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ABSTRACT

The validity of the effective dielectric constant «eff for nonspherical mixed-phase particles is tested by

comparing the scattering parameters of ice–water mixtures for oblate and prolate spheroids obtained from

the conjugate-gradient and fast Fourier transform (CGFFT) numerical scheme with those computed from the

T matrix for a homogeneous particle with the derived «eff with the same size, shape, and orientation as that of

the mixed-phase particle. The accuracy of the effective dielectric constant is evaluated by examining whether

the scattering parameters of interest can reproduce those of the direct computations, that is, the CGFFT

results. Computations have been run over a range of prolate and oblate spheroids of different axial ratios up to

size parameters of 4. It is found that the effective dielectric constant, obtained from realizations of small

particles, can be applied to a class of particle types if the fractional water content remains the same. Analysis

of the results indicates that the effective dielectric constant approach is useful in computing radar and ra-

diometer polarimetric scattering parameters of nonspherical mixed-phase particles.

1. Introduction

The bright band, a layer of enhanced radar echo as-

sociated withmelting hydrometeors, is often observed in

stratiform rain. The microphysical properties of melting

hydrometeors and their scattering and propagation ef-

fects have long been studied not only because of their

importance in accurately estimating parameters of the

precipitation from spaceborne radar and radiometers

but also as a result of their negative influence on earth–

satellite communication systems caused by attenuation

and depolarization of radio signals (Bringi et al. 1986;

Fabry and Szymer 1999; Olson et al. 2001a,b; Meneghini

and Liao 2000; Liao and Meneghini 2005; Sassen et al.

2005, 2007; Liao et al. 2009). To characterize the prop-

erties of the melting layer, a number of observations of

the radar bright band have been made by both ground-

based weather radars and multifrequency airborne

radars. However, one of the impediments to the study

of the radar signature of the melting layer is the deter-

mination of effective dielectric constants of melting hy-

drometeors. Although a number of mixing formulas are

available to compute the effective dielectric constants,

their results vary to a great extent when water is a com-

ponent of the mixture, such as in the case of melting

snow (Maxwell Garnett 1904; Bruggeman 1935). It is also

physically unclear as to how to select among these various

formulas. Furthermore, questions remain as to whether

these mixing formulas can be applied to computations of

radar polarimetric parameters from nonspherical melting

particles.

Recently, several approaches using numerical methods

have been developed to derive the effective dielectric

constants of melting hydrometeors, that is mixtures con-

sisting of air, ice, and water, based on more realistic

melting models of particles, in which the composition

of the melting hydrometeor is divided into a number of

identical cells (Meneghini and Liao 1996, 2000; Liao and

Meneghini 2005; Liao et al. 2009). Each of these cells is

then assigned in a probabilistic way to be water, ice, or air

according to the distribution of fractional water contents
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for a particular particle. While the derived effective

dielectric constants have been extensively tested at

various wavelengths over a range of particle sizes, these

numerical experiments have been restricted to the co-

polarized scattering parameters from spherical particles

(Meneghini and Liao 1996, 2000; Liao and Meneghini

2005; Liao et al. 2009). As polarimetric radar has been

increasingly used in the study of microphysical properties

of hydrometeors, it will certainly provide additional in-

formation on melting processes. To account for polari-

metric radar measurements from melting hydrometeors,

it is necessary to move away from the restriction that the

melting particles are spherical.

The primary goal of this study is to derive the effective

dielectric constants of nonspherical mixed-phase parti-

cles. The computational model for the mixture is de-

scribed by a collection of 1283 cubic cells of identical

size. Because of such a high-resolution model, the par-

ticles can be described accurately not only with regard to

shape but with respect to structure as well. The Carte-

sian components of themean internal electric field of the

particle, which are used to infer the effective dielectric

constants, are calculated at each cell by the use of the

conjugate gradient-fast Fourier transform (CGFFT)

numerical method. In this work, we first check the val-

idity of derived effective dielectric constant from the

nonspherical mixed-phase particle by comparing the

scattering and polarimetric parameters of a mixture

obtained from the CGFFT to those computed from

analytical solutions for a homogeneous particle with the

same geometry as that of the mixed-phase particle (such

as size, shape, and orientation) with an effective dielectric

constant derived from the internal field of the mixed-

phase particle. The accuracy of the effective dielectric

constant can be judged by whether the scattering pa-

rameters of interest can accurately reproduce those of the

exact solution.

The purpose of the effective dielectric constant is to

reduce the complexity of the scattering calculations in

the sense that this quantity, once obtained, may be ap-

plicable to a range of particle sizes, shapes and orienta-

tions. Having computed the effective dielectric constant

for a particle with a specific shape, size, and orientation,

a check is performed to see if the result, obtained from

one realization (with a fixed size, shape, and orientation),

can be used to characterize a class of particle types (with

arbitrary sizes, shapes, and orientations) if the fractional

water contents of melting particles remain the same.

Among the scattering and polarimetric parameters used

for examination of the effective dielectric constant in this

study are angular scattering intensity, radar backscatter-

ing, extinction and scattering coefficients, asymmetry

factor, phase shift, and linear polarization ratio (LDR).

The ultimate objective is to examine whether the ef-

fective dielectric constant approach provides a means

to compute radar and radiometric polarimetric scat-

tering parameters from the melting layer in a relatively

simple and accurate way.

The paper is organized as follows. A definition of ef-

fective dielectric constant of a mixture and the associated

equations are given in section 2, while the construction

of nonspherical mixing particles is described in section 3.

In section 4, tests of the derived effective dielectric con-

stants from nonspherical mixtures are conducted and

their utility in providing accurate scattering parameters

is assessed. This is followed by the summary and re-

marks in section 5.

2. Effective dielectric constant

Let E(r, l) and D(r, l) be the local electric and di-

electric displacement fields within a composite material

at location r at free-space wavelength l, satisfying

D(r, l)5 «(r, l)E(r,l) , (1)

where « is the dielectric constant. In view of the local

constitutive law described by the above equation, the

bulk effective dielectric constant «eff is defined as the

ratio of the volume averages of D and E fields (Stroud

and Pan 1978):

«eff

ð ð ð
V
E(r, l) dy5

ð ð ð
V
D(r, l) dy . (2)

If the particle, composed of two materials «1 and «2, is

approximated by N small equal-volume elements, then

the «eff can be written as

«eff 5

«1 �
j2M

1

Ej 1 «2 �
j2M

2

Ej

�
j2M

1

Ej 1 �
j2M

2

Ej

. (3)

The notations�2M1
and�j2M2

denote summations over

all the volume elements composing materials 1 and 2,

respectively. The internalE fields appearing on the right-

hand sides of (3) are in the same polarization as the

incident wave. In this study, they are computed by the

CGFFT numerical method (Catedra et al. 1995; Sarkar

et al. 1986; Su 1989) in which the volume enclosing the

total particle is divided into 1283 identical cells. The

CGFFT is one of the popular numerical schemes that

are applied for solving the electromagnetic scattering

problem from hydrometeors of arbitrary shapes and

compositions. The CGFFT method solves the electric

field integral equation derived fromMaxwell’s equations.
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To find solutions to the large set of simultaneous linear

equations obtained from the integral equation, an itera-

tive procedure based on the conjugate gradient (CG)

method is employed; the fast Fourier transform (FFT) is

then used to compute the summation that appears in the

form of a convolution. It has been demonstrated that the

CGFFT numerical procedure not only has great flexibil-

ity with respect to the particle shape and materials com-

posing the particle, but is also numerically efficient.

Details of the theory can be found in the appendix.

3. Compositions of mixed-phase particles

A wide range of nonspherical hydrometeor shapes—

such as discs, plates, columns, and needles that are most

frequently present in the atmosphere—can be well ap-

proximated by oblate and prolate spheroids by changing

the axial ratios. It is therefore reasonable to use spher-

oids in modeling nonspherical mixed-phase hydrome-

teors to check the validity of the effective dielectric

constant. Melting snowflakes can be described as a mix-

ture of snow and water, that is, two-component mix-

tures, though snow itself is composed of air and ice. For

simplicity but without losing generality, we assume that

the mixed-phase spheroids are composed of ice and

water that are randomly mixed within the particle. It is

worth mentioning that our study focuses on the exami-

nation of effective dielectric constants of nonspherical

mixing particles rather than on modeling mixed-phase

hydrometeors. Thus, it is sufficient for our purposes here

to use uniformly mixed ice–water spheroids to describe

nonspherical mixtures. Shown in Fig. 1 is an example of

realization of an oblate spheroid projected onto two

mutually perpendicular cross sections (x–y and x–z

planes). The particle is composed of 128 cells along the

x and y directions and 64 cells along the z axis, leading

to an axial ratio of 0.5. The dark and light areas rep-

resent water and ice, respectively. The minimum size

of any element (ice and water) is chosen to be at least

4 3 4 3 4 cells in size to better satisfy the boundary

conditions at the interfaces of ice and water. How-

ever, this requirement is not enforced near the particle

boundary because higher-resolution grids are needed to

precisely prescribe the surface contour.

To construct a uniformly mixed ice–water spheroid,

the cells that make up the particle are first identified

from a collection of nx3 ny3 nz grids along the x, y, and

z directions where the number of grid elements along

each direction is proportional to the particle size. If the

number of cells (water and ice) is denoted by NT, the

number of water cells NW for a given water fraction

fW is the product of fW and NT. A random generator is

used to findNWwater cells from the pool ofNT cells. As

noted above, the particle is composed of clusters of 43
4 3 4 cells, which are not allowed to overlap. The ice–

water mixture shown in Fig. 1 is constructed with a

water fraction of 0.3 in accordance with the proce-

dure described above. Several other realizations of ice–

water particles are displayed in Fig. 2 with axial ratios

of 0.5 and 0.125 (oblate spheroids in Figs. 2a and 2b,

respectively) as well as 2 and 8 (prolate spheroids in

Figs. 2c and 2d, respectively) for a fixed water fraction

of 0.3. These are described, respectively, by collections

of 128 3 128 3 64, 256 3 256 3 32, 64 3 64 3 128, and

FIG. 1. A realization of a uniformly mixed ice–water oblate spheroid in two orthogonal planes (x–y and y–z planes)

for a water fraction of 0.3.
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64 3 64 3 512 equal-volume cells. With such high-

resolution models (;1283 cells), it can be seen that the

particle shape and structure can be captured accurately.

4. Verification of effective dielectric constant

The validity of the derived effective dielectric con-

stant for a nonspherical mixed-phase particle can be

checked by comparing the scattering and polarimetric

parameters of a mixed-phase (ice water) spheroid ob-

tained from the CGFFT to those computed from the

T-matrix method for a homogeneous particle with the

same geometry as that of the mixed-phase particle with

an effective dielectric constant derived from the internal

field of the mixed-phase particle. These procedures can

be illustrated schematically by the chart shown in Fig. 3,

where «eff is the effective dielectric constant derived from

the average internal fields of the particle realizations

using the CGFFT numerical scheme. Scattering param-

eters, such as the phase function [P(Q, F)] and back-

scattering, scattering, and extinction coefficients (sb, ss,

and se), are compared between the CGFFT direct

computations and T-matrix results. The degree of agree-

ment between the two sets of results provides a crite-

rion by which to judge the effective dielectric constant

formulation.

For the sake of brevity, computations of scattering

parameters as well as derivations of effective dielectric

constants are made only at a frequency of 35 GHz (Ka

band) with a fixed water fraction chosen as 0.3. The di-

electric constants of ice and water are computed at 08C
using the regression equations reported by Ray (1972).

The scattering geometry of a spheroid is provided in

Fig. 4, where the incident wave propagates along the

z direction while the parallel and perpendicular polari-

zations of the incident electric fields are along the x and

y axes, respectively. The symmetry axis of the spheroid

is described by a zenith angle of u and azimuth angle of

uwith respect to the x axis. The equatorial semidiameter

and the radius at the poles of the spheroid are denoted

by a and b, respectively.

Figure 5 shows the results of the normalized angular

scattering intensity as a function of the scattering angle

from the CGFFT and T-matrix computations for an ice–

water mixed spheroid with size parameter x (x 5 2pr/l,

where r is the equivalent-volume radius and l is the

wavelength) of 1 and axial ratio of 0.5. The particle is

oriented at angles of u 5 458 and u 5 458. The nor-

malized angular scattering intensity, which is similar to

the scattering phase function, is the electric field scat-

tering intensity normalized by the cross-sectional area

of the particle equivalent-volume sphere, that is, pr2.

FIG. 2. Realizations of mixed-phased oblate and prolate spheroids in two orthogonal planes. (top) The top view and (bottom) the side

view. (a),(b)Oblate spheroids described respectively by a collection of 1283 1283 64 and 2563 2563 32 equal cells that yield axial ratios

of 0.5 and 0.125. (c),(d) Prolate spheroids consisting, respectively, of a collection of 643 643 128 and 643 643 512 equal cells that yield

axial ratios of 2 and 8.
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The scattering angle is defined as the angle between the

incident wave direction (Z axis) and the scattering di-

rection in the X–Z plane. Since parallel polarization of

the incident wave is assumed, the copolarized scatter-

ing intensity, shown in the left panel of Fig. 5, is equal to

the scattered field along the u direction while the cross-

polarized (perpendicular) scattering intensity is equal

to the scattered field along the u direction, as depicted

in the right panel of Fig. 5. Among these results are the

CGFFT computations from three particle realizations,

in which the ice–water cells are replaced by a new

random configuration while keeping the water fraction

as well as the shape, size, and orientation of the particle

fixed. The T-matrix results, denoted by TM, are com-

puted from the homogeneous particle with the same

geometry as that of the mixed-phase particle using the

CGFFT-derived effective dielectric constant. Note that

the effective dielectric constant is taken as the mean of

the results derived from the three particle realizations.

The results in Fig. 5 show that there is a fairly good

agreement between the CGFFT direct computations

and the T-matrix results. The agreement is particularly

good for the copolarized scattered field. The cross-po-

larized scattering results generally yield good agree-

ment, but the CGFFT results show fluctuations from one

particle realization to next around the scattering angle

of 1208. Nevertheless, the generally good agreement be-

tween the CGFFT computations from the mixed-phase

spheroids and the T matrix from the uniform spheroids

confirms the utility of the effective dielectric constant for

nonspherical particles.

It is well known that the T-matrix approach is very

effective in computing the scattering properties of

spheroids. However, the solutions tend to diverge for

highly eccentric spheroids, that is, those with small or

large axial ratios. To ensure the accuracy of the T-matrix

solutions, calculations of the scattering parameters (of the

homogeneous particles with an effective dielectric con-

stant) are performedusing both theCGFFTandT-matrix

methods. In principle, the results from the CGFFT and

T matrix should be identical and any significant differ-

ences likely indicate a possible divergence of theT-matrix

solution. As shown in Fig. 5, the scattering intensities

obtained from the CGFFT for the uniform particle, no-

tated by CGFFT (uniform), agree well with those from

the Tmatrix. In addition, the results of the Tmatrix using

an effective dielectric constant derived from the in-

ternal fields from a smaller-sized particle (x5 0.5) and

denoted by TM* is included and should be compared with

the standard result (TM) where the effective dielectric

FIG. 3. Schematic diagram illustrating the validation procedure used to assess the accuracy of

the effective dielectric constants of nonspherical particles.

FIG. 4. Scattering geometry of a nonspherical particle with wave

propagation vector (k) along the Z axis and the parallel and per-

pendicular polarizations of the incident wave along the X and Y

axes, respectively.
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constant is derived from the internal fields of a particle

with size parameter x5 1. It is apparent that the results

of TM and TM* are nearly indistinguishable, suggesting

that the effective dielectric constants are to a great ex-

tent independent of particle sizes at which the effective

dielectric constant is derived. This is an important fea-

ture in assessing the utility of the effective dielectric

constant approach.

Comparisons of the means of the normalized copolar-

ized scattering intensities over five particle realizations

are made in Fig. 6 between the CGFFT direct compu-

tations (CGFFT) of ice–water oblate mixtures with axial

ratio of 0.5 and the T-matrix results (TM) of uniform

oblate spheroids with «eff as the particle size parame-

ter varies from 0.1 to 4. The particles are oriented so

that u 5 458 and u 5 458. As in Fig. 5, the T-matrix

results with the effective dielectric constant derived at

x 5 0.5 (TM*) are also plotted. Generally there is a

reasonably good agreement among the scattering results

of CGFFT, TM, and TM*. Not only does this reveal the

validity of effective dielectric constants in the scatter-

ing computations for various particle sizes, but it also

indicates that the scattering parameters of mixed-phase

particles can be reproduced by the Tmatrix from uniform

particles with an effective dielectric constant derived at

a fixed particle size. The same conclusions can be drawn

from similar computations but with different axial ratios

and orientations of spheroids (not shown). It should be

noted that the discrepancies between the scattering re-

sults from the CGFFT and T matrix (both TM and TM*)

tend to become greater as the particle size increases. This

is likely due to resonance effects (or Mie effects), that is,

scattering intensities at larger particles that change rap-

idly with small variations in particle size, orientation, and

composition.

As noted earlier, effective dielectric constant can be

obtained using mixing formulas. Although a number of

mixing formulas are available, their results vary to a

great degree when water is one of the components in the

mixture. Furthermore, it is physically unclear as to how

to select among these various formulas (Meneghini and

Liao 1996). Many of these mixing formulas, such as the

Maxwell Garnett and Bruggeman mixing formulas, are

derived from uniform mixtures in which mixing ratios

are constant throughout the particles. To see how their

scattering results compare with those from direct com-

putations from specific particle realizations, shown in

Fig. 7 are comparisons of the normalized scattering

intensities between the CGFFT computations of ice–

water oblate mixtures with axial ratio of 0.5 and the

T-matrix results of uniform oblate spheroids with «eff
derived from the Maxwell Garnett and Bruggeman’s

mixing formulas. Notations of MGwi and MGiw denote

the results from the Maxwell Garnett equations, where

MGwi represents the case in which water is treated as

matrix and ice as inclusion, and where MGiw represents

FIG. 5. Comparisons of normalized scattering intensities computed from the CGFFT for

three oblate spheroid realizations with aspect ratio of 0.5 with the T-matrix results for the same

particle shapes using themean effective dielectric constants obtained from the CGFFT internal

fields over several particle realizations. All the computations aremade at a water fraction of 0.3

and particle size parameter of 1 as the spheroids are oriented at u5 458 andu5 458. Labels TM
and TM* refer to the results of the T-matrix computations using the effective dielectric con-

stants derived for particle size parameters of 1 and 0.5, respectively. The CGFFT results that

are computed from a uniform particle of mean effective dielectric constant are also included in

the plots. The copolar and cross-polar angular scattering intensities are given in the left and

right panels for the parallel-polarized incident wave.
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the case in which the roles of water and ice are reversed,

that is, ice as matrix and water as inclusion. As in Fig. 6,

the scattering intensities are the mean of the results from

five particle realizations. Computations are carried out as

the spheroids are oriented at u 5 458 and u 5 458, and
particle size parameters vary from 0.1 to 4. It is evident

that the degree of agreement with the CGFFT differs

among the mixing formulas even though they all pro-

duce similar scattering patterns as that from the

CGFFT. To quantify these differences, a relative error (d)

of the various formulations with respect to the CGFFT

direct computation is defined as

d5
1

N
�
N

i51

jFM(ui)2FCGFFT(ui)j
FCGFFT(ui)

3 100, (4)

where FCGFFT(u) and FM are the normalized angular

scattering intensities obtained by the direct CGFFT

computations and the T matrix with «eff, respectively.

The N is the total number of scattering angles used in

the computations over the range from 08 to 3608. Table 1
summarizes the results of the relative errors of the

T-matrix computations from Figs. 6 and 7 with «eff de-

rived from the particle internal fields (TM and TM*) and

the mixing formulas (Maxwell Garnett and Bruggeman).

Note that since the scattering computations are made

at 5 particle realizations, the errors given in Table 1 are

the averaged results from these realizations. The results

clearly show that the MGwi departs greatly from the

CGFFT for small to moderate particles (x # 2) and

tends to agree better with the CGFFT results for large

particles (x. 2). In contrast to the MGwi, the MGiw has

small errors for small particles (x # 1) and large errors

for the big particles (x $ 2). The results from the

Bruggeman mixing formula exhibit fairly good agree-

ment with the CGFFT direct computations. However,

the best agreement occurs for the results of the TM and

TM*. It is important to note that these comparisons

were done only for a single frequency and water frac-

tion; a separate study would be needed to draw more

FIG. 6. Comparisons of the mean normalized scattering intensities between the CGFFT direct computations (CGFFT) of ice–water

oblate mixtures with axial ratio of 0.5 and TM of uniform oblate spheroids using effective dielectric constants derived from the particle

internal fields of 5 particle random realizations. All the computations are made as the spheroids are oriented at u 5 458 and u 5 458 and
particle size parameters (x) vary from (top left) 0.1 to (bottom right) 4. TM* represents the T-matrix results with the effective dielectric

constant derived at x 5 0.5.
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general conclusions as to the suitability of any of the

standard dielectric formulas to nonspherical mixed-phase

particles.

Up to this point the paper’s emphasis is on the exis-

tence and validity of the effective dielectric constant

for nonspherical mixed-phase particles. The effective

dielectric constant, however, would have limited appli-

cability if it depended on the particle size or geometry or

particular orientation, apart from the fractional water

content. To check the independence on particle size and

geometry, we use below the complex refractive index,

defined as square root of dielectric constant, as it is

frequently used in the radar and radiometer literature to

describe the scattering properties of hydrometeors. This

quantity will be used to check the variations in the di-

electric properties of ice–water mixtures for different

particle geometries. Figure 8 shows the real (blue) and

imaginary (red) parts of complex refractive indexes

derived from oblate and prolate spheroids as well as

spheres. For a fixed size parameter, results are displayed

for the various refractive indices derived from different

particle realizations with various orientations and axial

ratios. The solid lines represent the mean values of the

data. The results show that greater variations occur for

larger particles; moreover, this variation is more pro-

nounced for prolate spheroids than for spheres or oblate

spheroids. The mean values, however, remain relatively

stable with changes in size, shape, and orientation—

properties that we would require from the perspective of

practical applications, that is, that the effective dielectric

FIG. 7. As in Fig. 6, but using effective dielectric constants obtained from the Maxwell Garnett and Bruggeman mixing formulas.

Notations ofMGwi andMGiw stand for twoMaxwellGarnett results, one inwhichwater is treated as thematrixwith ice inclusions (MGwi),

and the other in which the roles of water and ice are reversed, i.e., ice as matrix and water as inclusion (MGiw).

TABLE 1. Relative errors (%) of normalized angular scattering

intensities of Figs. 6 and 7, computed by T matrix using effective

dielectric constants derived from particle internal fields andmixing

formulas, as comparedwith theCGFFTdirect computations. Here,

x refers to the particle size parameter.

x TM TM* MGwi MGiw Bruggeman

0.1 1 1 88 2 4

0.5 1 1 64 1 4

1 3 4 143 4 15

2 4 5 130 216 8

3 6 12 21 61 6

4 6 15 31 43 22
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constant is independent of the particle geometry. To

present these results in a different way, the complex

refractive indexes are plotted, as shown in Fig. 9, in the

plane of complex refractive index in which the real part

of refractive index is along the abscissa and the imagi-

nary part along the ordinate. As in Fig. 8, the data are

broken down into three categories according to parti-

cle shape (Figs. 9a–c). The merged data are shown in

Fig. 9d. The results for different particle sizes are de-

picted by the size of the data ‘‘point’’ using the scale

shown on the right-hand size of the plot. The means are

represented by the intersections of the solid vertical and

horizontal lines with their values given in the brackets.

The results show that large particles (represented by the

big circles) are responsible for most of the variation

from realization to realization. Moreover, the prolate

spheroids show larger fluctuations than either the ob-

lates or spheres. This is consistent with the results shown

in Fig. 8. Despite these variations, the mean values are

nearly invariant with respect to particle shape or size. As

shown in Figs. 8 and 9, the fluctuations in the complex

refractive index are much smaller when the particle size

is small. This suggests that the means of the refractive

indices (or effective dielectric constants) could be ac-

curately computed at small particle sizes andwithout the

need to average many realizations to achieve stability

in the mean. The CGFFT at small particle sizes has a

computational advantage over large particles because

the time to convergence of the results for small particles

is significantly shorter than those for large particles.

This, in conjunction with small number of the realiza-

tions needed, leads a dramatic reduction in CPU time if

the effective dielectric constants are derived at small

sizes. In view of the variability of the complex refractive

indexes shown in Figs. 8 and 9, it is recommended that

the effective dielectric constants be computed at particle

size parameters of 0.5 or smaller. For reference the

means of the complex refractive indexes derived at x 5
0.5 are also plotted in Fig. 9, which are the intersections

of two orthogonal dashed lines. The results show that

FIG. 8. Complex refractive indices, defined as the square root of the dielectric constant,

computed from mixed-phase particle realizations of (c) spheres and (a) oblate and (b) prolate

spheroids as a function of the particle size parameter. Real and imaginary parts of the complex

refractive indices are given by the blue and red circles, respectively, with solid lines repre-

senting the mean value. For oblate and prolate spheroids the data points at a fixed size cor-

respond to the results computed from different aspect ratios and orientations of the particles

but with the same sizes, i.e., equivalent volumes. The results include computations made for

several particle realizations for each particle size, shape, and orientation. (d) Mean values of

the real (blue) and imaginary (red) parts of the complex refractive index for oblate, prolate, and

spherical particles and their averaged results (combined).
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the mean average effective refractive index derived for

x 5 0.5 differs little from the results derived from the

average effective refractive index of larger particles.

To see if radar and radiometer scattering parameters

can be reproduced with use of effective dielectric con-

stants, comparisons of several scattering parameters are

shown in Fig. 10 between the direct (CGFFT) compu-

tations from mixed-phase particle realizations and the

T-matrix computations using the effective dielectric con-

stant. For these computations the particle size parameter

ranges from 0.1 to 4. The computations are carried

out for oblate and prolate spheroids with axial ratios

varying from 0.125 to 8 as well as for spheres at each

particle size. Results from two particle orientations

are shown: (u, u) 5 (0, 0) and (u, u) 5 (458, 458). The
scattering parameters included in the comparisons

are the backscattering (sb,hh), scattering (ss,hh), and

extinction (se,hh) coefficients, asymmetry factor (ghh),

jRe( fhh 2 fvv)j, and linear depolarization ratio [LDR;

defined as 10 log10(sb,hv/sb,hh)]. In the notation ‘‘hh,’’

FIG. 9. Scatterplots of the derived complex refractive indices (m) in the complex plane with the real part (Re) along the abscissa and

imaginary part along the ordinate. The size of each data point is proportional to the particle size parameters as shown by the scale on the

right-hand side. The mean values of the real and imaginary parts are given in each panel and are also indicated by the intersection of the

vertical and horizontal solid lines. The intersection of the dashed lines corresponds to the mean complex refractive index that is computed

exclusively from the particles with a size parameter of 0.5. The data are broken down into results from (a) oblate spheroids, (b) prolate

spheroids, (c) spheres, and (d) combined.
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‘‘hv,’’ and so on, the first subscript denotes the polari-

zation state of the incident wave while the second de-

notes the polarization of the scattered field. The

quantity f is the forward-scattering amplitude while jRe

(fhh2 fvv)j represents the absolute value of the real part
of the difference of forward-scattering amplitudes be-

tween horizontal and vertical polarizations, and is

proportional to the propagation phase shift. For (u, u)
5 (0, 0) where the symmetry axis of the particle is

aligned along the propagation direction of the incident

wave, fhh and fvv are identical, and therefore the phase

shift [jRe(fhh 2 fvv)j] is 0. Moreover, for this geometry,

there is no cross-polarized backscattering, that is, sb,hv 5
0, leading to LDRequal to negative infinity. These results

also hold for spheres. As such, the results for LDR and

jRe(fhh 2 fvv)j for the case of (u, u) 5 (0, 0) are not

included in Fig. 10. The relative biases of the scatter-

ing parameters obtained from the homogeneous and

mixed-phase particles are also given in Fig. 10. The

relative bias is defined as

relative bias5
1

N
�
N

i51

Si,TM2 Si,CGFFT

Si,CGFFT

3 100%, (5)

where S represents the scattering parameter (sb, se,

LDR . . .), N is the total number of particle realiza-

tions used in computations, and subscripts TM and

CGFFT refer to the T-matrix (homogeneous particles)

and CGFFT direct computations (mixed-phase parti-

cles). There are about 630 realizations, that is, N ’
630, covering particle size parameters from 0.1 to 4,

and axial ratios from 0.125 to 8. It is not difficult to find,

as shown in Fig. 10, that there exist high correlations

between the CGFFT and the T-matrix results for each of

the scattering parameters. The relative biases remain

fairly small (less than 61% for most of the scattering

FIG. 10. Comparisons of scattering parameters computed from the CGFFT direct computations and Tmatrix for uniform particles with

effective dielectric constants. Particle shapes include spheres as well as oblate and prolate spheroids. The scattering parameters shown are

backscattering coefficient (sb), scattering coefficient (ss), extinction coefficient (se), asymmetry factor (g), absolute value of real part of

the difference of scattering amplitudes between horizontal and vertical polarizations (jRe(fhh 2 fvv)j) (which is proportional to the phase

shift of propagation between horizontal and vertical polarizations), and LDR. The subscripts hh and vv denote the copolarized returns for

horizontal and vertical polarizations, respectively.
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parameters) with the largest biases of 23.1% for the

backscattering coefficient and 25.7% for jRe(fhh 2 fvv)j.
In short, the good agreement between the scattering pa-

rameters for mixed-phase particles and homogeneous

particles with an effective dielectric constant implies

that the use of an effective dielectric constant formula-

tion to derive radar and radiometer co- and cross-polar-

ized scattering parameters is efficient and sufficiently

accurate if the hydrometeors can bemodeled as spheroids.

5. Summary and remarks

Validation of the procedure to obtain an effective

dielectric constant for nonspherical random mixtures of

ice–water particles has been carried out by comparing

co- and cross-polarized scattering properties, such as

angular scattering intensity, backscattering, scattering

and extinction coefficients, phase shift, and LDR, from

realizations of high-resolution mixed-phase particle

models with those from a homogeneous particle with

dielectric constant «eff. This is accomplished by model-

ing nonspherical particles as oblate and prolate spher-

oids and by comparing the scattering parameters of the

mixed-phase oblate and prolate spheroids obtained

from the CGFFT to those computed from the T matrix

for a homogeneous particle with the same geometry as

that of the mixed-phase particle (such as size, shape, and

orientation) with an effective dielectric constant derived

from the internal fields of the ice–water particle. The

accuracy of the effective dielectric constant is judged by

whether the scattering parameters of interest can accu-

rately reproduce those of the direction computations,

that is, the CGFFT results. Analysis of the results in-

dicates that the effective dielectric constant of ice–water

mixed-phase spheroids is sufficiently accurate to be used

to compute the scattering properties of spheroids up to

size parameters of approximately 4. Although the paper

has shown comparisons for a fixed frequency and frac-

tional water, computations at other values of frequen-

cies and water fractions of these parameters indicate

similar good agreement. These results imply that scat-

tering computations for mixed-phase particles by com-

plex and time-consuming numerical methods can be

replaced by fast analytical solutions using homogenous

particles of the same geometry with an effective di-

electric constant. This is particularly true for the typical

radar or radiometer viewing geometry over a large field

of view where the variations in the scattered fields from

individual particles will tend to cancel out.

The utility of «eff has been examined through com-

parisons of the complex refractive indices derived from

a class of particles for which the water fractions are fixed

but the sizes, shapes, and orientations vary. It is concluded

that the means of the complex refractive indices are

nearly unchanged for different particle sizes, shapes,

and orientations as long as the water fraction is fixed. It

is also found that the variability in the complex re-

fractive indices from large particle realizations is larger

than from small particles even though the mean re-

mains approximately the same. Because of this, it is

suggested that the effective dielectric constants should

be computed at small particle sizes, with a particle size

parameter of 0.5 or smaller. Our findings of this study

indicate that the effective dielectric constant, once ob-

tained, can be applied to a range of particles sizes, shapes,

and orientations for a fixed fractional water content. The

use of the effective dielectric constantmay greatly reduce

the complexity and computational time of the scattering

calculations. It should be noted, moreover, that although

results in this paper are presented only for a frequency of

35 GHz and a water fraction of 0.3, the findings seem to

be applicable to other frequencies and water fractions

based on our computations made at different frequencies

and water fractions.

While the effective dielectric constant approach pro-

vides a simple and accurate means to compute scattering

parameters of mixed-phase particles, successful simula-

tions of radar and radiometer polarimetric scattering

parameters require appropriate hydrometeor melting

models, such as shapes, orientations, and more impor-

tantly melting processes that determine how the melted

water is distributed within the particle. An investigation

of these more general particle models with more accu-

rate representations of the melted-water distribution

will be next steps toward the development of a more

complete and accurate melting layer scattering model in

an attempt to improve the accuracy of precipitation es-

timates by theGlobal PrecipitationMeasurement (GPM)

Dual-Frequency Precipitation Radar (DPR) and Micro-

wave Imager (GMI).
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APPENDIX

The CG-FFT Method and Its Use for Computations
of Scattering Parameters

a. The CG-FFT method

The electric field E in a dielectric medium can be ex-

pressed in terms of the potential vector A and the scalar

potential f as
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E52$f2
›A

›t
, (A1)

where A and f yield

=2A(r)1 k20A(r)52m0J and (A2)

=2f(r)1 k20f(r)52
r

«0
, (A3)

where J and r are the volume densities of the current

and charge, respectively, and k0 is the free-space prop-

agation constant in consideration of the periodic time-

dependent fields, in which an exp(ivt) time convention is

assumed and suppressed.

Using the free-space Green’s function G(k0R)5
exp(2jk0R)/4pR, R5 jr2 r9j, u(r) and A(r) can be de-

rived to be

u(r)5
1

«0

ð ð ð
V
r(r9)G(k0,R) dr9 and (A4)

A(r)5m0

ð ð ð
V
J(r9)G(k0,R) dr9 , (A5)

where r9 and r are the coordinates for the source and

observation points.

Let us consider a planewaveEi incident on a dielectric

particle. According to (A1), the electric field at any

point of space is

E(r)5Ei(r)2 jvA(r)2$f(r) . (A6)

Since there are no free charges in the space, the r(r)

and J(r) are

r(r)52«0$ � f[er(r)2 I ]E(r)g and (A7)

J(r)5 jv«0[er(r)2 I ]E(r) , (A8)

where er and I are the generalized complex tensor of the

relative permittivity of the medium and the unit matrix,

respectively. From the substitution of (A4) and (A5)

into (A6) using (A7) and (A8), we obtain

E(r)5Ei(r)1v2m0«0

ð ð ð
‘
G(k0R)[er(r9)2 I]E(r9) dr9

1$
ð ð ð

‘
G(k0R)=9 � f[er(r9)2 I]E(r9)gdr9 .

(A9)

After applying integration by parts to the last term of

(A9), we have

E(r)5Ei(r)1v2m0«0

ð ð ð
‘
G(k0R)[er(r9)2 I]E(r9) dr9

1

ð ð ð
‘
$$G(k0R)[er(r9)2 I]E(r9) dr9

5Ei(r)1

ð ð ð
‘
G(k0R)X(r9)E(r9) dr9 , (A10)

where

G(k0R)5 (k20I1$$)G(k0R) and (A11)

X(r9)5 er(r9)2 I . (A12)

From (A10) the scattered field is given by

Es(r)5

ð ð ð
V

p

G(k0R)X(r9)E(r9) dr9 , (A13)

where Vp is the volume of the particle; when outside the

particle, X(r9)5 0.

To employ the FFT technique discussed below, the

integration volume Vp is replaced by V, where V is se-

lected to be orthogonal and enclose the total particle.

Then V is divided into m1 3 m2 3 m3 identical ortho-

rhombic cells with volume Dy 5 DxDyDz, which is small

enough so that every component of the field is approxi-

mately constant within Dy. Using center points (xi, yj, zk)

ofDy, where i5 1, . . . ,m1, j5 1, . . . ,m2 and k5 1, . . . ,m3,

to represent each component, and expanding (A13), we

have

Ep(i, j,k)5Ei
p(i, j,k)1 �

m
1

i951
�
m

2

j951
�
m

3

k951
�
q
gpq(i2 i9, j2 j9,k2 k9) ��

t
eqt(i9, j9,k9)Et(i9, j9,k9) , (A14)

where p5 x, y, z and the summation for q and t is x, y, z.

The gpq denotes the product of the elements of thematrix

G(k0R) and Dy, while eqt denotes the (qt)th elements of

X(r9). Equation (A14) can be written as a set of 3M un-

knowns E(xi, yj, zk):

AX5B , (A15)

whereA is the coefficientmatrix of order 3M3 3M,X is the

unknown matrix of order 3M 3 1, consisting of the el-

ements Ep(i, j, k), and B is the excitation matrix of order
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3M 3 1 composed of the elements Ei
p(i, j, k). The conju-

gate gradient method, which is an iterative procedure, is

employed to solve the set of 3M simultaneous linear

equations in (A15). An ~A is chosen to be the transpose (t)

of the complex conjugate (*) of A, that is, ~A5 (A*)t, so

that ~AA is Hermitian. This kind of iterative method does

not stop until kB2AXk# «, where « is some small number

related to the accuracy of the solution. It is important to

note that themultiple summations of (A14) are in the form

of a convolution, and therefore it can be computed by the

discrete convolution theory associated with the FFT.

Letting n1 5 2m1, n2 5 2m2, and n3 5 2m3, the functions

Gpq(i9, j9, k9) and Pq(i9, j9, k9) with period of n1, n2, and n3
for each dimension, respectively, are constructed below:

Gpq(i1 l1, j1 l2, k1 l3)5

8>><
>>:

gpq(i, j,k) , 2(m12 1)# i#m12 1
2(m22 1)# j#m22 1
2(m32 1)# k#m32 1

0, i52m1 or j52m2 or k52m3

, (A16)

where

l1 5

�
0, i$ 0
n1, i, 0

l25

�
0, j$ 0
n2 , j, 0

l3 5

�
0, k$ 0
n3 , k, 0

,

and

Pq(i, j,k)5

8>><
>>:

eqt(i, j,k)Et(i, j,k) , 0# i#m12 1
0# j#m22 1
0#k#m32 1

0, m1# i# n12 1 or m2# j# n22 1 or m3# k# n32 1

. (A17)

Thus, the summation in (A14)

Spq(i, j,k)5 �
m

1
21

i950
�

m
2
21

j950
�

m
3
21

k950

gpq(i2 i9, j2 j9,k2 k9)�
t
eqt(i9, j9, k9)Et(i9, j9, k9) , (A18)

according to the discrete convolution theorem, is ob-

tained by

Spq(i, j, k)5F21fF[Gpq(i9, j9,k9)]F[Pq(i9, j9, k9)]g ,
(A19)

where F denotes the discrete fast Fourier transform

operating on i9, j9, and k9 with three-dimensional array

n1 3 n2 3 n3, and F21 is the inverse discrete fast Fourier

transform.

b. Formulation of scattering parameters

As the scattering parameters are defined for the scat-

tered field in the far field region, the following two ap-

proximations can be used:

e2jk
0
R ’ e2jk

0
r1jk

0
r̂�r9 and (A20)

1

R
’

1

r
, (A21)

where r̂ is the unit vector of r. Using (A20) and (A21),

the scattering field becomes

Es(r)5

ð ð ð
V
H X(r9)E(r9) dr9 � 1

r
e2jk

0
r , (A22)

where

H5
k20
4p

ejk0
rr9 �

0
BBBBBBBB@

12
x2

r2
2
xy

r2
2
xz

r2

2
xy

r2
12

y2

r2
2
yz

r2

2
xz

r2
2
yz

r2
12

z2

r2

1
CCCCCCCCA
. (A23)

By expressing H in spherical coordinates, where

x5 r sinu cosf y5 r sinu sinf z5 r cosu , (A24)

(A23) becomes
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H5
k20
4p

ejk0
(x9sinucosf1y9sinusinf1z9cosu) �

0
@ 12 sin2u cos2f 2sin2u cosf sinf 2sinu cosf cosu

2sin2u cosf sinf 12 sin2u sin2f 2sinu sinf cosu
2sinu cosf cosu 2sinu sinf cosu 12 cos2u

1
A . (A25)

From (A22) and (A25), the electric field of the scattered

wave may be written in the far field regions as

Es 5 f(k̂1, k̂2)
1

r
e2jk

0
r , (A26)

where k̂1 is a unit vector directed along the propagation

of the incident wave, and k̂2 a unit vector directed from

the origin to the observation point. The vector quantity

f(k̂1, k̂2), called the scattering amplitude, describes the

magnitude of the field and its polarization state, where

f(k̂1, k̂2)5
k20
4p

�

0
B@

12 sin2u cos2f 2sin2u cosf sinf 2sinu cosf cosu

2sin2u cosf sinf 12 sin2u sin2f 2sinu sinf cosu

2sinu cosf cosu 2sinu sinf cosu 12 cos2u

1
CA

3

ð ð ð
V
exp[jk0(x9 sinu cosf1 y9 sinu sinf1 z9 cosu]X(r9)E(r9) dr9 . (A27)

The scattering amplitude is not only a function of k̂1
and k̂2 but also a function of frequency, size, shape, and

dielectric constant of the particle, and the polarization

state of the incident wave. There is a well-known rela-

tion between extinction cross section Qe and the scat-

tering amplitude f in the forward direction (Saxon 1955)

that is given by

Qe 52

�
4p

k

�
Im[ê � f(k̂1, k̂2)] , (A28)

where ê is a unit vector of the incident wave electric

field. The backscattering cross section Qb for polariza-

tion â is defined by

Qb 5 4pjâ � f(k̂1,2k̂1)j2 . (A29)

Other than the basic scattering parameters like Qe

and Qb, the LDR and the differential reflectivity factor

(ZDR) of the single particle are also important in radar

application. These quantities can be defined in terms of

the backscattering amplitudes in the main (horizontal

and vertical, fhh and fvv) and orthogonal channels ( fhv) by

LDR (dB)5 10 log

2
64jfhv(k̂1,2k̂1)j2
jfhh(k̂1,2k̂1)j2

3
75 (A30)

and

ZDR (dB)5 10 log

2
64jfhh(k̂1,2k̂1)j2
jfvv(k̂1,2k̂1)j2

3
75 . (A31)

Significant values of LDR and ZDR can result either

from the asymmetry of the particle geometry or the in-

homogeneity of its dielectric properties.
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