAGEOS-5, and CCCma CanAM4 simulations, respectively. Note the same color scale is used for

(b)–(d). (e) As in (a), but for band 2 fCRE. (f)–(h) As in (b)–(d), but for band 2 fCRE.
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decrease with the increase of v500, but statistically they

are bracketed within the 1s deviation from model

composite. The behavior of band 3 fCRE is opposite to

those of bands 1 and 2 at both the ascending and sub-

sidence regimes. These features are generally consistent

with our interpretation of fCRE as a proxy of effective

thermal cloud-top height. When ascending becomes

weaker, the cloud-top height is expected to be lower so

the fCRE of bands 1 and 2 becomes smaller while that

of band 3 becomes larger. When subsidence becomes

stronger, clouds, if any, are mostly capped within the

boundary layer, and therefore fCRE either levels off or

changes little with large positive v500. Consistent with

spatial distributions shown in Figs. 10 and 11, the GFDL

band 2 fCRE composite is lower than its observed coun-

terpart and its band 3 fCRE composite is higher than its

FIG. 11. As in Fig. 10, but for band 3 fCRE and band 4 fCRE.

FIG. 12. (a) Band-by-band fCRE for different cloud-top height (2–14 km). Clouds are assumed to be opaque and

nonscattering. (b) The difference in fCRE between the case of scattering cloud and the case of nonscattering cloud

when everything else remains the same.
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observed counterpart for all v500 bins. CanAM4 and

GEOS-5 composites of band 3 fCRE agree better with

observed ones at the ascending branch than at the de-

scending branch, which is also consistent with compari-

sons of spatial distribution.

5. Conclusions and discussion

Taking advantage of a multiyear multiband LW CRE

dataset over the tropical oceans derived from collocated

AIRS and CERES observations, this study evaluates in

details the LW band-by-band CRE simulated by three

different GCMs. It quantitatively demonstrates that,

even when the model-simulated broadband LW CRE

largely agrees with the observed one, compensating

biases from different LW bands can be prominent. The

band-by-band CRE differences between models and

observations can be as large as the difference in the LW

broadband CRE. We prefer to use in our analysis the

fractional contribution of each band to the LW CRE,

fCRE, which has the unique advantage of being sensitive

to cloud-top height–temperature and not sensitive to

cloud fraction. This property of fCRE enables us to

separate the contribution of cloud fraction and cloud-top

height to the top-of-atmosphere LW flux. The averaged

fCRE over the tropical oceans, their seasonal cycles, and

their interannual variations are documented. Band 1

fCRE (H2O band) is strongly anticorrelated with band 3

and band 5 fCRE (window regions). The observed sea-

sonal cycle is consistent with the seasonal cycles of

ISCCP cloud-top pressure climatology on both the phase

and the amplitude. The simulated seasonal cycles of fCRE

agree with observations of the phase but not the ampli-

tude, which is much smaller in the simulations, indicating

smaller seasonal variations of simulated cloud-top pres-

sure, on average. As for interannual variations, observa-

tions and all GCMs agree on the positive (negative)

correlations between band 1 fCRE (bands 3 and 5 fCRE)

and the ENSO index. Spatial distributions of band-by-

band fCRE highlight the large discrepancies between

models and observations in the regions with frequent

occurrence of low clouds. While the total LW CRE is

usually not used for the study of low clouds, fractional

CRE contributions are sensitive to the low cloud-top

height (or equivalently, low cloud temperature). This com-

plements the diagnostics of low cloud with shortwave

FIG. 13. Composite of the monthly-mean fCRE with respect to the corresponding monthly-

mean 500-hPa vertical velocity (v500). Modeled monthly-mean v500 is used for the (a) band 1,

(b) band 2, and (c) band 3 composite. For the observation, ERA-Interim reanalysis of v500 is

used. The bin size is 0.02 Pa s21. For statistical robustness, only bins with more than 0.1% of

total data points are calculated here. GFDL, CanAM4, and NASAGEOS-5 results are plotted

in black, blue, and green colors, respectively. Observation is plotted in red. The vertical ticks

represent the 61s deviation from the composite mean for the GFDL results. The standard

deviations of composites of the other two models are similar to that of GFDL.
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reflectance, which is more sensitive to cloud liquid path

than to the cloud-top height–temperature. Cloud-top

height only directly affects the shortwave reflectance by

changing the amount of solar absorption due to water

vapor above the cloud. But the change of cloud-top

height dominates the change of LW band-by-band fCRE.

Therefore, such band-by-band fCRE offers a useful di-

agnostics for the low clouds simulated by the models.

While this analysis focuses on fCRE for the reason

articulated in section 1, both the absolute LW CRE and

fCRE of each band are important to diagnose the quality

of cloud simulations. Cloud fraction significantly affects

the absolute LW CRE while fCRE is more sensitive to

cloud-top height/temperature. If a model is poor in pro-

ducing correct cloud fractions for a certain type of cloud

(e.g., the underestimation of low cloud fractions in the

GEOS-5 model as noted in comparison with observed

low cloud fractions), it would be logical and practical to

first address the issue of cloud fraction and then evaluate

the fCRE. For both model evaluation and cloud feedback

study, fCRE is a meaningful metric to use and it comple-

ments the absolute broadband LW CRE.

Recently considerable effort has been invested to

develop satellite simulators that reconcile cloud field

views from the satellite and model perspectives, for ex-

ample, the ISCCP simulator by Klein and Jakob (1999)

and the recent COSP simulator (Bodas-Salcedo et al.

2011) adopted by many modeling centers. The objective

of such simulator is to ensure fair comparisons between

simulated and retrieved cloud variables, such as cloud-

top height (CTH), cloud-top pressure (CTP), or cloud-

top temperature (CTT). We think that the information

content of fCRE diagnostics does not overlap with that of

cloud-related satellite simulator diagnostics, but is rather

complimentary and enhances our understanding of sim-

ulated clouds. Here is why:

1) Except for specialized case studies with additional

coding efforts, essentially all GCM evaluations or

data–model comparisons involve spatial or temporal

averages or both (e.g., the commonly used monthly-

mean datasets). While relations between TOA radi-

ative quantities (flux and CRE) and geophysical

parameters at any given moment are relatively easy

to understand, the relations between averaged TOA

quantities and averaged geophysical parameters some-

times are much more difficult to interpret. This is

because of the strong nonlinearity between the TOA

radiative quantities and geophysical parameters (e.g.,

the dependence of OLR on cloud-top height) as well

as the way that averaging is performed. For example,

a simple arithmetic monthly average of CTP is not

equivalent to a simple arithmetic monthly average of

CTH. The value of fCRE, on the other hand, is

intrinsically related to TOA LW CRE and the radi-

ation budget.

2) For passive remote sensing products such as ISCCP

and MODIS, CTH, CTP, and CTT are secondary

estimated values in retrieval process. For monthly

averages of such quantities (the level-3 product), they

are strongly influenced by cloud detection tech-

niques. Moreover, large discrepancies could exist

among satellite products due to different techniques

used in cloud-top height estimation (e.g., CO2 slicing

method vs 11-mm radiance estimation). For example,

Garay et al. (2008) showed that, over the southeast-

ern Pacific, ISCCP CTH retrievals were found to be

biased high by 1.4–2 km while MODIS was biased

high by more than 2 km. Furthermore, the differ-

ences between simulated and observed vertical tem-

perature profiles further complicate any comparisons

between satellite-observed and modeled CTP and

CTT.

Therefore, fCRE provides useful diagnostics of the

vertical location of simulated cloud fields and comple-

ments nicely diagnostics based on the satellite–simulator

approach. To completely understand the connections

among model biases in LW radiation budget and CRE,

in fCRE, in cloud fields as seen in a satellite simulator,

and in temperature and humidity fields is beyond the

scope of this study but is a focal point of our ongoing

follow-up studies.

To our knowledge, this is the first study to compare

the simulated band-by-band LW CRE from multiple

GCMs. While the results of the ozone bands are difficult

to interpret, largely because of inconsistent treatments

of the ozone in the model, they do show that different

treatment of ozone affects not only the chemistry but

also the LW CRE and radiation budget at such a band-

by-band level. The good agreement between NASA

GEOS-5 and observation in the ozone bandCRE (Fig. 11)

suggests that, when the detailed band-by-band decom-

positions of LW CRE are scrutinized against observa-

tions, the effect of ozone cannot be neglected. This has

implications for the tuning of GCMs to match the TOA

energy balance as well as the climate projections in the

presence of ozone recovery. Generally speaking, it is

possible, if not very likely, to tune GCM to achieve a the

TOA balance between outgoing longwave flux and net

incoming shortwave flux for current climate while the

band-by-band decomposition of LW flux (or LW CRE)

is different from that observed. For example, the bias in

the TOAenergy imbalance due to simple representation

of time-varying ozone fields can be ‘‘tuned’’ away by

adjusting some less-constrained parameters in various
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GCM parameterization schemes. What is unknown,

however, is what the consequences would be for fu-

ture climate projection simulated by the same GCM

when such incorrect band-by-band composition of

TOA flux for the current climate exists. Our future

work will try to address this kind of question by ana-

lyzing the band-by-band flux and CRE from simula-

tions carried out for different future scenarios prescribed

by the Intergovernmental Panel on Climate Change

(IPCC) assessment.
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