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ABSTRACT

The Desroziers diagnostics (DD) are applied to the cross-calibrated, multiplatform (CCMP) ocean surface

wind datasets to estimate wind speed errors of the ECMWF background, the microwave satellite observa-

tions, and the resulting CCMP analysis. The DD confirm that the ECMWF operational surface wind speed

error standard deviations vary with latitude in the range 0.8–1.3m s21 and that the cross-calibrated Remote

Sensing Systems (RSS) wind speed retrievals’ standard deviations are in the range 0.5–0.7m s21. Further, the

estimated CCMP analysis wind speed standard deviations are in the range 0.2–0.3m s21. The results suggest

the need to revise the parameterization of the errors of the first guess at appropriate time (FGAT) procedure.

Errors for wind speeds,16m s21 are homogeneous; however, for the relatively rare but critical higher wind

speed situations, errors are much larger.

1. Introduction

The cross-calibrated, multiplatform (CCMP) ocean

surface wind project (Atlas et al. 2011) generates high-

quality, high-resolution vector winds over the world’s

oceans beginning with the 1987 launch of the Special

Sensor Microwave Imager (SSM/I) on DMSP-F08,

using Remote Sensing Systems (RSS) microwave sat-

ellite wind retrievals, as well as in situ observations

from ships and buoys. The CCMP data are available at

the Physical Oceanography Distributed Active Ar-

chive Center (PO.DAAC; available online at http://

podaac.jpl.nasa.gov/Cross-Calibrated_Multi-Platform_

OceanSurfaceWindVectorAnalyses) and have been

used in over 100 studies in the peer-reviewed literature

in topics ranging from ocean biology (Gierach et al.

2012) to the Atlantic meridional overturning circulation

(McCarthy et al. 2012), to cite two recent examples. The

variational analysis method (VAM; Hoffman et al. 2003)

is at the center of the CCMP project’s analysis pro-

cedures for combining observations of the wind. The

VAM is essentially a two-dimensional variational data

assimilation. For CCMP the VAM background 10-m

wind fields are from the 40-yr European Centre

for Medium-Range Weather Forecasts (ECMWF)
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Re-Analysis (ERA-40) up to 1998, and from the

ECMWF operational analyses thereafter. ERA-40 and

ECMWF operational analyses assimilate many of the

observations used in CCMP (e.g., see Uppala et al. 2005,

for ERA-40). The VAM extracts additional finer spatial

scales from these data (Atlas et al. 2011, Fig. SB1). The

VAM was developed as a smoothing spline and so im-

plicitly defines the background error covariance by

means of several constraints with adjustable weights,

and does not provide an explicit estimate of the analysis

error. Eventually this work will address these two issues

with the VAM—tuning the VAM in terms of the spec-

ification of observation errors and the weights used in

the cost function, and assigning analysis uncertainty for

the VAM products.

Here we report on our research to develop un-

certainty estimates for wind speed for the VAM inputs

and outputs—that is, for the background (B), the ob-

servations (O), and the analysis (A) wind speed—based

on the Desroziers et al. (2005) diagnostics (DD). Here

the DD are applied to the CCMP wind speeds for 2004.

(Extensions to vector wind quantities are discussed

in section 6.) The DD are applicable to any type of

observation, such as satellite-observed radiances of

Advanced Television Infrared Observation Satellite

(TIROS) Operational Vertical Sounder (ATOVS), At-

mospheric Infrared Sounder (AIRS), and Infrared At-

mospheric Sounding Interferometer (IASI) (Bormann

and Bauer 2010; Bormann et al. 2010, 2011). The DD

have also been used within an ensemble Kalman filter

(EnKF) to adaptively estimate observation errors’ stan-

dard deviations and correlations (Li et al. 2009; Miyoshi

et al. 2013). The DD relationships are exact only if the

analysis system is optimal. In practice no analysis is truly

optimal. However, information from theDD can help to

iteratively refine the analysis system. The DD are only

one approach to the problem of estimating errors and

tuning analysis procedures. For example, the triple col-

location method (e.g., Portabella and Stoffelen 2009)

has also been used for this purpose.Within the smoothing

splines framework (Wahba andWendelberger 1980), one

can use generalized cross validation (GCV) to esti-

mate a small number of parameters related to the

background and observation errors. However, GCV is

costly, while the DD are essentially a no-cost output of

analysis procedures.

2. The Desroziers diagnostics

Desroziers et al. (2005) describe a method to estimate

background, observation, and analysis error covariances

all in observation space from knowledge of the in-

crements (O 2 B), (A 2 B), and (O 2 A). The key

assumption is that the analysis is optimal. The appendix

gives a derivation of the DD for error variances. Lupu

et al. (2012) rewrite the equations of Desroziers et al.

(2005) to show that the degree of accuracy of the esti-

mates is related to how closely the prior covariance of

(O 2 B) implied by the background and observation

covariances used in the analysis matches the posterior

covariance calculated from the sample. Of course no

analysis is optimal, since the background and observation

error statistics needed by the analysis, or the weights in

the case of the VAM, are estimates and not known pre-

cisely. But important results are that the Desroziers

method allows tuning of the error statistics used by the

analysis and that the overall process has been shown to

converge (e.g., Chapnik et al. 2006). This finding of iter-

ative improvement suggests that while any estimates of

error covariances using this method will be inexact, these

will be more correct than a priori error estimates and

more correct than estimates from earlier iterations.

The DD between the increments and error covari-

ances are given in matrix form in Eqs. (2)–(4) in

Desroziers et al. (2005). Here we will write the DD in

scalar form for the contribution (C) to the estimated

covariances from any two observations, denoted i

and j, as

CB5 (Ai 2Bi)(Oj 2Bj) , (1)

CO 5 (Oi 2Ai)(Oj 2Bj) , (2)

CA5 (Ai2Bi)(Oj 2Aj) . (3)

Note the following:

d The estimated covariance is the samplemean of theCx

(x 5 A, B, O). The sample mean Cx may be divided

into two components, one where Cx has been cor-

rected for the biases of the increments (Bx 5 c0d0) and
a remainder due to these biases (Mx 5 cd), where for

CA, for example, c 5 A 2 B, d 5 O 2 A, and a prime

indicates a deviation from themean. Results below are

given in terms of Cx except where noted.
d Everything is in observation space; A and B are the

analysis and background evaluated for the observa-

tion, at the observation time and location, respec-

tively. The covariance estimates are for the same

quantities.
d GenerallyOi andOj may be at different locations and

different times. Results presented here are for vari-

ances (i5 j).We will drop the subscripts i and jwhen it

is possible to do so while maintaining clarity.
d The expectation operator in the DD formalism must

be replaced by a sample average, in principle any
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sensible sample average—all DMSP-F14 SSM/I data

within a specific 1/48 grid box for one year, only

those with O . 10m s21, all Quick Scatterometer

(QuikSCAT) data for the North Atlantic for the

month of December in 2000–04, AMSRE data in the

tropics when rain is diagnosed, etc.
d For variance estimates all the Cx should be positive.

However, we find for some samples CA is negative,

and the method breaks down. See section 3 for more

discussion of DD inconsistencies.
d When i 5 j, knowledge of the Cx and the squared

increments (O 2 B)2, (O 2 A)2, and (A 2 B)2 are

identical. Therefore, error variances may be estimated

directly from average squared increments for any

sample (see the appendix).

3. Context for interpretation of DD results

One should examine the DD calculated for many

different samples. When the diagnostics are inconsis-

tent, the cause of the inconsistency can be obvious or

obscure. If there were no inconsistencies, then the

diagnostics confirm that the data assimilation system

(DAS) is internally consistent. By refining and spe-

cializing the samples, more inconsistencies are likely

to be observed. These are opportunities to discover

and then mitigate errors in the formulation of the

DAS. Possible reasons for inconsistencies include the

following:

d Significantly non-Gaussian errors.
d Unaccounted for biases between observing systems or

between observing systems and the background.
d Incorrect specification of error covariances.
d Ineffective quality control (QC) procedures.
d Lack of scale separation between observation and

background errors (Desroziers et al. 2005, section 7).
d Small sample size. With one year of data, samples are

generally large enough so that the formal uncertainties

inCx are quite small.However, theCxmayhave sample

distributions that are very dispersive with heavy tails.
d Applying the DD to ‘‘observations’’ that were not

actually used by the DAS. The VAM uses QuikSCAT

as u and y wind components, but we use the QuikSCAT

wind speeds for the DD.

Error statistics for the VAM were determined for use

in the CCMP project through a series of sensitivity tests

that sought an rms fit to the observations of 0.5m s21

(Atlas et al. 2011). First, satellite wind measurement

errors are set to small values, with su 5 sy 5 1m s21 and

sw 5 0.7m s21, where the subscripts u, y, and w are for

the two wind components and wind speed, respectively.

Second, estimates of the time interpolation errors are

added to the observation errors as described in Atlas

et al. (2011). Third, the background constraint weights

were set via the sensitivity tests. There is no explicit

specification of su and sy for the background, but these

are determined from single-observation experiments to

be approximately su 5 sy 5 0.75 2 1.5m s21, varying

with the synoptic situation because of the nonlinearity of

the dynamical constraint used in the VAM and with

latitude because of the Fourier filter used near the poles

in the VAM.

4. Data and QC

The data used in this study are the B, O, and A wind

speeds from the CCMP processing for 2004. Both B and

A are evaluated at the time of the observation according

to the first guess at appropriate time (FGAT) procedure

(see, e.g., Stoffelen and Anderson 1997); B is in-

terpolated linearly in time between analyses, andA2 B

is held fixed in time over the 6-h analysis window. All

values are either on or interpolated to the 1/48 3 1/48 grid
of the RSS satellite observations. For much of what

follows, we show results for a single latitude, 42.3758N.

The Cx are noisy. To stabilize the estimates of Cx and

their uncertainties, we have quality controlled (QC’d)

the observations based on the values of Cx. We call this

VC-QC (variance contributionQC). VC-QC is meant to

be a gross QC: We eliminate observations for which at

least one of the Cx is more than six standard deviations

from themean. This involves an implicit definition of the

sample mean and standard deviation, so we iteratively

applied the 6s test for the sample at 42.3758N until the

process settled down and about 3.5%of the observations

were rejected (see Table 1). We then rounded the sx

and mx estimates to obtain the values in the last row of

Table 1, which are the values used in the 6s test in what

TABLE 1. Sample trimming by iterative QC. Sample statistics for

Cx for the iterative 6s QC and values used in the VC-QC pro-

cedure. The sample size is N 5 1 222 254 before VC-QC and N 5
1 179 420 after VC-QC.

QC ia sb
B sb

O sb
A mc

B mc
O mc

A f dr

6s 1 6.70 4.04 2.441 1.94 0.69 0.171 0.54

6s 2 3.28 1.63 1.103 1.63 0.54 0.121 1.63

6s 3 2.49 1.15 0.814 1.44 0.46 0.095 2.46

6s 8 2.02 0.90 0.660 1.29 0.40 0.075 3.49

VCe — 2.00 0.90 0.660 1.30 0.40 0.075 3.50

a The i is the iteration.
b The sx denotes sample standard deviation of Cx (m

2 s22).
c The mx denotes sample mean of Cx (m

2 s22).
d The fr is the fraction of observations rejected (%).
e The last row contains values used in this study for the VC-QC

procedure.
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follows. VC-QC greatly reduces the uncertainties (i.e.,

the size of the error bars) of our estimates of Cx, and

slightly reduces the estimates of Cx presented here be-

cause the data that are removed by the VC-QC tend to

have higher wind speeds (Table 2). VC-QC samples are

used except as noted in Tables 1 and 2.

5. DD results

Basic sample statistics for all platforms for 2004, for

a single latitude (42.3758N; Table 2), indicate that the fit

between the observations and the VAM analyses is very

good—unbiased andwith a standard deviation of 0.7ms21

for this latitude. Observed wind speeds are 0.5m s21

higher than the ECMWF background. The analysis

corrects this bias and makes adjustments to the back-

ground of roughly 1.5m s21 at locations with observa-

tions. After the VC-QC, similar results are obtained, but

the magnitudes of the differences are smaller by order

25%, which is likely partly because the VC-QC has

predominantly removed high wind speed cases.

DD-estimated wind speed errors for various sub-

samples of the 2004 data at 42.3758N are shown in Table 3.

The subsamples are for different instruments and for

different numbers of observations (NOBS) used by the

VAM at the particular analysis time and grid cell. The

subsampleB varies as much as several 0.1m s21, and it is

likely that some differences in the estimated errors are

due to this inhomogeneity. In particular, the QuikSCAT

sample has higher wind speeds for both B and O and

indicates that ECMWF is biased low w.r.t. QuikSCAT

and that the QuikSCAT sample includes more higher

wind speed situations. In terms of the estimated obser-

vation errors (sO), there is only a small variation be-

tween subsamples with sQuikSCAT
O , sAMSRE

O , s
SSM=I
O . As

NOBS increases, the analysis accuracy increases from

sA5 0.38m s21 forNOBS5 1 to 0.12m s21 forNOBS5 4.

Based on the percentages for different values of NOBS,

there are on average roughly 2.5 data values contribut-

ing to the analysis in each grid cell.

Figure 1 shows how the magnitude of the estimated

errors varies with latitude. The estimated error standard

deviations are order 0.8–1.3m s21 for the operational

ECMWF background, 0.5–0.7m s21 for the RSS obser-

vations, and 0.2–0.3m s21 for the CCMP analysis. Errors

tend to be smaller in the tropics, but there is a bump just

north of the equator corresponding to the ITCZ. At the

southernmost latitudes, the sample sizes are small, and

the error estimates are anomalously large. The latter is

no longer the case if the bias component is removed, as

described in section 2. The bias component is large for

these latitudes because O2B (and, consequently,

A2B) . 1m s21, much larger than elsewhere, perhaps

because of contamination by sea ice. For comparison,

Portabella and Stoffelen (2009) estimated errors using

triple collocations of ECMWF analyses, European Re-

mote Sensing Satellite-2 (ERS-2) scatterometer, and

7500 buoy observations. Table 2 of Portabella and

Stoffelen (2009) reports values of 2.04 and 2.16m s21 for

the estimated ECMWF wind vector standard deviation

at scales of 50 km in the tropics and extratropics, re-

spectively. Since these results are for vector errors, not

speed errors, they are not inconsistent with our results.

In addition, our results are nominally at a resolution of

25 km, and so contain an additional representativeness

error because of variability in the 25–50-km range. Note

that averaging the Portabella and Stoffelen (2009)

values in an rms sense and dividing by two gives su ;
sy ; 1.48m s21, which is similar to the values used in the

VAM (section 3).

The greatest variability for Cx is seen at high wind

speeds. In Fig. 2a, for observedwind speed bins,16ms21,

Cx is nearly constant—very slowly increasing for B and

O and practically flat for A. In the two higher wind speed

bins, theCx increases very rapidly, more than doubling for

the small sample of winds .20ms21 relative to the bins

with winds ,16ms21. First, we note that samples for the

TABLE 2. Sample statistics for all of 2004 for 42.3758N, before and

after VC-QC.

QC y Ba Oa Aa (O 2 B)a (O 2 A)a (A 2 B)a

— mb
y 7.7 8.2 8.1 0.47 0.06 0.41

sc
y 3.7 4.1 4.0 1.55 0.72 1.27

VC mb
y 7.6 7.9 7.9 0.34 0.03 0.31

sc
y 3.5 3.7 3.7 1.24 0.57 1.05

aUnits are m s21.
b The my denotes the sample mean of y.
c The sy denotes the sample standard deviation of y.

TABLE 3. Sample statistics by platform and by the number of

observations (NOBS). As in Table 2. The VC-QC has been applied—

sample size N 5 1 179 420.

Sample % B* O* A* C
B
** C

O
** C

A
**

All 100 7.6 7.9 7.9 1.13 0.62 0.262

QuikSCAT 24 7.9 8.3 8.2 1.08 0.59 0.148

AMSRE 16 7.3 7.6 7.6 1.09 0.60 0.260

SSM/I 60 7.6 7.9 7.9 1.15 0.64 0.296

DMSP-F13 21 7.6 8.0 7.9 1.16 0.68 0.335

DMSP-F14 19 7.5 7.8 7.9 1.15 0.63 0.295

DMSP-F15 20 7.6 7.9 7.9 1.15 0.61 0.253

NOBS 5 1 23 7.8 8.1 8.1 1.22 0.62 0.384

NOBS 5 2 33 7.6 8.0 8.0 1.14 0.64 0.255

NOBS 5 3 32 7.6 7.9 7.9 1.08 0.62 0.190

NOBS 5 4 12 7.3 7.6 7.5 1.01 0.59 0.121

* For B, O, and A, the sample mean (m s21) is displayed.

** For Cx the square root of the sample mean (
ffiffiffiffiffiffi
my

p
, m s21) is

displayed.
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high wind speed bins are small, because this is so in

nature and because the VC-QC preferentially removes

high wind speeds. Fully 22% and 79% of observations in

these two bins fail the VC-QC—so that only 2.32% of

the QC’d sample falls in the 16–20m s21 bin and only

0.24% in the .20m s21 bin. Second, there are several

reasons to expect larger errors at higher wind speeds. It

is expected that the background errors for these cases

will be large and that ECMWF will be biased low, since

high wind speeds are usually associated with small-scale

features and since the ECMWF data assimilation back-

ground covariances are tuned to analyze relatively large-

scale features (typically .300km). Situations with high

wind speeds are more temporally and spatially variable,

resulting in larger representativeness and FGAT errors

that may be resulting in higher estimated errors for O.

Also, precipitation and high ocean wave conditions often

associated with high wind speeds may result in larger

retrieval errors. Finally, the in situ observations used to

develop and calibrate the microwave satellite retrieval

algorithms are few and these algorithms might be ex-

pected to have larger errors for high wind speeds. For

the analysis we expect larger analysis errors when the B

and/or O errors are larger.

Some interesting variability for Cx is seen as the time

relative to the synoptic time, t, varies. In Fig. 2b, for O,

errors increase with time difference from the synoptic

time. This is expected. The VAM accounts for this in the

FGAT procedure, in which the background is inter-

polated linearly in time, and errors associated with this

interpolation are considered part of the observation

representativeness error. Hoffman and Leidner (2010)

found 0.6–1.0m s21 amplitude errors just from time

interpolation over a 6-h window for wind fields from

tropical cyclones in pure translation. Linear interpolation

in time results in rms errors with a concave downward

symmetric quadratic trend about the midpoint between

synoptic times, while persistence interpolation (i.e., use

the closest end point) results in an upside down V shape

(Hoffman and Leidner 2010, cf. Fig. 4).

Weighted least squares fits of the binned values from

Fig. 2b show no significant trends for CB
1/2

or CA
1/2
, but

a good linear fit for CO
1/2
, for which the fitted values are

approximately 0.53 and 0.70m s21 at t 5 0 and 180min,

respectively. SinceCO1CB5 (O2B)2 as noted before,

we expect that (O2B)2 will be equal to CO 1 CB. In

(O 2 B)2 we expect to have contributions from the in-

trinsic observation errors, the intrinsic background er-

rors, and the FGAT interpolation errors. These are all

expected to be independent so the total error variance

should be the sum of the three terms, and only the FGAT

error should vary with time relative to the synoptic time.

Therefore, the results of the linear fits are consistent with

an intrinsic observation error of 0.53m s21 and a 3-h

FGAT error of 0.45m s21. This analysis indicates that

the VAM FGAT representativeness error formulation

should be revised—currently, the parabolic form is used

with a 1ms21 3-h FGAT error.

Figure 3 shows the global view of the DD based on all

data used by the VAM in 2004. The estimates plotted at

FIG. 1. Estimated error standard deviations for all of 2004, for all platforms, for each 0.258 of
latitude. The colored lines show the estimated standard deviations (Cx

1/2
) for the background

(aqua), observations (red), and analysis (blue). Uncertainty bands are indicated in semi-

transparent hues based on 61/3 standard deviation of the Cx. The overall mean values are

shown in the legend and as dotted horizontal lines. The sample size divided by 23 106 for each

0.258 of latitude bin is plotted as a black line.
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each 1/48 grid box are for all observations in a centered

53 5 (i.e., 1.258 3 1.258) box. This oversampling results

in a smoother display. Errors in all cases are larger in the

extratropics than in the tropics. Errors are largest in the

western North Pacific and North Atlantic storm tracks,

in the Arctic regions, and in the Southern Ocean, es-

pecially poleward of 508. All of these are areas of en-

hanced storminess associated with higher wind speed

and precipitation.

6. Concluding remarks

As a result of our investigation of applying the DD

to the VAM outputs of the CCMP project for 2004, we

find the following wind speed error characteristics:

d Globally, wind speed error standard deviations are

estimated to vary with latitude in the range 0.8–1.3ms21

for the operational ECMWF background, 0.5–0.7ms21

for the RSS observations, and 0.2–0.3ms21 for the

CCMP analysis.
d Errors are fairly constant for observed wind speeds

up to 16m s21 and are much higher for higher wind

speeds.
d Observational errors increase with time relative to the

analysis time, and vary with platform and location.

However, the variation with locationmay be a second-

ary effect of the variation with wind speed.

We plan to extend the current study in several ways.

First, we will examine spatial correlations for wind

speed errors in terms of distance, latitude, and longi-

tude displacement, or in the satellite swath geometry

(e.g., Bormann et al. 2011, Fig. 7). Second, we will

apply the DD to two-component vector quantities—

speed and direction, wind components, or pseudo-

stress components. It might be advantageous here to

use QuikSCAT-only analyses. Third, we will develop

FIG. 2. Estimated error standard deviations binned by (a) observed wind speed and by

(b) time relative to the synoptic time, for all of 2004, for all platforms, for 42.3758N. Plotting

conventions as in Fig. 1, except that sample bin boundaries are indicated by tic marks just above

the bottom axes and the percentage of the total sample in each sample bin are given by the

‘‘lollipop’’ symbol at the sample mean of the ordinate.
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estimates of analysis errors for each location for each

synoptic time, based on the relationships discovered

using the DD between errors and other variables, in-

cluding location, wind speed, density of observations,

etc. Fourth, we will use the results to tune theVAMand

iterate the process.
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FIG. 3. Maps of estimated error standard deviations based on all platforms for 2004. The estimated error standard

deviations are for the (a) background, (b) observations, and (c) analysis.
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APPENDIX

Error Variances and the DD

When i5 j, it is easy to validate that Cx is «2x, the error

variance of x. Here «x, the error of x, is defined by x 5
T1 «x, whereT is the truth. Each difference term inEqs.

(1)–(3) can be written in terms of «, since, for example,

A 2 B 5 (T 1 «A) 2 (T 1 «B) 5 «A 2 «B. Then, re-

arranging terms and taking sample averages of Eqs. (1)–

(3), we obtain each Cx as the sum of four error covariance

terms. For example, Eq. (1) becomes

CB 5 «A«O 2 «A«B 2 «B«O 1 «2B . (A1)

By assumption we know the error covariances. First, O

andB are assumed to be independent, so «O«B 5 0. Here

and the rest of this paragraph, we first think of the

overbar as an expectation operator and at the end make

the assumption that we may replace expectation with

sample average. Second, since A is optimal, its errors

must be uncorrelated with O 2 B, «A(O2B)5 0 or

«A«O 2 «A«B 5 0. Therefore, in Eq. (A1) the first two

terms together are zero, the third term is zero, leaving

the expected result, CB 5 «2B. Very similar steps lead to

the analogous result for CO. For CA, an additional re-

lationship, «2A 2 «A«B 5 0, is used. This follows sinceA2
B is a linear combination of theO2B, and the errors of

A are uncorrelated withO2 B. See Fig. 1 in Desroziers

et al. (2005) and the related discussion for a geometric

interpretation.

Also, when i 5 j, it is easy to see that Eqs. (1)–(3)

imply CO 1 CB 5 (O 2 B)2, CO 2 CA 5 (O2 A)2, and

CB 2 CA 5 (A 2 B)2. These are identities and may be

averaged over any sample. Solving for the Cx and av-

eraging over the sample gives

CB5
1

2
(O2B)21 (A2B)22 (O2A)2

h i
, (A2)

CO 5
1

2
(O2B)21 (O2A)22 (A2B)2

h i
, and

(A3)

CA5 2
1

2
(O2A)21 (A2B)22 (O2B)2

h i
. (A4)
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