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ABSTRACT

A new version of a real-time global flood monitoring system (GFMS) driven by Tropical Rainfall Mea-

suring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) rainfall has been developed and

implemented using a physically based hydrologic model. The purpose of this paper is to evaluate the per-

formance of this new version of the GFMS in terms of flood event detection against flood event archives to

establish a baseline of performance and directions for improvement. This new GFMS is quantitatively

evaluated in terms of flood event detection during the TRMM era (1998–2010) using a global retrospective

simulation (3-hourly and 1/88 spatial resolution) with the TMPA 3B42V6 rainfall. Four methods were explored

to define flood thresholds from the model results, including three percentile-based statistical methods and a Log

Pearson type-III flood frequency curve method. The evaluation showed the GFMS detection performance

improves [increasing probability of detection (POD)] with longer flood durations and larger affected areas. The

impact of dams was detected in the validation statistics, with the presence of dams tending to result in more false

alarms and greater false-alarm duration. The GFMS validation statistics for flood durations .3 days and for

areas without dams vary across the four methods, but center around a POD of ;0.70 and a false-alarm rate

(FAR) of ;0.65. The generally positive results indicate the value of this approach for monitoring and

researching floods on a global scale, but also indicate limitations and directions for improvement of such ap-

proaches. These directions include improving the rainfall estimates, utilizing higher resolution in the runoff-

routing model, taking into account the presence of dams, and improving the method for flood identification.

1. Introduction

Floods are a leading natural disaster, common and

costly, and responsible for about one-third of natural ca-

tastrophes (Smith and Ward 1998). Losses caused by

floods have been rising rapidly because of extreme

weather conditions, urbanization, and inadequate disaster

response. Hydrologic model–based flood forecasting sys-

tems have been regarded as the most effective way for

flood early warning and monitoring and subsequent

hazard mitigation and management (e.g., Dutta et al.

2000; Al-Sabhan et al. 2003; Hong et al. 2007; Reed et al.

2007; Yilmaz et al. 2010; among many others). However,

almost all these existing flood forecasting systems are

established at local or regional scales (e.g., Reed et al.
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2007; Cloke and Pappenberger 2009; Pappenberger and

Buizza 2009; Voisin et al. 2011), usually in developed re-

gions, where sufficient resources are available, while

many remote, ungauged regions and regions with trans-

boundary basins remain without such systems. Ongoing

improvements in global remote sensing data for esti-

mating precipitation and delineating land surface char-

acteristics (e.g., land cover, vegetation, topography, and

hydrography) have augmented hydrological simulations

on a wide range of scales, including the global scale.

Developing global flood forecasting systems based on

hydrologic models driven by remote sensing data at rel-

atively high spatial and temporal resolution is now

practical and has the potential for providing useful in-

formation for flood estimation and management, espe-

cially for underdeveloped or remote regions. However,

challenges remain in accurate precipitation estimation,

globally distributed parameterization for hydrological

modeling, etc. But with improved accuracy, coverage, and

resolution from satellite-based rainfall estimation (Adler

et al. 2003), these products have been used in many

hydrologic modeling applications with positive perfor-

mance (e.g., Hong et al. 2006; Artan et al. 2007; Shrestha

et al. 2008; Su et al. 2008; Pan et al. 2010; Su et al. 2011;

among others). One such satellite rainfall product, the

National Aeronautics and Space Administration (NASA)

Tropical Rainfall Measuring Mission (TRMM) Multi-

satellite Precipitation Analysis (TMPA; Huffman et al.

2007), has been used extensively and provides quasi-

global (508S–508N) precipitation analyses at 3-hourly,

0.258 latitude–longitude resolution, with all satellite es-

timates calibrated or adjusted to the information from

the TRMM satellite itself, which carries both a radar and

passive microwave sensor.

Using the real-time version of the TMPA rainfall in-

formation, an experimental global flood monitoring

system (GFMS) was developed (Hong et al. 2007) and

has been running routinely for the last few years with

results being displayed at the NASA TRMM website

(http://trmm.gsfc.nasa.gov/). In this original GFMS, a sim-

plified hydrologic infiltration module using a curve num-

ber (CN) approach and an antecedent precipitation index

method as soil moisture proxy is used to partition rain-

fall and a linear slope–based flow speed and direction

scheme is used to route runoff in order to predict po-

tential floods over the quasi-globe in near real time. This

original GFMS was evaluated in terms of detecting flood

events by Yilmaz et al. (2010), which showed that the

simplified CN-based hydrologic approach has some skill

in detecting floods, especially during the early stages of

flood events, but has low performance in flood event

detection metrics (e.g., probability of detection) and de-

lineation (e.g., flood evolution in the river network). Both

studies concluded that a relatively more physically based

hydrologic model may improve the GFMS performance

(Hong et al. 2007; Yilmaz et al. 2010). The Coupled

Routing and Excess Storage (CREST) hydrologic model,

later developed (Wang et al. 2011) for this purpose, is the

subject of the evaluation in this paper.

The purpose of this paper is to evaluate the perfor-

mance of the new version of the GFMS in flood detec-

tion against available flood event archives to indicate the

skill and limitations of the system. This paper is orga-

nized as follows. In section 2, we describe the method

used in this study. The results of the evaluation are de-

scribed and discussed in section 3, including the GFMS

flood detection performance at various scales and the

impacts of dams on the results. Conclusions are in sec-

tion 4 and future work is discussed in section 5.

2. Methodology

The GFMS combines the satellite-based estimates of

precipitation, runoff generation, runoff routing, and flood

identification. A unified algorithm for flood event iden-

tification and matching between modeled results and

reported floods was developed. Four different flood

threshold definition method using GFMS output were

developed and utilized to evaluate the sensitivity of the

results to this variation.

a. Hydrologic model and data

The new (current) version of the GFMS uses the

CREST model (Wang et al. 2011) to simulate the spatial

and temporal variation of land surface and subsurface

water fluxes and storages by cell-to-cell simulation, con-

sidering canopy interception, infiltration, and evapotrans-

piration processes. However, there are no cool season

processes (e.g., snow or frost) considered in the model

at this time. The CREST model calculates infiltration

and surface runoff using the variable infiltration ca-

pacity curve similar to the Xinanjiang model (Zhao and

Liu 1995) and the Variable Infiltration Capacity (VIC)

model (Liang et al. 1994, 1996). It employs a vertical,

parallel, multilinear reservoir module adapted from

Xinanjiang model (Zhao and Liu 1995) coupled with

a simplified cell-to-cell routing scheme with high

computing efficiency. The CREST model main inputs

include rainfall (e.g., TMPA), potential evapotranspi-

ration (Famine Early Warning Systems Network; http://

igskmncnwb015.cr.usgs.gov/global/) and hydrography.

The hydrography data include 1/88 resolution flow di-

rection and drainage area derived by the hierarchical

dominant river tracing (DRT) algorithm by Wu et al.

(2011) using 30 arc-second-resolution Hydrological Data

and Maps Based on Shuttle Elevation Derivatives at
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Multiple Scales (HydroSHEDS; Lehner et al. 2008) as

baseline fine-resolution hydrography inputs. For this

exercise and for the current real-time application we do

not calibrate the CREST model because of the diffi-

culty of doing so across the globe at 1/88 resolution; more

importantly, we assume the hydrologic model still has

skill in ranking events at locations, even though the

model-simulated flood magnitudes may be locally bi-

ased relative to observed data (Reed et al. 2007). All

the model parameters were either directly estimated

from input data, or used as a priori parameters (see de-

tailed parameter estimation and description by Wang

et al. 2011).

We performed the evaluation based on the retro-

spective simulation results of the CREST model forced

by the TMPA version 6 (V6) research quality data from

1998 to 2010 at 3-hourly time resolution and 1/88 latitude–

longitude spatial resolution over the TRMM quasi-

global domain. The TMPA (V6) rainfall, which is only

available about a month after observation time, is used

for this study because of its consistency during the 13-yr

TRMM period used, as compared to the real-time ver-

sion of the product (TMPA RT), which has changed

significantly over that period. The current version of the

real-time TMPA (RT) rainfall, used for the real-time

GFMS, uses monthly and regional climatological ad-

justments to produce real-time estimates close to the

after-the-fact V6, which includes monthly rain gauge

information used for bias adjustments of the satellite

rainfall estimates (Huffman et al. 2009). While the model

outputs major hydrologic variables including discharge

(m3 s21), routed runoff (mm), evapotranspiration and

soil water (mm), etc., the evaluation was performed

mainly using the routed runoff variable (depth of water

in each grid cell at each time), which represents the total

amount of water stored in each grid cell surface at each

time interval, routed from its upstream drainage area.

The routed runoff variable was chosen for the evalua-

tion because it directly represents the magnitude (depth)

of water stored on the dry land surface for each grid cell

regardless of flow conditions of inbank or overbank. The

routed runoff and discharge can be calculated from one

another at each grid cell. The simulated routed runoff was

stored for each grid cell at every 3-h time interval for the

simulated 13 years. These routed runoff results were then

used to determine the flood definition statistics for each

grid cell.

There are several global flood event databases avail-

able for comparison with the model. Most of them are

online resources—for example, Emergency Events Da-

tabase (EM-DAT) by the Centre for Research on the

Epidemiology of Disasters (CRED) (http://www.emdat.

be/), Global Identifier Number (GLIDE) disaster database

[Asian Disaster Reduction Center (ADRC); http://www.

glidenumber.net/], Financial Tracking Service (FTS)

global, real-time database [U.N. Office for Coordination

of Humanitarian Affairs (OCHA); http://fts.unocha.

org/], Dartmouth Flood Observatory (DFO) (http://

floodobservatory.colorado.edu/), European Commission

Joint Research Center (JRC) Global Disaster Alert and

Coordination System (GDACS) (http://www.gdacs.org/

flooddetection/), and the International Flood Network

(IFNET) (http://www.internationalfloodnetwork.org/).

However, although most databases record flood date,

duration, and country, more detailed information such

as geographical location (latitude and longitude) and river

basin are often not recorded. This type of information is

critically needed for the evaluation in this study. Since

2006, the DFO has begun to record geographical locations

of flood events based on the center of a polygon enclosing

the inundated area. A longer-period global flood inven-

tory (GFI) based on DFO, EM-DAT, FTS, and IFNET

was compiled for 11 years (1998–2008), coinciding with

the availability of TRMM precipitation products (Adhikari

et al. 2010). Geographical locations of flood events in

GFI were mainly taken from DFO (for 2006 ; 2008)

with additional reports, aerial photographs, and remote

sensing images used through tedious verification and

cross-checking processes with Google Earth (Adhikari

et al. 2010). We employed the DFO (2006 ; 2010) and

GFI (1998 ; 2008) flood event database (referred to as

the flood database) as the reference for the quantitative

evaluation of the GFMS performance in flood detection,

as they both provide both flood location and duration.

Affected areas of flood events are also available from

DFO flood database. There are 929 and 2672 reported

flood events within the study domain (508S–508N) by

DFO and GFI, respectively, after removal of flood events

caused by dam failure and snowmelt, which are not rep-

resented in the current GFMS formulation. A combined

flood database was created using GFI (1998 ; 2008) and

DFO (2009 ; 2010) for the evaluation.

b. Flood threshold definition

The Log Pearson type-III (LP3) distribution presented

in Bulletin 17B (B17) (IACWD 1982) is the method cur-

rently recommended by United States federal agencies

for flood frequency analysis. The LP3 distribution is rec-

ommended to fit the observed flood flow data using three

sample moments (mean, standard deviation, and skew)

calculated from the logarithmic transformed data. Mag-

nitudes can be derived from the analytical LP3 distribu-

tion fit for floods with various return periods, and these

magnitudes can be used as thresholds for flood definition.

Although B17 tries to use LP3 to promote a consistent,

uniform approach to flood frequency determination (Chow
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et al. 1988), it also indicates that flood events do not fit

any one specific, known statistical distribution (IACWD

1982). With only historic streamflow, it is difficult to

derive thresholds for identifying floods (Hirsch 1987),

and no single probability distribution is the best to fit

flood events under all situations in terms of variations in

space and time. To define generalized reliable thresh-

olds for flood identification for global-scale applications

is even more challenging. However, in this study we are

focused on the problem of flood detection but not flood

intensity. Instead, in this evaluation of flood detection

we are mainly focused on differentiating flood flow (ei-

ther overbank or even more severe) from normal flow

(below fullbank) given historic hydrologic data (from

the simulations), regardless of the length of the return

period or magnitude of an identified flood. This makes

the flood definition problem in this study relatively

easier. In addition to using the LP3 method, we also per-

formed a series of experiments using statistic percentile-

based method to determine alternate thresholds for flood

identification.

1) LP3 DISTRIBUTION METHOD

The LP3 distribution has been widely used for hy-

drological data analysis in many applications. The third

parameter of LP3 (skew) permits the fitting of asym-

metric distribution. When the coefficient of skewness is

zero, the LP3 becomes identical to the lognormal dis-

tribution. Flood magnitudes estimated by the LP3 dis-

tribution are very sensitive to the value of coefficient of

skewness. Because the coefficient of skewness is very

sensitive to the size of the sample and difficult to accu-

rately estimate from small samples, B17 recommends a

generalized estimator for coefficient of skewness by com-

bining the station skew with a regional skew generalized

from annual maximum streamflow using the inverse of

their mean square errors as weights (IACWD 1982). As

the generalized global map for skew is not available and

difficult to use, we simply derived the LP3 for each grid

cell over the globe from each grid cell’s corresponding

13-yr annual maximum routed runoff (converted to

discharge in units of m3 s21), following procedures by

Chow et al. (1988) as in described in Eqs. (1)–(6):

XT 5 m 1 KTs, (1)

KT 5 z 1 (z2 2 1)k 1
1

3
(z3 2 6z)k2 2 (z2 2 1)k3

1 zk4 1
1

3
k5, (2)

k 5 Cs/6, (3)

z 5w2
2:515 517 1 0:802 853w 1 0:010 328w2

1 1 1:432 788w 1 0:189 269w2 1 0:001 308w3
,

(4)

w 5

�
ln

1

p2

� ��1/2

, and (5)

p 5 1/T, (6)

where XT is the magnitude (logarithmic transformed) of

a flood flow with return period of T years, m is the mean

and s is the standard deviation and Cs is the skew cal-

culated from the annual maximum discharges (converted

from routed runoff and 10-based log transformed), KT is

a frequency factor approximated by Eq. (2), z is the stan-

dard normal variable approximated by Eq. (4), and p is

the exceedance probability. The XT related to the 2-yr

return period, after being logarithmic back transformed

and converted back to routed runoff in units of depth

(mm), was selected to define the threshold to define flood

in this study. On average, rivers are fullbank about every

2 years (Carpenter et al. 1999; Reed et al. 2007). There-

fore, the magnitude of flood corresponding to a 2-yr re-

turn period was selected from the LP3 method as the

threshold to define floods (Table 1). We used the 2-yr

return period flood threshold estimated from the 13 years

of data to define all floods. The LP3 method was also

adopted by Reed et al. (2007) to estimate flood frequency

using an 8-yr simulation for flash flood forecasting. How-

ever, we used the LP3 only as a binary indicator of flood

occurrence tuned against the reported flood inventory,

which should be reliable. Hereafter, the LP3 method is

referred to as method 1.

2) PERCENTILE-BASED METHOD

Model-derived routed runoff absolute values are

strongly determined by model assumptions and calibra-

tion, but relative values such as percentile statistics (prob-

ability of exceedance) can be used, especially for extreme

TABLE 1. The definition of threshold values to define flood from the four methods. The unit for u is mm and for FAC is km2.

Methods Thresholds Methods Thresholds

Method 1 Log Pearson type-III 2-yr

return flood P95 1 30 (mm)

Method 3 P95 1 s 1 u(FAC) P98

Method 2 Method 4

u 5 6 (FAC # 3000); u 5 10 (3000 , FAC # 1.0 3 106); u 5 20 (FAC $ 1.0 3 106)
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events, to effectively compare simulated and reported

flood events. Brakenridge et al. (2007) developed a meth-

odology for satellite-based flood detection by thresholding

the Advanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E) passive microwave signal of

water surface change using 95th percentile values. In the

evaluation of the initial GFMS by Yilmaz et al. (2010), five

different geographical zones were defined considering

hydroclimatic variations and the runoff threshold for each

zone was defined as the 0.98 exceedance probability of

3-hourly runoff in each zone during the 1-yr study time

period. As percentile value represents the relative rank of

routed runoff for each grid cell, spatially distributed per-

centile values can be used to determine thresholds to dif-

ferentiate flood flow from normal flow status. We assume

the 95th percentile routed runoff (referred to as P95) rep-

resents the streamflow within bank, while some higher

percentile of routed runoff value represents the river in the

fullbank status. We will determine a grid cell is flooding

when its routed runoff is greater than a threshold value,

which represents a river in full-bank status. Because of

spatial heterogeneity of climate and landscape character-

istics across the globe and their effects on hydrological

response, using a uniform percentile (e.g., 95th and 98th)

based threshold to define flood over globe may not be

suitable. Instead of seeking a spatially distributed percen-

tile map to define floods, we employed the 95th percentile

routed runoff value of each grid cell as the starting point to

define thresholds for flood identification—that is, we use

the 95th percentile routed runoff value plus an additional

threshold value to approximate fullbank routed runoff

value for each grid cell (Table 1). The 95th percentile

routed runoff values derived for each grid cell over the

globe (Fig. 1) show a distributed spatial pattern generally

consistent with the natural river network, with increasing

value along river flow path. Remember the routed run-

off variable is the depth of water from dry ground (river

bottom) at the 1/88 scale.

In method 2, we used the P95 plus a constant value

(i.e., 30 mm for this study) to represent fullbank status

over the globe (Table 1). The 30-mm value was chosen

based on experiments as to what value subjectively gave

a reasonable number of flood events as compared to

the DFO flood database (2006–10). As seen in Fig. 1,

headwater and overland areas of basins in the map of P95

are separated from more downstream portions of rivers.

However, the P95, even with the constant 30 mm added

as in method 2, cannot effectively separate rivers with

high interannual or seasonal variations from rivers with

low variations. To account for these variations in method

3, additional parameters are added. These additional pa-

rameters are used to take into account river hydrograph

variations and are needed to increase the P95 to represent

the fullbank status. Generally, a smaller (larger) range of

difference between the P95 and routed runoff value at

which river is fullbank is expected for rivers with less

(more) interannual or seasonal variations. Standard de-

viation (s) of the routed runoff over the 13 years repre-

sents the variation or dispersion from the mean and can

be used to measure the interannual and seasonal vari-

ability of streamflow. Larger rivers (in terms of magni-

tude of streamflow) tend to require relatively larger

absolute additional routed runoff threshold value above

the P95 to reach the fullbank status than smaller rivers.

Similar to P95, s usually increases as the mean increases

with a distributed spatial pattern generally consistent to

the natural river network with increasing value along

river flow path (not shown). Therefore, although s has a

very high correlation coefficient to P95 from the global

statistics, we used s locally at each grid cell to form the

FIG. 1. Quasi-global 95th percentile routed runoff (mm) map derived from 13-yr retrospective

simulation.
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additional threshold in method 3. Because of s being too

small for some rivers with low streamflow (e.g., rivers in

up basins or arid areas) or low seasonality (i.e., with a

flatter monthly hydrograph), an upstream flow accumu-

lation area (or upstream basin area, referred to as FAC,

km2) dependent additional threshold (u) was also added

in method 3. Because it is very difficult to derive an ap-

propriate analytic relation between the additional

thresholds and the FACs, arbitrary values for three FAC

bands (Table 1) were adopted to define the u in method

3 by which subjectively a reasonable number of flood

events were defined as compared to the DFO flood da-

tabase (2006–10). Thresholds directly using the 98th

percentile routed runoff value as used by Yilmaz et al.

(2010) were also investigated in this study and this higher

percentile method is referred to as method 4 (Table 1).

The four methods were employed to define flood oc-

currence from the simulated results for each grid cell.

A grid cell is determined as flooding at a time interval

when the routed runoff for this time is greater than the

threshold at the grid cell defined by method in question.

The thresholds derived by each method (Table 1) are

spatially distributed, with method 1 having the highest

spatial variability while methods 2 and 4 have the low-

est. The differences between thresholds derived by the

methods are mainly reflected in up–low basin areas and

wet–dry areas. There are large spatial variations in var-

ious thresholds, while there is no method that consis-

tently produces the largest or least threshold across the

study domain. Figure 2 shows differences between the

thresholds defined by methods 1 and 3 and indicates that

method 3 generally has higher thresholds for wet areas

and lower ones for dry areas. In most of the study do-

main, the difference in thresholds between methods 1

and 3 ranges between 250 to 150 mm (green and yel-

low in Fig. 2). However, in stem rivers of the Amazon

basin and the Nile basin, method 1 derives larger thresh-

olds than method 3 and the difference tends to be larger

toward the river mouth. In many downstream areas of

basins, the threshold values from methods 1 and 3 are

much larger than those of method 2. There are differ-

ences among the finally determined threshold values of

the method because they deviate from the exact ‘‘full-

bank’’ or 2-yr return period when tuned (e.g., the addi-

tional threshold in percentile-based methods) against

the flood database to obtain better detection perfor-

mance of the system. However, instead of adjusting a

single method, we explored the four methods to see the

sensitivity of the flood detection results to the differ-

ences among the thresholding methods. However, the

evaluation of these methods is not the primary focus of

this paper.

c. Flood matching between simulated
and archived databases

Although estimated flood events can be calculated for

each grid cell from the retrospective simulated results

according to the method in section 2b and there are lo-

cations (latitude and longitude) reported in both flood

event databases, matching the flood events between these

simulated and reported events based on a single grid cell

is not appropriate. Both flood databases consist mainly of

news reports and the assigned locations and days of the

reported floods are not always accurate (Yilmaz et al.

2010). To make the evaluation more meaningful, we

further developed the flood event identification method

by Yilmaz et al. (2010), who used a 2.258 3 2.258 moving

spatial window based on the reported flood location and

a 1-day (624 h) buffer surrounding the reported flood

duration for matching the simulated and reported flood

events. For this study, a spatial window (yellow area in

Fig. 3) was defined for matching a simulated flood to

FIG. 2. The difference of thresholds derived by methods 3 and 1 (method 3 2 method 1).
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a reported flood according to the reported flood location

and drainage network. The spatial window was defined

to be composed of all grid cells in the upstream drainage

area within a limited flow distance (i.e., ;200 km) ac-

cording to the reported location (red dot in Fig. 3). We

also extended the spatial window definition by including

the grid cells in the downstream stem river of the basin/

subbasin below the reported location within a limited

distance (i.e., ;100 km). In some cases the reported

locations of floods are not located in rivers (i.e., with

FAC , 2), and for these cases we moved the reported

location downstream along the flow path a distance of

two grid cells (;30 km) within the river basin. On the

simulation side, we mark the entire area defined by the

spatial window described above as simulated flooding

when there are more than three grid cells flooding (ac-

cording to the method in section 2b) within the spatial

window for two continuous 3-h time intervals. The ad-

vantage of the spatial window definition is that the flood

matching can be constrained in the same basin—that is,

the simulated (reported) floods in neighboring basins

and subbasins will not be incorrectly matched to the

flood event reported (simulated) in the interested basin.

We assume the reported flood locations are located in

the correct basin, even though they may not be recorded

with precisely correct latitude and longitude coordi-

nates. If a flood is reported at a location in a stem river

just downstream of a confluence while the flood actually

occurred in the subbasin just upstream of the conflu-

ence, the flood identification algorithm we developed

will check the upstream drainage area within a distance

according to the reported location that contains the sub-

basin where the flood actually happened. In the other

situation, if a flood is reported at a location within a sub-

basin just upstream from a confluence, while the flood

actually occurred in the stem river where the confluence

is, the flood identification algorithm will not miss the

match because it also checks the river segments down-

stream to the reported location for an extended 100 km.

Therefore, the algorithm will check the stem river where

the flood actually happened.

3. Results and discussion

Using the four flood definition methods, simulated

floods for each 3-h time interval were derived globally

and compared to the flood inventory data. Subjective

evaluation of the results indicates that the model results

often capture flood occurrence and general flood evo-

lution reasonably well, responding to rainfall events with

the start, development, and recession of flooding along

the drainage networks (http://trmm.gsfc.nasa.gov/). Sta-

tistical results of the evaluation are presented in the fol-

lowing sections. To quantitatively evaluate the GFMS

performance in flood event detection, we calculated three

classic categorical verification metrics—that is, probabil-

ity of detection [POD; a/(a 1 c)], false-alarm ratio [FAR;

b/(a 1 b)], and critical success index [CSI; a/(a 1 b 1 c)],

based on a 2 3 2 contingency table (a 5 GFMS yes, re-

ported yes; b 5 GFMS yes, reported no; c 5 GFMS no,

reported yes; d 5 GFMS no, reported no).

a. Model flood detection performance

An algorithm was developed to search the flood events

in the simulated results according to the thresholds and

method discussed in sections 2b and 2c to attempt to

match with reported flood events in the flood databases.

We determine that a reported flood event is hit by the

GFMS if a reported flood event can be found in the

simulated results within the spatial–temporal window

associated with the reported flood event. The global

PODs were calculated using the four flood definition

methods for the two global flood databases separately

and combined (Table 2). The calculation of POD by each

method used the same flood event matching rules except

for the four different threshold values. Results in Table 2

indicate that the POD values are basically independent of

which reported flood inventory is used and therefore the

two databases can be combined for the overall evalua-

tion. Figure 4 shows the global flood events detected by

the GFMS using method 3 (with a POD of 0.59) during

1998–2010 against the combined flood database, which

indicates a reasonable geographic distribution and over-

lap of simulated and reported floods.

The reported and estimated number of floods de-

creases as a function of flood duration (Fig. 5a) and the

POD of the GFMS increases with longer duration floods

(Fig. 5b), with a gradual increase to an asymptote at 10–

20 days, depending on the method used in identifying

floods in the simulations. In the combined flood database,

FIG. 3. Definition of spatial window for matching between

simulated and reported flood events.
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there are 1032 (35% of total 2949) short-term floods with

flood duration #3 days. The GFMS has difficulty de-

tecting these short-term floods with PODs of 0.38, 0.26,

0.42, and 0.79 (Table 2) for methods 1, 2, 3, and 4, re-

spectively. However, the PODs increase to 0.77, 0.67,

0.78, and 0.95 (Table 2) for all floods with reported du-

ration .3 days. The POD model performance for flood

detection also steadily increases as the flood-affected area

increases (Fig. 6). These relations are almost certainly

related to the limitations in the satellite rainfall data. The

TMPA has a 3-h time resolution and 0.258 spatial reso-

lution and these resolutions will certainly limit the def-

inition of small-scale rain events. However, random

sampling errors will decrease with spatial and temporal

averaging and this tends to translate into better hydro-

logic model and flood calculations for larger (and lon-

ger) events. Larger floods also have higher possibility of

meeting the flood definition and the matching rules dis-

cussed in sections 2b and 2c, with longer durations

(larger temporal window) and more affected grid cells

(more potential flooding individual grid cells). Larger

floods are relatively easier to detect, while thresholds

defined by the different methods may have difficulty

detecting smaller floods. Both Fig. 5 and Fig. 6 showed

relatively larger differences of the POD performance

between the methods (especially method 2 and other

methods) for short-term floods or smaller affected areas,

while the difference steadily decreases as the flood scale

increases with longer duration or larger affected area.

There are 35% (934 out of total 2672) of flood events in

the GFI flood database that are reported as short-term

(duration # 3 days) floods, compared to 25% (231 out of

total 929) in the DFO flood databases. This leads to

consistently higher PODs for DFO as compared to the

GFI database in Table 2.

There is a relatively sharp peak in the number (i.e.,

156) of reported floods with duration of 15 days (Fig. 5a)

in the combined flood database. However, this 15-day

flood event peak only appears in the GFI flood database.

As discussed in section 2c, to calculate the POD, the sim-

ulated floods are searched to match the record only when

there is a flood is recorded in the flood event database.

Therefore, the number of simulated floods for 15-day

floods is found to increase for each method in Fig. 5a.

However, the POD performance decreases for all the

four methods for that specific duration of flood. The

reason for the peak in flood events of this duration is not

known, but may be related to human estimates tending

to peak at 2 weeks (14 days) or one-half of a month.

Similarly, the DFO flood database showed relatively more

floods reported in some flood-affected-area ranges—

for example, 131 out of total 929 flood events with af-

fected area of 200 000 ; 300 000 km2 (Fig. 6a). The

reason for this is also unknown, but may be related to the

analysts preferentially picking a certain size of event.

Using the combined 13-yr flood database, a relatively

large range of POD values from 0.42 to 0.90 is noted

TABLE 2. The POD performance by the four methods based on

global statistics.

Flood database

M1 M2 M3 M4Name Time No.

GFI 1998–2008 2672 0.55 0.42 0.57 0.90

DFO 2006–2010 929 0.60 0.44 0.62 0.96

Combined 1998–2010 2949 0.56 0.42 0.59 0.90

Combined Duration # 3 days 0.38 0.26 0.42 0.79

Combined Duration . 3 days 0.77 0.67 0.78 0.95

FIG. 4. Global flood events detected by the GFMS using method 3 during 1998–2010 against

combined flood database. The dark balls are reported flood events in the database. When the

model successfully hits a reported flood event, the dark ball turns to gray. The gray shaded part

of the map is the TRMM-based study domain.
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(Table 2), with the values increasing and the range of

values narrowing somewhat when only floods of greater

than 3 days are included. However, a complete evalua-

tion must include other statistics (e.g., FAR).

b. Model false-alarm performance

The false alarms in the predictions are of equal im-

portance as the successful model hits, as they determine

the flood forecast reliability and efficiency. A higher

POD performance can be achieved by using lower thresh-

olds or larger temporal and spatial windows to match the

simulated and reported flood events. However, for a spe-

cific flood definition method, high POD usually comes with

a larger number of false alarms.

Although the same four methods were used to define

flood thresholds, the algorithm used to evaluate false

alarms is different from the one for POD calculation,

because FAR cannot be calculated straightforwardly

like the calculation of POD by directly searching for flood

events in the three-dimensional (latitude, longitude, and

time) simulated results according to each reported flood

event. To derive the FAR, flood events had to be iden-

tified first in the simulated results, and then those iden-

tified simulated flood events were used to compare with

reported flood events. Many floods not only occur in

local subbasins but also move downstream along river

networks, creating a larger affected area within the en-

tire river basin, while the location of a reported flood is

a specific point with only a latitude and longitude coor-

dinate available in the flood databases. The reported lo-

cation for a flood event may not be precise; for example,

the reported location could be adjacent to the actual

place where the flood actually happened, according to

the news report. Given a specific subbasin or local river

reach, the reported flood events also have errors in

assigned times. Furthermore, floods are likely under-

reported in both the GFI and DFO archives, because

floods tend to be reported in high-population areas while

underreported in remote areas—for example, the Ama-

zon basin (Fig. 7e). In addition, larger floods causing

more damage tend to be reported, while smaller floods

tend to be missed. Therefore, in order to evaluate the

model performance in FAR as objectively as possible,

we calculated the FAR by comparing the simulated

flood events to reported floods in 53 selected well-

reported areas (WRA) over the globe (yellow areas in

Fig. 7). The WRA are defined according to the 13-yr

combined flood database by the following procedure: 1)

the same method for definition of the spatial window

(section 2c) was applied to each reported flood location

in the combined flood database; 2) if there are multiple

reported flood events in the spatial window, the reported

location with the largest upstream drainage area was

selected and used to define a new spatial window; and 3)

if there are more than six flood events reported during

the 13 years in the new spatial window, we determine the

new spatial window as a WRA. All the WRAs are lo-

cated in wet and/or high-population regions (Fig. 7). A

large proportion of the well-reported areas are located

in South Asia (Fig. 7c) and Africa (Fig. 7b). The numbers

of well-reported areas for each continent are 24 (Asia), 16

(Africa), 6 (North America), 4 (Europe), and 3 (South

FIG. 5. The GFMS performance of flood detection in terms of

flood duration against the combined flood database using the four

flood definition methods.

FIG. 6. The GFMS performance of flood detection in terms of

affected area against DFO flood database using the four flood

definition methods.
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America). There are a total of 490 flood events reported

for the 53 WRAs from 1998 to 2010. The number of

reported flood events ranges from 6 to 25 with a mean

value of 9.

To calculate the FAR, the simulated floods were

identified by checking each grid cell in a selected WRA

for every modeling time step. A simulated flood event is

identified for each time step for which there are at least

three grid cells flooding at each time step (same as the

POD calculation in section 3a). Then, if the flood du-

ration of a simulated flood event overlaps with the du-

ration of a reported flood in the same selected WRA, we

determine the reported flood is successfully detected by

the GFMS. All simulated floods having no overlap in

time and space with any reported floods are regarded as

false alarms. By this method the number of hits, misses,

and false alarms and simulated flood durations were

derived for each WRA. When a reported flood had a

long duration and it was hit by the model-based result

multiple times, each match is recorded. However, two

neighboring (in time) simulated events were considered

independent events only when they were 2 days apart.

When a simulated flood event had a long time period

and overlapped with more than one reported flood, it

was simply divided into events by 15-day periods. How-

ever, this type of case did not happen in this evaluation.

All the three verification metrics by all methods vary

from one WRA to another because of the small number

of cases (6–25) in each area (Figs. 8 and 9). The mean

PODs over the 53 WRAs are 64%, 54%, 70%, and 89%

by methods 1, 2, 3, and 4, respectively, based on the

combined flood database (Table 3). The PODs by methods

using absolute magnitude thresholds (i.e., methods 1, 2, and

3) from the WRAs are higher than those for the whole

globe (Table 2), because the WRAs are mostly located

in wet areas, where the flood identification is relatively

FIG. 7. The spatial distribution of the 53 well-reported areas (according to the combined flood database) over the TRMM global domain,

with 5 regions selected to zoom in. The background image is the mean annual runoff (precipitation minus evapotranspiration) from

NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data for the satellite era (Bosilovich

et al. 2006).
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easier than in dry regions. In arid or up-basin areas

where the routed runoff is smaller, the additional threshold

(u) in methods 2 and 3 tends to reduce the identification of

floods in these areas, while method 4, which uses a relative

rank, was not affected significantly.

There are a number of factors that can lead to false

alarms in the model results, including errors in the pre-

cipitation estimation, impacts of flow control structures

(e.g., dams and levees), missing reports, limits in the flood

definition methods, and errors in the hydrologic model.

As all these factors are probably contributing, the FAR

statistics appear poor at first glance. The mean FARs

over the 53 WRAs for all floods with duration $ 1 day are

87%, 89%, 93%, and 95% by methods 1, 2, 3, and 4, re-

spectively (Table 3), with only a few areas showing lower

FAR values (Fig. 8b). However, 35% of floods in the

reported flood databases are short-term floods (172/490

floods with duration # 3 days over the 53 WRAs). When

these short-term floods are removed from the analysis,

the GFMS has significantly better performance, with lower

FARs, and also higher PODs (Fig. 9 and Table 3).

Three of the techniques have similar CSIs of 22%–

23% for floods greater than 3-day durations. Method 4

(the 98th percentile method) has a very high POD (95%)

for the longer floods, with a FAR of 78%. The greatly

FIG. 8. The GFMS flood detection performance against the

combined flood database for floods with all durations ($1 day)

over the 53 well-reported areas. The WRAs with identification

from 1 to 28 (left to the vertical dash line) are with no dams and the

WRAs with identification .28 (right to the vertical dash line) are

with dams.

FIG. 9. As in Fig. 8, but for longer-term floods (duration . 3 days).

TABLE 3. Flood detection verification against the combined flood database over the 53 well-reported areas by the four methods.

Metrics M1 M2 M3 M4

Metrics averaged over total 53 WRAs for all floods with duration $ 1 day

POD 0.64 0.54 0.70 0.89

FAR 0.87 0.89 0.93 0.95

CSI 0.12 0.08 0.07 0.05

Metrics averaged over the 53 WRAs for floods with duration # 3 days

POD 0.42 0.35 0.52 0.77

FAR 0.93 0.95 0.97 0.98

CSI 0.06 0.04 0.03 0.02

Metrics averaged over the 53 WRAs for floods with duration . 3 days

POD 0.74 0.60 0.78 0.95

FAR 0.70 0.80 0.74 0.78

CSI 0.23 0.16 0.23 0.22
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increased POD and decreased FAR values for longer-

term flood detection indicates the GFMS is more reliable

for larger-scale floods, which is not surprising considering

the resolutions of the precipitation data and the hydro-

logic model. Uncertainties in the data (especially the

rainfall) and the model may produce noisiness in the

model flood identification, leading to a large number of

small-scale false alarms. For example, among the 5759

simulated floods identified for the 53 WRAs by method

3, 73% are short-term floods (,3 days), so that many of

the false alarms are associated with small-scale events.

Part of the reason for the high false alarms for short-term

floods may be related to a greater likelihood for missed

reports for smaller events.

c. Impact of dams on false-alarm validation statistics

In Fig. 9, which is for floods lasting greater than 3 days,

the distribution of FAR values (Fig. 9b) is very different

than the distribution for all floods in Fig. 8b. This vari-

ation in FAR among the WRAs is related to the pres-

ence of dams, and becomes clearest when the short-term

floods are ignored in the analysis. A global large dam

database (Vörösmarty et al. 1997, 2003; http://wwdrii.sr.

unh.edu/download.html) was employed to investigate

the dam effects on the false alarm over the 53 WRAs. To

investigate the effects of dams on the false-alarm sta-

tistics, we divided the 53 WRAs into two groups. The

first group consists of the 28 WRAs with no dams (left of

the vertical dashed lines in Figs. 8 and 9), referred to as

no-dam group. The second group consists of the 25 WRAs

with dams (right of the vertical dashed lines in Figs. 8 and

9), referred to as the dam group. One can see immediately

in Fig. 9b that the lower FAR values tend to be associated

with the WRAs in the no-dam group, whereas the areas

with dams tend to have high FAR values, indicating a clear

relation between the presence of large dams and the

false-alarm statistics. The FAC of the two groups vary

over a similar range of values, which also indicates that

the comparison is valid. Table 4 shows the flood detection

verification metrics based on short-term and long-term

floods derived for the no-dam group and dam group

separately by averaging over the WRAs in the two groups.

For the short-term floods (top half of table) there is only

a slight difference between the dam and no-dam groups.

For longer-term floods (.3 days; bottom half of Table 4)

the FAR values are much lower on average for the

no-dam group, although the POD values are somewhat

lower also. The resulting CSI values are generally higher

for the no-dam areas. The higher PODs in the dam group

may reflect that larger floods are relatively easier to de-

tect for the GFMS and the reported floods in the dam

group may be relatively larger (because of the presence of

dams).

The results in Table 4 indicate that the GFMS has

better performances in areas without dams, which is as

expected since the hydrologic model does not include a

reservoir module to represent dam operations. The GFMS

shows very good performance in detecting floods with

duration . 3 days in nondam situations, with relatively

high POD and low FAR leading to relatively higher CSI

(Table 4). This result indicates that dam effects on the

GFMS flood detection ability highly depend on the flood

scale—that is, dams prevent many small simulated floods

from actually occurring and being reported, leading to

lower GFMS performance metrics, while the statistics are

better for longer duration events, even for WRAs with

dams, because the larger rainfall events can still produce

actual floods, even in areas with dams, though the dams

TABLE 4. Flood detection verification against the combined flood database over the 28 WRAs without dam and the 25 WRAs with dams

by the four methods.

Metrics M1 M2 M3 M4

Metrics averaged over the 28 WRAs with dam for floods with duration # 3 days

POD 0.51 0.40 0.54 0.79

FAR 0.96 0.97 0.97 0.98

CSI 0.04 0.02 0.02 0.01

Metrics averaged over the 28 WRAs without dam for floods with duration # 3 days

POD 0.35 0.31 0.50 0.75

FAR 0.91 0.93 0.96 0.97

CSI 0.07 0.05 0.04 0.03

Metrics averaged over the 25 WRAs with dam for floods with duration . 3 days

POD 0.80 0.69 0.83 0.98

FAR 0.81 0.89 0.85 0.88

CSI 0.16 0.10 0.14 0.12

Metrics averaged over the 25 WRAs without dam for floods with duration . 3 days

POD 0.68 0.51 0.74 0.93

FAR 0.60 0.71 0.63 0.68

CSI 0.30 0.23 0.32 0.31
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would likely decrease flood peaks and damages. The

GFMS, using relatively coarse-resolution rainfall infor-

mation and hydrologic modeling, and without any

method to take into account the effect of dams, should be

expected to have reasonable statistical results for events

of at least a few days’ duration in areas not affected by

large dams. Results summarized in Table 4 (fourth panel)

indicate that this is the case. For flood duration greater

than 3 days in areas without large dams the POD is ;0.7,

the FAR is ;0.6, and the CSI is ;0.3. These are good

results for this stage of GFMS development.

d. Flood duration statistics

Accumulated flood duration (AFD) during the 13

TRMM-era years was calculated for each grid cell

from the simulated results for each flood definition

method. The simulated (natural—no dams) and reported

(regulated—including basins with dams) AFD histo-

grams based on FAC were derived respectively from the

simulated results and the 2949 reported flood events in

the combined flood database. The AFD in each histo-

gram column was calculated as the average of the AFDs

from all grid cells with their FAC values falling into the

FAC band indicated. Natural floods progress from up-

stream to downstream along a drainage network and thus

increase the flood duration in lower parts of river basins.

By methods 1, 2, and 3, the simulated AFD generally

increases downstream along the drainage network with

a similar spatial pattern to FAC and basin drainage net-

work (gray in Figs. 10a–c). This indicates that the GFMS

generally maintains the natural spatial pattern of AFD

with the hydrologic model in which only natural pro-

cesses are considered. Of course, the current routing

scheme does not consider the presence of dams. How-

ever, this type of AFD curve was not generated by

method 4, which uses the 98th percentile uniformly for

each grid cell and derives a spatially uniform AFD (gray

in Fig. 10d). The uniform 98th percentile applied to each

grid cell determines the same number of time intervals

(2% of the time) flooding for each grid cell, resulting in

the uniform AFD. Independently defining floods for each

single grid cell solely using a uniform percentile threshold

value cannot take into account the fact that floods in

upstream rivers add more flood risk in downstream areas

FIG. 10. The accumulated flood duration changes with upstream basin area in natural (by model) and regulated

(reported) scenarios.
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as floods propagate along the drainage network. How-

ever, percentile plus an additional threshold (e.g., 30 mm

by method 2) defines floods not only in a relative manner,

but also by an absolute threshold. In this way floods are

defined only when the runoff is accumulated with a large

enough magnitude, which significantly reduces the num-

ber of flood identifications in upstream basins and in

relatively drier areas leading to, on average, larger AFD

values in areas with lager FAC magnitudes.

From Fig. 10, method 1 derives relatively smaller

AFD in up basins and method 4 derives the most, prob-

ably mostly contributed by short-term floods. Simulated

AFD by method 2 increases relatively more steadily to-

ward downstream than other methods while it is higher

than other methods that are relatively closer to the AFD

magnitudes based on the reported floods in downstream

areas. This is consistent to the comparisons between

verification metrics (e.g., Table 3), which indicate that

methods 1, 3, and 4 have closer and better performance

for long-term floods (tending to occur in downstream

basins) than method 2. The 30-mm additional threshold

used in method 2 is too large for presenting bank-full

status in up-basin areas and too small for many down-

stream basins (Fig. 10b), but it generally captures the

spatial pattern of flood duration for natural scenarios.

As floods are probably largely underreported, it is dif-

ficult to draw a strong conclusion on which method

derives the closest AFD to reality. However, if reliable

reported flood duration information is available, the

relation between AFD and FAC (Fig. 10) can provide

a useful reference to find more reasonable thresholds

for flood definition.

The AFD is well related to FAC based on the global

statistics from the simulated results by all the methods,

except method 4. Unlike the simulated results (except

by method 4), there is no strong increase in the reported

AFD as FAC increases and the variability range in

reported AFD is much larger than the simulated. This

could be partly caused by the bias in the reported flood

duration. However, the good relation between the AFD

and FAC may exist only in a natural scenario. When

dams stop floods and change the flood duration, the

AFD spatial pattern could be changed. If the bias in the

reported flood duration does not significantly change the

relation between the AFD and FAC in reality, Fig. 10

may cast another hint of dam impacts on floods, leading

to more false alarms. Dams and artificial structures de-

crease the possibility of flooding in their downstream

areas, while they might also increase the possibility of

flooding in upstream areas, thus flood duration in up-

stream (downstream) basins might also increase (de-

crease). However dam effects are difficult to quantify

without a reservoir module in the hydrologic model.

e. Duration of false alarms

POD and FAR statistics represent how well the tech-

nique detects individual flood events, no matter what the

durations of the actual and estimated floods. Another

measure of the quality and usefulness of the model-based

flood estimates in this study is the mean duration of the

false alarms. Therefore, as a further evaluation of the

overall model-based technique, the four methods were

evaluated in terms of the lengths of the false alarms. The

evaluation showed that method 1 has the longest average

false-alarm flood duration (9.7 days) based on all the

simulated floods with durations .3 days from all WRAs,

while methods 3 and 4 derived the least (6.4 days). On

average, based on floods with durations .3 days, the false

flood duration for each WRA per year is 22.8, 19.9, 14.4,

and 20.5 days, while the average number of false alarms

for each WRA per year are 2.3, 2.6, 2.2, and 3.2 by

methods 1, 2, 3, and 4, respectively. For short-term floods,

all methods showed similar average flood duration of 1.5–

1.7 days per event. Although there needs to be additional

analysis in this area, the different flood identification

thresholding approaches used in the four methods all give

reasonable results. However, the type of approach used

for method 3, taking into account basin size through the

FAC parameter and the seasonal and interannual vari-

ability through the use of the flood variance parameter

(s) seems to provide the best framework for future work

in this area.

4. Conclusions

This paper describes an evaluation of a new version of

a global flood monitoring system (GFMS) using an im-

proved hydrologic model (the CREST model) driven by

Tropical Rainfall Measuring Mission (TRMM) Multi-

satellite Precipitation Analysis (TMPA) rainfall. The new

GFMS was quantitatively evaluated on flood event de-

tection during the TRMM era (1998–2010) based on

a global retrospective simulation (3-hourly and 1/88 spatial

resolution) using the satellite rainfall for that period. Four

methods were explored to define flood threshold from the

simulated results to compare against the flood events in

reported archives, including three statistic percentile-

based methods and a log Pearson type-III flood frequency

curve–based flood definition. The GFMS performance

was evaluated with regard to flood occurrence using three

classic categorical verification metrics (POD, FAR, and

CSI). Balanced POD and FAR results are necessary for

this type of system to be useful in applications. Flood

duration statistics as related to false-alarm rates were

also examined in relation to the utility of the simulated

results.
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In this study, flood matching rules (e.g., the spatial-

temporal window) remain the same for all the methods.

Therefore the differences of the GFMS flood detection

performances interpreted are caused by threshold values

and the spatial distribution defined by these methods.

The verification metrics vary across WRAs (Figs. 8 and 9)

with all the flood detection methods showing roughly

similar results. The evaluation of the GFMS in this study

showed two key results independent of the specific flood

identification method used. First, the statistics clearly

showed that the results improve with flood duration. That

is, both POD and FAR improve when the evaluation is

confined to longer-term floods—in this case, .3 day

durations. This result is reasonable considering the time

resolution of the satellite rainfall data (;3 h), the spatial

resolution of the hydrologic model (1/88), and the limi-

tations of the flood inventory data used for comparison.

The GFMS is therefore best utilized for floods of over

a day or a few days’ duration and should not be expected

to consistently detect shorter-term floods (e.g., floods

with duration ,1 day).

Second, the impact of dams can be detected in the

validation statistics, with areas without dams showing

a much lower FAR, as one would expect. The hydrologic

model used treats the water flow in a strictly natural

mode, following the terrain, without taking into account

man-made structures or water management. More dams

tend to result in more false alarms and false-alarm du-

ration. However, dam effects highly depend on flood

scale with more negative effects on detection for short-

term floods. Global comparison of accumulated flood

duration between natural (by model) and regulated

(reported) flood events also indicates dam and artificial

structures play important roles leading to more false

alarms and false-alarm duration. Therefore, the GFMS

statistics for flood durations .3 days and for areas

without dams give a good estimate of the overall status

of the approach at this time. The statistics vary across the

four identification methods, but center around a POD of

;0.7 and a FAR of ;0.6.

The evaluation of the current system, both subjective

and quantitative, indicates an improvement over the

earlier, simpler system evaluated by Yilmaz et al. (2010).

However, although this evaluation of the earlier flood

identification technique was done in a similar manner

(with an overlap time period: April 2007–July 2008), full

and direct comparison is difficult because of differences

in techniques used, spatial resolution, and the shorter

length of record used. But, in terms of POD the current

GFMS seems to have somewhat higher values (0.9 for

method 4 versus 0.38 for the same threshold technique

used by Yilmaz). The other flood detection methods in

this study have lower PODs (;0.7) that are still higher

than the earlier technique. However, FAR statistics were

not calculated by Yilmaz, although he noted significant

regions of numerous false alarms. Subjectively, the new

GFMS seems to improve both the flood detection per-

formance and the presentation of flood evolution (start,

development, and recession) in the drainage network.

This overall better flood detection performance in the

current version of GFMS is probably due to both the

hydrologic model and the flood identification algorithms.

The precipitation input is identical, so that is not an issue

in any difference. However, the key conclusion is that the

current system performs in an understandable fashion

and reasonably well against global flood event informa-

tion. These important results allow us to proceed to fur-

ther improvements and more detailed evaluation and

validation. The new GFMS has replaced the old one and

is operationally available at http://oas.gsfc.nasa.gov/CREST/

global.

5. Future work

This model development and evaluation provides a

pathway forward for continued improvement in the fu-

ture. First, the improvements brought by the new hy-

drologic model encourage us to use more physically

based hydrologic models to potentially achieve better

flood forecasting capability and performance in future

endeavor, though very likely with much higher compu-

tational cost. The NASA Land Information System (LIS;

Kumar et al. 2006; Peters-Lidard et al. 2007) provides a

series of state-of-art large-scale land surface processes

models and therefore gives a good opportunity for efforts

in this direction. Second, to realize the potential of global

flood monitoring systems, simple and robust flow routing

schemes that contain minimal calibration parameters

wherever possible are needed (Yilmaz et al. 2010), in

addition to the a priori parameters. Although the rout-

ing scheme in the CREST hydrologic model used in this

study has advantages in computing efficiency, it requires

additional efforts in model regional calibration. Improved

routing techniques taking into account within cell routing

will be implemented in the near future. Third, the evalu-

ation on effects by dams on flood detection indicates the

limitations of the current GFMS in flood detection without

accounting for dams and levees. Without an explicit

module for representing the function of flood control by

reservoir operations in the hydrologic model, the effects

of the spatial distribution of dams (in upstream stem river

and/or tributaries) and large reservoirs on the false alarms

remain unknown. Implementation of a reservoir module

in the routing scheme should also have a high priority in

future work. Furthermore, the continuation and improve-

ment of multisatellite precipitation observations through
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NASA’s Global Precipitation Measurement (GPM)

mission will provide the GFMS with more accurate

precipitation analyses utilizing space–time interpola-

tions and improvements for shallow, orographic rain-

fall systems, and snow. A more precise and detailed

flood observation database is also very desirable for fu-

ture evaluations. Once acceptable performance in POD

and FAR is achieved, the GFMS can also be used to re-

construct historical flood events for climate variation

studies. Thus, the next stage of the GFMS development

will focus on precisely quantifying flood properties in-

cluding flood timing, magnitude, stage, inundation depth,

extent, etc.
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