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ABSTRACT

Reanalyses have increasingly improved resolution and physical representation of regional climate and so

may provide useful data in many regional applications. These data are not observations, however, and their

limitations and uncertainties need to be closely investigated. The ability of reanalyses to reproduce the

seasonal variations of precipitation and temperature over the United States during summer, when model

forecasts have characteristically weak forecast skill, is assessed. Precipitation variations are reproduced well

over much of the United States, especially in the Northwest, where ENSO contributes to the large-scale

circulation. Some significant biases in the seasonal mean do exist. The weakest regions are the Midwest and

Southeast, where land–atmosphere interactions strongly affect the physical parameterizations in the forecast

model. In particular, the variance of the Modern-Era Retrospective Analysis for Research and Applications

(MERRA) is too low (extreme seasonal averages are weak), and the variability of the Interim ECMWF

Re-Analysis (ERA-Interim) is affected by spurious low-frequency trends. Surface temperature is generally

robust among the reanalyses examined, though; reanalyses that assimilate near-surface observations have

distinct advantages. Observations and forecast error from MERRA are used to assess the reanalysis un-

certainty across U.S. regions. These data help to show where the reanalysis is realistically replicating physical

processes, and they provide guidance on the quality of the data and needs for further development.

1. Introduction

The characterization and understanding of climate

variability at regional scales are important for both re-

search and societal applications. Atmospheric retro-

spective analyses (or reanalyses) integrate a variety of

observing systems with numerical models to produce a

temporally and spatially consistent synthesis of data

for weather and climate variability studies. While re-

analyses are not observations, they provide objectively

analyzed fields over the globe, including regions with

minimal observations, and also for fields that are rarely

or never observed. Bosilovich et al. (2013) discuss the

current state of reanalysis systems and the near-term

challenges that the development community is ad-

dressing. One critical use of reanalyses is to provide the

lateral boundary conditions for regional climate simu-

lations, as in the Coordinated Regional Downscaling

Experiment (CORDEX; Nikulin et al. 2012) because

their large-scale environment reproduces the observed

circulation. Here, we assess regional variability for the

United States, in the National Aeronautics and Space

Administration (NASA) Modern-Era Retrospective

Analysis for Research and Applications (MERRA;

Rienecker et al. 2011) and other reanalyses. There have

been many regional process studies using reanalyses,

but this assessment aims to begin to define the limita-

tions of reanalyses in climate monitoring and regional

climate applications, considering potential needs for

the National Climate Assessment (NCA). Emphasis is

placed on summertime precipitation because 1) it is a

difficult parameter to predict in the most difficult season

(Bosilovich et al. 2009) and 2) significant observational

resources exist to benchmark comparisons. Likewise,

the occurrences of precipitation events, or the lack thereof,

and the coinciding physical mechanisms are critical when

evaluating regional extremes. Of course, another soci-

etally relevant and climatologically significant indicator

is the surface air temperature, for which wewill compare

the reanalyses’ seasonal variability and regional trends

(Vose et al. 2012).
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Since this assessment is intended to broadly evaluate

the reanalyses (with some additional focus on MERRA),

we have adopted regions of the continental United States

defined by the NCA with some modifications to account

for local dynamics (Fig. 1). One exception is that the NCA

Great Plains (GP) region has been split into northern

Great Plains (NGP) and southern Great Plains (SGP) re-

gions (at 408N latitude). Substantial latitudinal variations

across the NCA GP region could mask smaller regional

signals in the data analysis. These regions generally fit the

scale of atmospheric anomalies, such as El Ni~no–Southern

Oscillation (ENSO), that contribute to climate variability.

Specific events or regional climate features may exist

across the bounds of any given region, however. Some at-

tention is given to potential connections with ENSO vari-

ations (e.g., Barlow et al. 2001; Wang et al. 2012) as well as

to the trends in the data (e.g., Vose et al. 2012), although

the large-scale circulation influence on U.S. precipitation

also relates to variability in the Pacific andAtlantic Oceans

(Wang et al. 2009; Li et al. 2012). Precipitation and tem-

perature are the initial foci, given their relative importance

in societal applications, and some connections to broad

climate dynamics will also be discussed. We will also begin

to extend the evaluation to the lower-tropospheric forecast

errors in the reanalysis and how they vary regionally. With

an understanding ofMERRA’s fidelity in these regions, we

can decide how best to use its capability in understanding

the seasonal and decadal variations for the United States

and also can ascertain the usefulness of reanalyses in re-

gional climate assessment.

2. Data

a. Reanalyses

Reanalyses have a long track record for providing

information on climate variations and for the evaluation

of climate models. Although reductions in model biases,

improvements in data assimilation, and increases in

resolution have improved the latest reanalyses, signifi-

cant issues remain, so that validation and background

studies are required before accepting physical inter-

pretation of results. Variations in the observing system

itself can cause spurious variations in the reanalysis time

series (Onogi et al. 2007; Saha et al. 2010; Dee et al. 2011;

Bosilovich et al. 2011; Robertson et al. 2011). Such

features have been noted in the three latest global re-

analyses for the satellite era. Most of our assessment will

focus on MERRA (Rienecker et al. 2011), but we also

make some comparisons with recent satellite-data

reanalyses, the European Centre for Medium-Range

Weather Forecasts (ECMWF) Interim Re-Analysis

(ERA-Interim; Dee et al. 2011), and the Climate Fore-

cast System Reanalysis (CFSR; Saha et al. 2010). For this

study, we have worked with the latest ERA-Interim data

(at 3/48 resolution), which begin in 1979 and continue

forward in near–real time. At the time of this study,

CFSR-processed monthly mean data are not archived

beyond 2009.

Bosilovich et al. (2009) evaluated radiative fluxes

and precipitation from eight operational analyses and

reanalyses systems. Over theMississippi River basin, the

quality of reanalyses’ seasonal precipitation degrades

noticeably in summer, as has also been seen in numerical

predictions. Summertime total precipitation is governed

more by local convective elements and mesoscale con-

vection than by large-scale well-resolved dynamical

processes. Yet, extreme summertime climate variability

often manifests through devastating precipitation ex-

tremes (e.g., drought and flood). Given the importance

of summertime precipitation and its uncertainty, this

assessment ofMERRA, alongside other recent reanalyses,

begins by evaluating the skill in summertime precipita-

tion variability. Near-surface temperature is more robust,

however, both in observational records and reanalyses,

and therefore we also consider the reanalyses’ repre-

sentation of regional surface temperature variability

(Simmons et al. 2004, 2010; Vose et al. 2012; Decker

et al. 2012; Wang and Zeng 2013).

b. MERRA

The NASA Modern-Era Retrospective Analysis for

Research and Applications was developed to provide

a continuous record of observational analyses extending

from the beginnings of the modern satellite data record

through the NASA Earth Observing System (EOS) re-

search satellite operations. In general, MERRA has

some improvements in the large-scale hydrologic cycle

and global precipitation, especially over tropical oceans

(Bosilovich et al. 2011); there are limitations over land

FIG. 1. Continental U.S. boundaries evaluated in this project.

These are broadly related to those of the NCA with the exception

that their Great Plains (GP) region is divided into northern and

southern regions. Here, NE is Northeast; the rest of the expansions

of the region acronyms are in the text where first referenced. In

some calculations, ‘‘US’’ will refer to the accumulation of all area

in these regions.

1940 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 52



regions at the detail required for hydrological processes,

however (Reichle et al. 2011). At the outset, the dispa-

rate nature of the observing system between the EOS

period and the historical satellite data record was known

to be a challenge for reanalyses, as noted in the apparent

impact of Special Sensor Microwave Imager total col-

umn water on the Japanese 25-Year Reanalysis (Onogi

et al. 2007; Bosilovich et al. 2008). The observations

included in a reanalysis are ultimately critical to its de-

piction of the weather and climate. In addition, back-

ground model biases also contribute to uncertainty in

the eventual reanalyses data.

Rienecker et al. (2011) provide the MERRA project

overview, including discussions of the model and anal-

ysis (and radiative transfer model). There is also a listing

of input observations and some discussions of the in-

teractions of the observations with the model through

the assimilation. The assimilated observations used for

MERRA benefitted from previous National Centers for

Environmental Prediction reanalyses and the 40-Year

ECMWF Re-Analysis (ERA-40) (Kalnay et al. 1996;

Uppala et al. 2005). The MERRA analysis is performed

every 6 h, where a background forecast contributes to

the eventual analyzed state. The same six hours are then

forecast again, but with incremental updates from the

analyzed states (e.g., Bloom et al. 1996), which deter-

mine the initial condition for the next background

forecast (Rienecker et al. 2011). The incremental up-

dates represent the total influence of the observations on

the reanalysis, as they are incorporated through the

forecast model state budgets (Bosilovich et al. 2011),

and have a strong influence on the regional climato-

logical behavior (e.g., Roads et al. 2002). In the data

assimilation, however, each observation is analyzed

individually, and forecast and analysis errors for each

observation are produced and saved in the assimilation

output. These data contain insight into the observations,

model, and data assimilation. Haimberger (2007) used

these data from ERA-40 to detect discontinuities in

the radiosonde observation record and has determined

corrections to the radiosonde data. These corrections

were applied to both ERA-Interim and MERRA (Dee

et al. 2011; Rienecker et al. 2011).

One way to evaluate a reanalysis is to consider the

forecast error [observation minus forecast (OmF)]. To

efficiently get at the assimilated observation and fore-

cast error, we utilize a recent data product for MERRA

called the Gridded Innovations and Observations

(GIO). To compare multiple instruments and observing

systems more easily and to simplify the data access, the

assimilated observations and innovations have been

binned to the native MERRA analysis grid in space and

time (2/38 longitude by½8 latitude, 42 levels, and 6-hourly

synoptic times). The data files include the observation,

the forecast error (OmF), and analysis error [observa-

tionminus analysis (OmA)] as well as the data count and

standard deviation for the bin. Each observing system is

preserved in its own record, including radiance obser-

vations (by instrument and channel). These data can be

used to compute the regional forecast error for a number

of prognostic states. Although some detail is lost in the

binning, the data volume is reduced and the uniform

format of all observing systems greatly improves data

accessibility.

c. Surface observations

The Climate Prediction Center (CPC) daily gauge

analysis for the conterminousUnited States provides the

precipitation benchmark (Chen et al. 2008; Xie et al.

2007). Precipitation gauges have been analyzed to 1/48
resolution over the continental United States, and gaps

have been filled. Most of the analysis here is done on the

grid of the original data (e.g., maps), but in cases in

which data are compared or differenced, CPC is inter-

polated to the reanalysis grid. The daily data have been

averaged to seasonal means for the time series analysis.

We primarily focus on the seasonal averages of the

daily data, concentrating on the interannual variability.

The University of East Anglia Climate Research Unit

(CRU) dataset (Mitchell and Jones 2005), version 3.1,

provides the baseline for interannual variability and

seasonal statistics of near-surface temperature, follow-

ing the method of Simmons et al. (2004). (The CRU

dataset was accessed online in February of 2012 from the

National Centre for Atmospheric Science British At-

mospheric Data Centre at http://badc.nerc.ac.uk/view/

badc.nerc.ac.uk__ATOM__dataent_1256223773328276.

Additional documentation and descriptions of the data-

set are also available at this site.)

3. Summertime precipitation

Figure 2a uses the time- and area-averaged precipi-

tation for CPC gauge observations and reanalyses for

the continental U.S. regions to summarize the climate

and variability of each region. All considered reanalyses

have high summer biases in the southeastern United

States.MERRA’s overestimate over the northernGreat

Plains is the largest bias, although the summer dry bias in

the midwestern region is likely significant as well. De-

spite the high NGP precipitation bias, MERRA shows

very high correlation with the observed seasonal anom-

alies, while ERA-Interim shows a markedly lower cor-

relation (Fig. 2b). The standard deviation (Fig. 2c) is also

provided to show the extent to which reanalyses can vary.
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The different reanalyses are not consistent in this metric,

and we note in particular that MERRA standard de-

viation in several of the regions is smaller than observed.

Figure 3 contrasts the time series of precipitation

anomalies in the Northwest (NW) with those in the Mid-

west (MW); the former with the highest temporal corre-

lation, the latter with the lowest. In NW, all reanalyses

track the observed June–August (JJA) precipitation

anomalies remarkably well. The mean flow of JJA

moisture is predominantly eastward from the Pacific

Ocean, so that the dynamical control of the precipitation

is important. During summer in theMWregion, recycling

ratios increase (Bosilovich and Schubert 2001), thereby

increasing the dependence of precipitation on the bound-

ary layer parameterization, the land model (through its

representation of evaporation), and the past rainfall and

snowmelt. In addition, MW reanalysis precipitation cal-

culations depend more heavily on the convection param-

eterization of the model. In the MW region, moisture

transport has played an important role in extreme anom-

alies. Here, we see that MERRA underestimates both the

anomalies from the 1988 drought and the 1993 flooding.

This is generally true of the NGP region as well (not

shown) and is consistent with the weaker standard de-

viation in Fig. 2. The other reanalyses also struggle in this

region, with either false extremes or underrepresentation

of extreme events.

While the mean and correlation of the seasonal

anomalies are reasonable in some regions, the re-

analyses in Figs. 3 and 4 display some trends that are un-

realistic when compared with observations; for example,

note the ERA-Interim trend in the MW. Simmons et al.

(2010) found that this trend is more related to a de-

clining shift that starts in the early 1990s and considered

that it may be related to the prescribed SSTs used in

ERA-Interim. In addition, CFSR’s Southeast (SE) re-

gion experiences a dramatic downward shift in pre-

cipitation in 1997–98 (not shown), which leads to a large

negative value when computing a linear regression in

time (Fig. 4). In the MW region, MERRA and ERA-

Interim both experience systematic decreasing trends

in precipitation over the period, to varying degrees.

However, ERA-Interim’s decreasing trends extend

across the continent atmagnitudes that aremuch greater

than observed. The NW region’s precipitation trends in

all of the reanalyses are comparable to observations.

The high degree of correlation between all of the re-

analyses and the CPC observational analysis in the NW is

noteworthy, especially considering the lack of correlation

in other regions. Figure 5 shows the spatial distribution

of time correlation between MERRA seasonal precipi-

tation and CPC. The very high correlations extend east

beyond the NW region and into NGP. Many areas show

positive correlation (significantly different than zero at

the 99% level), with the MW region primarily having

areas of very low correlation. There are systematic biases

across all of the reanalyses that lead to the similarities in

the time series results, and explaining the mechanisms

may lead to improvements in the reanalyses.

4. ENSO variability

While summer teleconnections are not as strong over

the United States as those in the winter, Barlow et al.

FIG. 2. (a) A comparison of regional precipitation (mmday21)

from CPC gauge observations with reanalyses, using time and area

averages for each region and JJA. (b) Correlation of the 30 years

of JJA seasonal area-average precipitation anomalies of the re-

analyses with CPC gauge observations (where significance corre-

lations are 0.31; 90%, 0.36; 95%, and 0.46; 99%). (c) Standard

deviation of the area-averaged time series for each region’s JJA

precipitation anomalies.
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(2001) found that the North American hydroclimate

responds to several modes of variability in the Pacific

Ocean, including ENSO, in that the northwestern

United States receives increased precipitation during

El Ni~no conditions. Using observations and ensembles

of global model simulations, Wang et al. (2012) find that

the phase of ENSO, particularly the decaying warm

phase, strongly affects the Great Plains seasonal pre-

cipitation extremes. This was also reproduced in nu-

merical models, demonstrating potential predictability

of extreme precipitation by El Ni~no. In addition, when

multidecadal records of data are evaluated Pacific de-

cadal variability is seen to play a role in summertime

precipitation (Ting andWang 1997;Wang et al. 2009). In

this section, we evaluate the ability of reanalyses to re-

produce this low-frequency variability for the United

States. Reanalyses are expected to implicitly include

realistic ENSO variability where atmospheric observa-

tional data coverage is sufficient. On the other hand, the

physical processes are only guided by the observations

and rely also on model parameterizations, especially in

summertime.

By following Barlow et al. (2001) in looking at the

northwestern United States, we find that the observed

NW region summer precipitation is positively correlated

with Ni~no-3.4 index (e.g., Trenberth 1997), as in Fig. 6.

The Ni~no-3.4 correlation is fairly weak when comparing

JJA precipitation with JJA Ni~no-3.4, however. The

correlation is strongest with the antecedent springtime

[March–May (MAM)] values of the index (Fig. 6). The

reanalyses follow the observed pattern, with the excep-

tion that their correlations are somewhat stronger than

the observations, and all of the reanalyses are closer to

each other than to the observations. To emphasize the

teleconnections, subsequent comparisons will focus on

the relationship of summertime (JJA) precipitation and

springtime (MAM) Ni~no-3.4 index.

Figure 7 shows the spatial distributions of the corre-

lation of summer precipitation with spring Ni~no-3.4 in

FIG. 3. Contrasting time series of the JJA precipitation anomalies in the NW and MW regions

of Fig. 1.

FIG. 4. As in Fig. 2, but for the precipitation trend over each

region [mmday21 (10 yr)21] computed from the seasonal area

average. Statistical significance at 95% confidence is indicated by

black-outlined bars.
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CPC gauge observations and the three reanalyses con-

sidered here. The gauge correlations are highest in the

NW and NGP regions, with apparently little significant

correlation elsewhere, in agreement with the results

from Barlow et al. (2001). MERRA tracks the observed

pattern well, with positive and significant correlations in

the NW and NGP regions. Similar to the correlations

presented in Fig. 6 for the NW, the areas of positive

correlations have generally larger values when com-

pared with observations. The stronger correlations,

when compared with the gauge observations, are also

found in other reanalyses and generally span all of the

continental U.S. subregions considered here (Fig. 8). In

particular, when comparing the aggregateUnited States,

the large-scale correlation with Ni~no-3.4 is apparent.

MERRA is correlated with ENSO much more than

are the observations (more than the 99% confidence,

whereas observation correlation is less than 90%). The

broad result is that summertime precipitation and at-

tendant physical processes are too closely related to

ENSO in comparison with observations. If the correla-

tion is derived from the coarse scale of resolved circu-

lations and the inability to explicitly simulate fine scales

of convection, it would effectively act as a filter. It is

possible that inadequate land–atmospheric interactions

have some effect, for example, in the MW region during

summer, as these can modulate the large-scale forcing

in a region (e.g., Mei and Wang 2011). More analysis is

needed to determine whether there is a tendency for the

reanalysis systems to draw energy away from longer

modes of variability, such as the North Pacific decadal

oscillation, which should also have some influence

(Higgins et al. 2007). The reanalyses have some spatial

variability of the relationship across the Southwest (SW)

region, and the size of that region likely affects the time

series statistics (Figs. 7 and 8).

5. Surface temperature

Near-surface atmospheric temperature is another es-

sential climate variable and is important for analysis of

summertime extremes such as drought and heat waves.

In reanalyses and global models, this quantity is still

closely related to the model parameterizations, situated

between the state variables of temperature at the surface

and at the lowest atmospheric model level. As such,

model uncertainty will play a role in the representa-

tion of climate variability in reanalyses (Willett et al.

2012). Also, mean temperatures in reanalyses represent

FIG. 5. Correlation of JJA seasonal mean precipitation from MERRA and CPC gauge ob-

servations for the period 1979–2010. The white contour delineates correlations that are sig-

nificantly different from zero at the 99% level, so that values greater than 0.46 indicate high

statistical significance.

FIG. 6. Time correlation of summer seasonal precipitation (as in

Fig. 3) with Ni~no-3.4 seasonal indices. The Ni~no-3.4 seasons are

prior to the JJA season’s precipitation. Significant correlations are

0.31 ; 90%, 0.36 ; 95%, and 0.46 ; 99%.
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an integration of temperature for the period, whereas at

many observation stations mean temperature is de-

termined by the average of maximum and minimum

daily temperature (Wang and Zeng 2013), and this sit-

uation may lead to some uncertainty in the comparison.

The representation of temperature in reanalyses gen-

erally appears to be more robust than precipitation,

likely because atmospheric temperature is assimilated

from both radiosonde and satellite sources regularly. As

mentioned in section 2c, the CRU atmospheric tem-

perature dataset (version 3.1) provides the baseline for

interannual variability and seasonal statistics. Figure 9

shows the mean temperature for each of the U.S. regions.

Many regional summertime biases are less than 1K, and

none are more than 2K. The temperature correlations

between reanalyses and observed time series are also

very high relative to those of precipitation (note the dif-

ference in scales for Figs. 2 and 9).

One noticeable feature in the reanalyses’ temperature

is that across all of the regions the ERA-Interim air

temperature correlates with CRU observed analysis at

values in the high 90s. This is a direct result of the ERA

system’s inclusion of both near-surface atmospheric

temperature and water vapor observations to constrain

soil moisture (Simmons et al. 2004, 2010; Dee et al.

2011). CFSR also uses precipitation observations over

land to better constrain their soil moisture.MERRAhas

no direct land data assimilation and so relies on the

model physics (and atmospheric profile assimilation)

for the representation of near-surface atmospheric

temperature. To illustrate the interannual variability

of mean temperature anomalies, the time series of SE

and NW temperature are presented in Fig. 10. In the

SE, where MERRA has the lowest regional correla-

tion, many of the interannual extremes are still rep-

resented well. Further investigation of certain years,

such as 2000, may point to correctable problems in the

system.

FIG. 7. Spatial distribution of the correlation between summertime precipitation and spring Ni~no-3.4. The colors indicate level of

significance of the correlation (0.31 ; 90%, 0.36 ; 95%, and 0.46 ; 99%). CFSR and Interim show patterns that are similar to that of

MERRA.

FIG. 8. Correlation between summertime precipitation and

springtime Ni~no-3.4 index for each of the reanalyses and gauge ob-

servations, in each region and the whole of the United States. Sig-

nificant correlations are 0.31 ; 90%, 0.36 ; 95%, and 0.46 ; 99%.
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The determination of temperature trends from the

station observations is complicated by variations in

station locations and also by the changing numbers of

stations used (Vose et al. 2012;Mitchell and Jones 2005).

Observed trends have been studied and quality con-

trolled so that they are a reliable comparison for re-

analyses. All of the reanalyses and observations show

increasing trends, but some regions exhibit distinct dif-

ferences from CRU, version 3.1. ERA-Interim re-

produces the observed trend in most regions (Fig. 11),

but despite the additional land assimilation it does not

identically reproduce the observed trends. The ERA-

Interim analysis of the surface temperature limits feed-

back of their persistent precipitation trend deficiency

from degrading the reanalysis surface temperature

(Fig. 4), compensating for themodel biases with analysis

tendencies. For MERRA, the unrealistic precipitation

trends in MW and SE are likely a major contribution to

the degraded surface temperature representations. The

reanalyses generally overestimate the upward trend of

temperature, but updated quality adjustments to the

station records lead to increased upward trend estimates

(Vose et al. 2012). Despite the apparent robustness in

variability of near-surface air temperature, trends from

reanalyses need to be considered at least as carefully as

the observational record because of the modeling com-

ponents of the system and its uncertainty. In addition,

the analysis of the observational record has distinct

benefit for the ERA-Interim record of the near-surface

temperature but presumably does not permit the feed-

back from other components of the Earth system—for

example, atmospheric precipitation and land fluxes.

Even without surface data assimilation, MERRA sea-

sonal variations and correlation with observations of

near-surface temperature remain reasonable, although

variance of seasonal temperature is overestimated.

6. Water vapor forecast error

For the most part, the previous discussion considers

the verification of the reanalysis data and relationships

to physical phenomena. The interaction of the analysis

system with the model forecast is a crucial factor in the

results, however, and is not typically addressed with

reanalyses. Rienecker et al. (2011) provided evaluation

of the global forecast errors fromMERRAderived from

the GIO ancillary dataset. This includes the observa-

tions assimilated in MERRA, the forecast error OmF

used to determine the analysis increment, and the

analysis error OmA. Consider also that negative OmF

represents the model bias relative to each assimilated

observation. The forecast and analysis included here

have been interpolated in space and time to the obser-

vations coordinates; these data are then binned to the

MERRA grid for ease of access and analysis. In em-

ploying these data here, we can evaluate the forecast

errors in the various regions and consider the forecast

errors of the analysis state fields in comparison with the

model derived fields such as precipitation (and its error).

Figure 12a shows the mean JJA forecast error of

850-hPa water vapor and temperature for 1979–2009 in

each of the regions. Given the precipitation comparison

discussed previously, it is not surprising to seeNGPandSE

with some of the highest mean errors. In general, these

FIG. 9. Regional temperature comparison between CRU, ver-

sion 3.1, station observations and reanalyses: (a) Temporal and

areal averages (K) for each region for JJA, (b) correlation of the

30 years of JJA seasonal area-average temperature anomalies of

the reanalyses with observations (all values are statistically signif-

icant at greater than 99%), and (c) the corresponding standard

deviations (K).
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results indicate that the forecast is systematically drier

than is observed. As the reanalysis integrates forward,

the analyzed observations would tend to add water, in-

creasing the water available for precipitation genera-

tion. The MW region is somewhat different, where the

precipitation is underestimated and the analysis still, in

general, adds water. Given the lower correlation of the

MERRA MW precipitation with observations (Fig. 2),

however, there may be other factors related to the pre-

cipitation generation that require investigation (such as

land–atmosphere interactions or mesoscale convective

systems). It is also apparent that the mean forecast

temperature biases are generally small (less than 0.1K in

magnitude in most regions) except for SGP (warm bias)

and SW (cold bias).

The root-mean-square (RMS) of the OmF provides

an estimate of uncertainty of the forecasts. Figure 12b

shows the RMS of the forecast error of water vapor and

temperature in each region. Somewhat noticeable is that

the SW shows some larger values when compared with

other regions than were seen with the forecast bias be-

cause of compensating biases across the region. Some

further consideration will be given to SW later in this

section. The largest water vapor forecast errors occur in

SE and NGP.

FIG. 10. Time series of regional temperature anomalies (K) determined from the CRU

observations and reanalyses.

FIG. 11. Trends [K (10yr)21] for the area-average JJA seasonal

temperature anomalies in the CRU observation and reanalyses.

Black-outlined bars indicate statistical significance at 95%confidence.
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The MW region has some large errors in MERRA

precipitation relative to gauge observations. Figure 13a

compares the MERRA seasonal differences of pre-

cipitation with the water vapor bias (where bias is simply

the negative of OmF). On average, both the water vapor

forecast and the precipitation in the MW region have

a dry bias. The drier the water vapor bias is, the more

water is added to the analysis; this increases the pre-

cipitation but does not overcome the negative bias of

precipitation. Figure 13b compares the climate anomaly

of water vapor with the forecast bias for theMW region.

The driest forecast biases occur in years with the wettest

anomalies in the region. In dry years, the forecast bias is

still dry so that the analysis still acts to add water and

increase the precipitation. The reduced variability of

MERRA precipitation seems to relate back to a dry bias

in the lower troposphere in the MW region. The results

for the NGP region are similar. The large positive pre-

cipitation biases in SE did not show a relationship with

the water vapor forecast bias, nor did the small NW

region precipitation variations.

The SW region, however, appears to have a different

set of issues in its uncertainty. UnlikeMWandNGP, the

precipitation bias is low when the 850-hPa water vapor

bias is dry (the anomaly correlation is positive; Fig. 14a).

So, the water vapor is dry and the analysis should add

water, but the precipitation bias is greatest with smaller-

magnitude forecast errors. Observedwet seasons tend to

have dry model 850-hPa water vapor biases, as in the

MWandNGP regions (Fig. 14b). It may be premature to

read too much into the comparison, however. Although

the general comparison of the seasonal MERRA SW

region precipitation with gauge observations is rea-

sonable, the region includes the California coast, moun-

tains, and deserts, and the initiation of the North

FIG. 12. (a) Regional mean forecast error OmF averaged for JJA

and (b) the regional RMS of the forecast error for 850-hPa tem-

perature (K) and water vapor (g kg21). Each is computed for each

season from 1979 to 2009 from the 6-hourly data count and is then

averaged in time.

FIG. 13. The MW JJA (a) seasonal precipitation bias and

(b) observed seasonal anomalies of 850-hPa water vapor in com-

parison with 850-hPa water vapor forecast bias (2OmF). The water

vapor OmF and observed anomalies are derived from radiosonde

observations assimilated in MERRA. The black line indicates the

linear fit of the data and is included for reference only.
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American monsoon generally occurs during JJA (Higgins

et al. 1999). Further refinement of the area and season-

ality of the region’s water cycle is likely needed to

more clearly explain the relationship of the precipitation

biases to the forecast error. Even so, there appears to

be a clear deficiency in the MERRA hydrologic cycle

across this region. Figure 15a compares the observed

seasonal anomalies for 850-hPa water vapor and pre-

cipitation, where increased precipitation accompanies

increased water vapor. The MERRA forecast water

vapor and precipitation provide no such clear relation-

ship (Fig. 15b). Having available the comparable model

forecast and observations enables the identification of

such issues, however, and can direct subsequent research

efforts to improve the model.

7. Summary and conclusions

Reanalyses offer many advantages to climate research

and monitoring, but, as with observation data, un-

certainties exist. In evaluating the U.S. summer regional

climate from reanalyses, we characterize the ability of

reanalyses to represent summertime precipitation and

temperature variability throughout the modern satellite

data period. While summertime precipitation is one of

FIG. 14. As in Fig. 13, but for SW.

FIG. 15. (a) The SW JJA 850-hPa observed water vapor anomaly

in comparison with the observed precipitation anomaly. (b) As in

(a), but for MERRA JJA SW seasonal anomalies.
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the most difficult physical processes to model, we do find

a certain amount of interannual variability represented

realistically in the reanalyses. The NW andNGP regions

are best represented, owing to large-scale controls from

springtime ENSO variations, whereas the large-scale

influence is overly represented in the interannual vari-

ability of other regions in reanalyses. For example, all of

the reanalyses overdo the correlation between ENSO

and precipitation of the whole continental United States

when compared with gauge measurements. This is es-

pecially true for MERRA, and it should be noted that

related quantities, such as clouds and radiation, will

likely exhibit similar relationship to ENSO. Given that

strong connection, it is important to note that MERRA’s

precipitation variability is found to be weaker than is

observed, leading to weaker seasonal precipitation

anomalies for 1993 (pluvial) and 1988 (drought). While

atmospheric moisture transport should be reasonably

well represented in reanalyses (Higgins et al. 1997), local

land interactions and mesoscale convective circulations

may require further attention. Interannual correlations

with observations of surface temperatures are more

robust than for precipitation, owing to the assimilated

air temperatures and the continuous nature of the field

(whereas summertime precipitation can be spatially

discontinuous). Since ERA-Interim assimilates near-

surface temperatures, it is likewise able to reproduce the

variability closely—even trends. In general, reanalysis

precipitation trends have little fidelity with observations,

however. As an example, MERRA’s underestimate of

seasonal precipitation variability and ERA-Interim’s

broad decreasing precipitation trend across the United

States are considerable limitations for regional climate

applications.

Determination of the uncertainty of one, or many,

reanalyses is an outstanding research issue, especially

considering that many quantities are related to the

background model forecast (Kalnay et al. 1996). The

uncertainty of a reanalysis can be estimated with several

key components. First, independent observations, with

sufficient quality, are needed to provide a benchmark.

Further, several independently derived reanalyses also

provide a range of comparisons. Last, reanalyses are

derived from the direct comparison of model prediction

with high-quality observations. Statistics and diagnostics

from the data assimilation procedure, including analysis

increments and background forecast error, can provide

useful guides to the reanalysis quality. At this time, not

all reanalyses provide these data alongside standard

output in an easily accessible manner, however. In this

study, the forecast errors were examined regionally for

the 30-yr climatological output of MERRA. The as-

similated observations and forecast error can be used to

assess the processes in the model forecast segment of

the reanalysis. Because reanalyses can contribute to the

U.S. regional climate assessment, their uncertainties,

strengths, and weaknesses need to be better quantified.
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