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ABSTRACT

This study presents a numerical experiment to assess the impact of satellite rainfall error structure on the

efficiency of assimilating near-surface soil moisture observations. Specifically, the study contrasts a multidi-

mensional satellite rainfall error model (SREM2D) to a simpler rainfall error model (CTRL) currently used to

generate rainfall ensembles as part of the ensemble-based land data assimilation system developed at the NASA

Global Modeling and Assimilation Office. The study is conducted in the Oklahoma region using rainfall data

from a NOAA multisatellite global rainfall product [the Climate Prediction Center (CPC) morphing technique

(CMORPH)] and the National Weather Service rain gauge–calibrated radar rainfall product [Weather Sur-

veillance Radar-1988 Doppler (WSR-88D)] representing the ‘‘uncertain’’ and ‘‘reference’’ model rainfall forc-

ing, respectively. Soil moisture simulations using the Catchment land surface model (CLSM), obtained by forcing

the model with reference rainfall, are randomly perturbed to represent satellite retrieval uncertainty, and as-

similated into CLSM as synthetic near-surface soil moisture observations. The assimilation estimates show im-

proved performance metrics, exhibiting higher anomaly correlation coefficients (e.g., ;0.79 and ;0.90 in the

SREM2D nonassimilation and assimilation experiments for root zone soil moisture, respectively) and lower root-

mean-square errors (e.g., ;0.034 m3 m23 and ;0.024 m3 m23 in the SREM2D nonassimilation and assimilation

experiments for root zone soil moisture, respectively). The more elaborate rainfall error model in the assimilation

system leads to slightly improved assimilation estimates. In particular, the relative enhancement due to SREM2D

over CTRL is larger for root zone soil moisture and in wetter rainfall conditions.

1. Introduction

Soil moisture is a key variable of the water and energy

cycles, playing a role in many research fields, such as

hydrology, agriculture, and ecology. It also controls de-

composition in terms of the biogeochemical cycling (e.g.,

carbon and nitrogen cycles). Being a storage component

for precipitation and radiation anomalies, soil water content

might control cloud coverage, precipitation, and hydrol-

ogical parameters, such as runoff and evapotranspiration

(Betts and Ball 1998). Moreover, soil moisture is involved

in several feedbacks at local, regional, and global scales.

In particular, soil moisture–temperature and soil moisture–

precipitation feedbacks might have a significant impact on

climate change projections (Seneviratne et al. 2010).

Therefore, a realistic characterization of soil moisture

and its uncertainty is important to improve weather,

climate, and hydrologic predictions.

Soil moisture can be estimated through different ap-

proaches: (i) direct ground measurements (e.g., Walker

et al. 2004), (ii) retrievals from low-frequency active

and passive microwave data (e.g., Schmugge et al.

2002), (iii) integration of a land surface model forced

with meteorological data derived from observations (e.g.,

Peters-Lidard et al. 2007), and (iv) through land data
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assimilation, combining the complementary information

from measurements and models of the land surface into

a superior estimate of soil moisture (e.g., Reichle and

Koster 2005; Li et al. 2010).

In situ observations continue to be scarce as only few

ground-based networks are available worldwide (Robock

et al. 2000; Robinson et al. 2008; Dorigo et al. 2011).

Satellite remote sensing observations represent an al-

ternative. However, satellite retrievals of soil moisture

are affected by significant errors due to sensor limitations

(e.g., sampling, resolution, and land cover heterogeneity

effects), uncertainty in the parameterization of the rela-

tionship between brightness temperature and soil mois-

ture, and difficulty in obtaining a global distribution of

parameters for the retrieval algorithm. Furthermore, sat-

ellite retrievals only represent near-surface soil moisture

fields. Therefore, a common approach to estimate con-

tinuous and spatially distributed soil moisture fields is to

force a land surface model with meteorological observa-

tions. The main uncertainties affecting model predictions

of soil moisture include errors in the meteorological

forcing variables, erroneous estimates of the model pa-

rameters, and deficient model formulations.

Data assimilation systems can provide a superior prod-

uct by merging the satellite retrieval information with the

spatially and temporally complete information given by

a land surface model (Parajka et al. 2006; Reichle et al.

2008; Drusch et al. 2009; among others). Reichle et al.

(2007) demonstrated that by assimilating satellite retrievals

of near-surface soil moisture retrievals the resulting esti-

mates of surface and root zone soil moisture are superior to

either satellite data or model data alone. This is achieved

by correcting the model-generated values of soil mois-

ture toward the observational estimates depending on

the level of error associated with each product. However,

the improvement from retrieved soil moisture assimi-

lation strongly depends on the quality of meteorological

forcing observations. A recent study by Liu et al. (2011)

showed that (i) assimilating surface soil moisture retrievals

and (ii) improving the precipitation forcing through

gauge-based corrections contribute similar and largely

independent amounts of information to the skill of sur-

face and root zone soil moisture estimates.

A key issue in land data assimilation for soil moisture

is that the model and the observational uncertainties

are poorly known, while data assimilation using a poor

characterization of uncertainty is likely to produce poor

estimates of land surface variables (Crow and Van Loon

2006; Reichle et al. 2008). Therefore, the quality of the

assimilation estimates depends critically on the realism of

the error estimates for the model and the observations.

Arguably, the way in which model errors are handled

in standard land data assimilation systems is still very

simplistic. This is particularly true for rainfall errors, whose

multidimensional character at fine space and time scales

is typically ignored in current land assimilation systems

(see below for details). Thus, improved error modeling

strategies may be needed to characterize the uncertainty

in the simulation of soil moisture fields from a land sur-

face model in order to enhance the efficiency of the data

assimilation system.

The land data assimilation system GMAO-LDAS

developed at the National Aeronautics and Space Ad-

ministration Global Modeling and Assimilation Of-

fice (NASA GMAO) is based on the ensemble Kalman

filter (EnKF) approach that dynamically updates model

error covariance information by producing an ensemble

of model predictions, which are individual model real-

izations perturbed by an assumed model error. The cur-

rent rainfall error modeling approach in GMAO-LDAS

simply scales the input precipitation forcing with a mul-

tiplicative perturbation (Reichle et al. 2007). This im-

plies, for example, that all ensemble members have zero

precipitation whenever the input precipitation is zero.

The approach is numerically convenient but does not

fully describe the error characteristics of remote sensing

rainfall retrievals, particularly with respect to rain de-

tection and false alarms.

Hossain and Anagnostou (2006a) have developed

a more sophisticated satellite rainfall error model

(SREM2D) for generating ensembles of satellite rain

fields on the basis of high-accuracy ‘‘reference’’ rain fields.

SREM2D is capable of conserving the satellite retrieval

error structure across scales, unlike simpler error modeling

approaches that revealed significant scale-dependent biases

(Hossain and Anagnostou 2006b). Furthermore, Hossain

and Anagnostou (2005) and Maggioni et al. (2011) dem-

onstrated that soil moisture ensembles from land surface

models driven with SREM2D-generated rainfall forcing

better capture soil moisture error characteristics.

These considerations merit further investigation as to

how rainfall error modeling can affect the efficiency of

a soil moisture data assimilation system, and, in partic-

ular, how a more elaborate rainfall error model would

impact the performance of the GMAO-LDAS in terms

of soil moisture predictions. The present paper is a fol-

low-up study to Maggioni et al. (2011) with the specific

objective of comparing SREM2D to a simpler multi-

plicative rainfall error model in terms of the efficiency in

assimilating soil moisture data using the GMAO-LDAS.

The present paper uses the study area, study period, and

experiment setup of Maggioni et al. (2011) and adds the

assimilation of synthetic observations of soil moisture.

The study area, period, and data employed are

briefly described in section 2. In section 3 we describe

the GMAO-LDAS and the rainfall error modeling
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schemes and provide an overview of the experiment

setup. In section 4 we present and discuss the results. In

section 5 we provide conclusions on the major findings of

this study and discuss future research directions.

2. Study region and data

We refer the reader to Maggioni et al. (2011) for a de-

tailed description of study area and datasets employed in

this study; we provide here only the most important in-

formation. The study is conducted for a 3-yr period

(2004–06) and for a domain in Oklahoma in the United

States. A 25 3 25-km2 resolution Cartesian modeling grid

(34.58–378N latitude and 1008–94.58W longitude) was

chosen as the domain for this study (Fig. 1). The Mod-

erate Resolution Imaging Spectroradiometer (MODIS)

land cover product map illustrates that the study region is

mainly covered by croplands and grasslands. As shown by

the 3-yr-average rainfall map in Fig. 1, the western half

of the study region is characterized by drier conditions

than the wetter eastern half, which displays some mixed

cover and broadleaf forests.

The rainfall forcing for the land surface model is from the

National Weather Service (NWS) rain gauge–calibrated

radar rainfall and the National Oceanic and Atmospheric

Administration (NOAA) Climate Prediction Center (CPC)

morphing (CMORPH) multisatellite rainfall product,

representing the reference and ‘‘uncertainty’’ rainfall,

respectively. Radar rainfall fields are derived from the

stage-IV NWS Weather Surveillance Radar-1988 Doppler

(WSR-88D) precipitation estimation algorithm at 4-km/

1-h spatiotemporal resolution with real-time adjustment

based on mean-field radar–rain gauge hourly accumula-

tion comparisons (Fulton 1998; Lin et al. 2005). The radar

precipitation dataset was regridded to the 25 3 25-km2

resolution modeling grid and aggregated to a 3-hourly

FIG. 1. (a) MODIS land cover product [based on the University of Maryland (UMD) classification] overlaid by the 25-km spatial

interpolation grid of the study domain, and (b) 3-yr (2004–06) mean WSR-88D rainfall (mm h21) over the study domain. The figure shown

here corrects a mistake in Fig. 1b of Maggioni et al. (2011).
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time step. The CMORPH product is based on a combi-

nation of passive microwave retrievals from low earth

orbiting satellites and geostationary satellite window

channel infrared data (Joyce et al. 2004). The infrared

data are used to propagate the relatively high-quality

precipitation estimates derived from passive microwave

data. The CMORPH product is available at the same

space (25 km) and time (3 hourly) resolution as the

modeling grid domain.

For this study, CMORPH rainfall estimates (uncertain

rainfall fields) were adjusted to the mean climatology of

the radar rainfall (reference rainfall fields) to meet the

assimilation system assumption of unbiased rainfall forcing

fields. The bias adjustment factor was determined as the

ratio of WSR-88D to CMORPH 3-yr time series domain-

average rainfall estimates, and it was found to be 0.66.

The remaining surface meteorological forcing data (e.g.,

air temperature and humidity, radiation, and wind speed)

are from the Global Land Data Assimilation System

(GLDAS) project (Rodell et al. 2004; http://ldas.gsfc.

nasa.gov) based on output from the global atmospheric

data assimilation system at the NASA GMAO (Bloom

et al. 2005).

3. Methodology

a. The land data assimilation system

The GMAO-LDAS, which constitutes the modeling

and assimilation framework of this study, utilizes the

NASA Catchment land surface model (CLSM; Koster

et al. 2000) to simulate soil moisture and other land surface

parameters from meteorological forcing. CLSM includes

an explicit treatment of subgrid soil moisture variability

and its effect on runoff and evaporation. Within each ir-

regularly shaped computational element, the variability of

soil moisture is related to three bulk soil moisture vari-

ables: one representing equilibrium conditions associated

with water table distribution, and the other two repre-

senting nonequilibrium conditions near the surface. The

Catchment model and its soil and vegetation parameters

are components of the atmospheric general circulation

model of the NASA Goddard Earth Observing System

version 5 (Rienecker et al. 2008). In this study, land-only

model integrations were initialized from a spinup simula-

tion conducted with the WSR-88D radar precipitation

by looping three times through the 3 years of forcing

data. Previous studies have demonstrated the Catchment

model’s viability for soil moisture modeling (Bowling

et al. 2003; Nijssen et al. 2003; Boone et al. 2004; among

others). For further details about the model and its

performance in the Oklahoma study region, we refer the

reader to Maggioni et al. (2011).

In a land data assimilation system, the model-

generated soil moisture is corrected toward the ob-

servational estimate. In GMAO-LDAS, soil moisture

assimilation is based on the EnKF technique, which is

a Monte Carlo variant of the Kalman filter (Evensen

1994) and based on the idea that a small ensemble of

model trajectories captures the relevant parts of the

error structure. Because of its flexibility with respect to

the type of model error, the ensemble approach is widely

used in hydrologic data assimilation and is appropriate

for the nonlinear character of land surface processes

(Reichle et al. 2002; Crow and Wood 2003). The algo-

rithm steps recursively through time, alternating be-

tween a model propagation step and a data assimilation

update step when observations are available. During the

model propagation step, the ensemble members are per-

turbed by assumed model and forcing errors (Reichle

et al. 2007). At the update step, the model forecast is

adjusted toward the observational estimate based on the

relative uncertainties of the observations and the model

forecast and based on cross correlations of the observed

variables and the updated model states. In this study, the

land data assimilation system propagates the surface soil

moisture information into deeper soil layers to produce

a superior product (i.e., root zone soil moisture). In this

way the land assimilation system can add significant value

to surface soil moisture estimates from satellite missions.

Soil moisture estimates from a land assimilation sys-

tem are sensitive to model and observation error co-

variances and may even be worse than open-loop model

estimates if input error parameters are poor (Crow and

Van Loon 2006). As these error parameters are difficult

to determine, adaptive filtering methods have been de-

veloped to estimate model and observation error param-

eters. However, for soil moisture, a nonadaptive EnKF is

shown to perform well, even when obviously wrong in-

put error parameters are employed, and produces better

soil moisture estimates with respect to the open-loop

experiment (Reichle et al. 2008).

b. The rainfall error models

The key objective of the study is to contrast the stan-

dard rainfall error model used in the GMAO-LDAS

(named CRTL) to the more elaborate SREM2D rain-

fall error model in terms of their ability to characterize

model-predicted uncertainty in the context of soil mois-

ture assimilation. The CTRL approach assumes a perfect

delineation of rainy and nonrainy areas and scales the

precipitation forcing based on an ensemble of multipli-

cative perturbation fields that are correlated in space and

in time (different scaling factor for each time, location,

and ensemble member). All ensemble members will dif-

fer only in terms of rainfall amount, but they will agree in
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terms of rain occurrence. In this study, the temporal

correlation was set to zero for compatibility with the

SREM2D implementation. The rainfall error structure

modeled by the CTRL approach is straightforward in

its implementation and parsimonious in its input pa-

rameter requirements; however, it can only approximate

the variability in the rain-rate errors, since it does not take

into account missed rain detection and false alarm—

uncertainties that are characteristic of satellite retrievals

(Hossain and Anagnostou 2006b).

By contrast, SREM2D characterizes rainfall errors more

completely (Hossain and Anagnostou 2006a). Like the

CTRL rainfall error model, SREM2D employs stochastic

space–time formulations to characterize the multidimen-

sional error structure of satellite retrievals. However,

SREM2D allows more complexity in the error modeling

structure of rainfall. Whereas both models describe the

spatial variability of rain-rate estimation error, the major

characteristic of the error structure in satellite rainfall

estimation, which is modeled by SREM2D and not by

CTRL, is the joint probability of successful delineation of

rainy and nonrainy areas accounting for a spatial struc-

ture. Unlike CTRL, SREM2D may, in fact, introduce

rain in areas where the satellite does not detect rain

(missed rain detection). Moreover, SREM2D may assign

zero rain where the satellite measures rain (false alarms).

The input parameters for the SREM2D and CTRL

error models are identical to those used in Maggioni et al.

(2011). The mean value of the lognormal multiplicative

perturbation was set to unity in order to obtain (nearly)

unbiased replicates in both models. The remaining pa-

rameters were carefully calibrated in order to obtain

replicates of CMORPH precipitation that reproduce the

overall standard deviation of the CMORPH versus radar

rainfall errors. Maggioni et al. (2011) also observed that,

after calibration, the two error schemes could capture the

magnitude of the rainfall error and adequately describe

the satellite error variability across scales.

c. The assimilation experiment setup

Figure 2 describes the setup of the assimilation exper-

iments. The left side of the schematic provides the ref-

erence soil moisture fields derived from the Catchment

land surface model forced with gauge-calibrated radar

rainfall fields. This single unperturbed hydrologic model

realization generates soil moisture fields that represent

the reference against that which the model and assimila-

tion estimates are evaluated. These reference soil moisture

fields are also used to generate synthetic observations of

near-surface soil moisture by perturbing the correspond-

ing simulations with a random field generator represent-

ing satellite retrieval error of near-surface soil moisture.

Perturbations are set to have a zero mean and a standard

deviation of 0.04 m3 m23, which is consistent with the

target accuracy for satellite soil moisture retrievals

(Entekhabi et al. 2010a). In this study we used a one-

dimensional EnKF and no spatial correlation structure

was imposed to soil moisture perturbations.

The right box of the schematic in Fig. 2 describes

a Monte Carlo simulation where CMORPH satellite

rainfall is perturbed in two different and separate ways:

first, using the (standard) CTRL rainfall error model,

and second, using the more complex SREM2D rainfall

error model. Each of these processes produces an en-

semble of satellite rain realizations that are used to force

the Catchment model and generate an ensemble of soil

moisture fields. Four experiments are carried out: each

of the two satellite rainfall error model ensembles is

used in GMAO-LDAS without assimilation (open-loop

runs) and with the assimilation of the synthetic near-

surface soil moisture observations. The output from

each of these four experiments is then compared against

the reference soil moisture fields to derive performance

metrics. Results are described in the next section.

The performance metrics are calculated for both

surface and root zone soil moisture based on the 25 3

25-km2 resolution data, which is a resolution typically

used by current global satellite rainfall and soil moisture

FIG. 2. Experimental setup showing (left) the generation of

reference and synthetic soil moisture observations and (right) the

ensemble model simulations based on the two rainfall error models

and the assimilation activation (on/off).
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products. ‘‘Surface’’ soil moisture refers to the (0–2) cm

surface soil moisture output from the Catchment model.

‘‘Root zone’’ soil moisture is defined here as the (0–100)

cm soil moisture output from the Catchment model.

Two performance metrics are analyzed for the four ex-

periments: the root-mean-square error (RMSE) and the

anomaly correlation coefficient (ACC).

For each (open loop or assimilation) experiment, the

RMSE is computed separately for each grid cell from

the differences between the ensemble mean of simu-

lated soil moisture and the corresponding reference

soil moisture. The ACC is also determined separately

for each grid cell based on soil moisture anomaly time

series. Anomalies of surface or root zone soil moisture

are defined as differences between the actual values and

the monthly climatological average values of the 3-yr

time series. The ACC metric captures the correspon-

dence in phase between model estimates and the refer-

ence, regardless of potential long-term or seasonal mean

biases or differences in dynamic range (Entekhabi et al.

2010b).

4. Results and discussion

a. Aggregate performance metrics

We first demonstrate the well-known fact that the

assimilation of soil moisture observations improves over

the model (open loop) estimates. Figure 3 shows the

distributions of RMSE values for the open-loop and

data assimilation experiments using the CTRL rainfall

error model. Data assimilation shifts the distribution to

lower RMSE values. The RMSE distributions also show

a reduction in the upper tail of the distributions when

assimilation is included—namely, values do not exceed

0.045 m3 m23. Specifically, the RMSE of open-loop

simulated soil moisture shows a bimodal distribution,

with values that spread between 0.020 (0.010) and 0.060

(0.055) m3 m23 for surface soil moisture (root zone soil

moisture). When assimilation is turned on, the shape of

the distributions changes; the values distribute closer to

the mean and shift to lower RMSE values. The mean

RMSE for the open-loop (OL) case, shown in Table 1, is

0.039 (0.034) m3 m23, which decreases to 0.030 (0.026)

FIG. 3. Distribution of RMSE computed for the 3-yr time series at each grid cell for (a) surface

and (b) root zone soil moisture.
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m3 m23 in the assimilation integration for surface soil

moisture (root zone soil moisture). This corresponds to

a relative reduction of 23.1% for surface soil moisture

and 23.5% for root zone soil moisture due to data as-

similation (DA). As indicated by 95% confidence in-

tervals (Table 1), the reduction in the RMSE introduced

by assimilation is statistically significant.

The ACC distributions show a similar picture (Fig. 4):

data assimilation shifts the distribution toward higher

values. The lowest ACC values increase from ;0.65 in

the open-loop simulations to 0.75, while the maximum

values exceed 0.95 in both surface and root zone soil

moisture when assimilation is turned on. Table 2 shows

that the mean ACC for the open-loop simulation using

the CTRL rainfall error model is 0.81 (0.79), which in-

creases to 0.88 (0.89) in the data assimilation experiment

for surface soil moisture (root zone soil moisture). This

translates into a relative increase of 8.6% for surface soil

moisture and 12.7% for the deeper soil moisture when

assimilation is turned on. Confidence intervals indicate

that the increase in ACC obtained through assimilation

is significant at the 5% confidence level.

The improvements from data assimilation are slightly

better when the SREM2D rainfall error model is used in

the assimilation system. Figure 3 also shows the corre-

sponding results for the open-loop and assimilation in-

tegrations using SREM2D. No significant difference can

be noticed in the performance metrics of the two error

models in the open-loop cases, whereas in the data as-

similation integrations the RSME distributions are more

skewed toward lower values. This is also shown in Table

1. With SREM2D, a relative RMSE reduction of 26.3%

is obtained for surface soil moisture when assimilation is

on, compared to the 23.1% improvement in the CTRL

case. Similarly, a 29.4% RMSE reduction is observed for

root zone soil moisture, which compares to the 23.5%

reduction obtained with the CTRL error model.

Analogously, Fig. 4 shows the corresponding open-loop

and assimilation ACC distributions for the SREM2D rain-

fall error model. In the SREM2D data assimilation case,

the distributions are more shifted toward higher ACC

values for both surface and root zone soil moisture (com-

pared to assimilation with CTRL). As shown in Table 2,

the mean relative ACC increase due to assimilation using

SREM2D is 11.3% for surface soil moisture, which com-

pares to the 8.6% increase in the CTRL experiment. For

root zone soil moisture, the relative increase of ACC due

to assimilation is 13.9%, which compares to the 12.7%

increase in the CTRL error model. In section 4c, the

difference in the performances of the two rainfall error

models will be investigated further with respect to the

different rainfall climatological conditions.

b. Innovations statistics

Innovations are defined as the difference between the

synthetic observations and the corresponding ensemble

mean model values prior to the assimilation update. If

the filter operates in accordance with its underlying as-

sumptions and model and observation error parameters

are appropriately chosen, the mean of the innovations

should be statistically indistinguishable from zero, and the

normalized innovations (defined as innovations divided

by their expected standard deviation) should approxi-

mately obey a standard normal distribution with zero

mean and standard deviation equal to 1 (Reichle et al.

2007).

The innovation mean values of the assimilation ex-

periment runs with the CTRL and SREM2D rainfall

TABLE 1. RMSEs and 95% confidence intervals for (second column) OL and (third column) DA experiments, and (fourth column) the

corresponding relative RMSE reductions due to DA. Numbers in regular (italic) font are for GMAO-LDAS integrations using the CTRL

(SREM2D) rainfall error model, and DP in the fourth column indicates the rainfall regime (section 4b).

CTRL SREM2D OL DA

Relative RMSE reduction 100 3 (DA 2 OL) / OL

All DP , 0 DP . 0

Surface soil moisture 0.039 6 0.001 0.030 6 0.001 23.1% 17.8% 27.1%

0.038 6 0.001 0.028 6 0.001 26.3% 20.1% 31.4%

Root zone soil moisture 0.034 6 0.001 0.026 6 0.001 23.5% 19.2% 27.7%

0.034 6 0.001 0.024 6 0.001 29.4% 22.5% 32.1%

TABLE 2. As in Table 1, but for ACC.

CTRL SREM2D OL DA

Relative ACC increase 100 3 (DA 2 OL)/OL

All DP , 0 DP . 0

Surface soil moisture 0.81 6 0.01 0.88 6 0.01 8.6% 8.0% 10.3%

0.80 6 0.01 0.89 6 0.01 11.3% 9.6% 12.8%

Root zone soil moisture 0.79 6 0.01 0.89 6 0.01 12.7% 11.3% 13.6%

0.79 6 0.01 0.90 6 0.01 13.9% 13.8% 16.2%
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error models are 0.006 and 0.005 m3 m23, respectively

(not shown), which is considered approximately zero.

Next, the normalized ensemble mean innovations are

computed for the two assimilation experiments. Figure 5

shows maps of standard deviations of the normalized

ensemble mean innovations (dimensionless) for the 3-yr

time series and for both assimilation experiments. The

figure shows that the standard deviations of normalized

ensemble innovations are higher than 1 across the entire

study region, with an average of 1.18 (1.15) for the CTRL

(SREM2D) simulation. This is consistent with results pre-

sented by Reichle et al. (2007) at a global scale, who

showed that the variance of normalized innovations ex-

ceeds 1 in central North America when assimilating two

different sets of global soil moisture retrievals. This sug-

gests either an underestimation of the observation error

variance or a need to account for larger modeling error.

Slight improvements are observed overall when SREM2D

is employed, exhibiting lower standard deviation values

that are closer to 1 than in the case of the CTRL simulation.

c. Impact of climatological rainfall regime

For further analysis we introduce a rainfall climatol-

ogy parameter DP, defined as

DP 5
Pi 2 Pmean

Pmean

, (1)

where Pi is the reference WSR-88D rainfall for the ith

grid cell averaged over the entire 3-yr period and Pmean is

the mean radar rainfall value for the entire 10 3 22 grid

area and the 3-yr period. Here DP can be interpreted as

a climatological wetness indicator of the area covered by

each grid cell with respect to the domain average; pos-

itive (negative) values of DP would indicate areas that

are generally wet (dry) with respect to the climatology of

the entire domain—defined as the 3-yr-average rainfall

value. Four different classes of rainfall climatology are

considered: (i) DP smaller than 20.2, (ii) DP falls between

20.2 and 0, (iii) DP falls between 0 and 0.2, and (vi) DP is

FIG. 4. As in Fig. 3, but for ACC.
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larger than 0.2. The two negative classes (i) and (ii) rep-

resent drier conditions, while the two positive classes (iii)

and (iv) correspond to wetter-than-climatology conditions.

Figure 6 shows the relative reduction in the RMSE of

(near surface and root zone) soil moisture between the

assimilation and open-loop cases, normalized by the

RMSE of the open-loop simulation, as a function of

the rainfall climatology parameter DP. This normalized

RMSE difference is always positive, showing a reduction

of the random errors due to the assimilation of soil

moisture observations. The relative RMSE reduction is

higher in wetter conditions for surface and root zone soil

moisture. Moreover, the (spatial) variability in the RMSE

reduction amplifies with increasing DP as indicated by

the one-standard-deviation bars in the plots. Analo-

gously, Fig. 7 illustrates the relative increase in soil

moisture ACC values between the assimilation and open-

loop cases. Unlike for the RMSE reduction, the maxi-

mum relative ACC increase is near neutral conditions,

which corresponds to nonextreme rainfall regimes. This

behavior is apparent for both soil moisture depths.

Figure 6 also indicates that the relative RMSE re-

duction due to assimilation is higher for the SREM2D

error model than for the CTRL error model. Likewise,

the relative ACC increases are higher with SREM2D

than with the CTRL error model. A hypothesis test was

carried out to evaluate the significance of the difference

in the performance metric improvements obtained for

the two rainfall error models. Specifically, a two-sample

t test for the difference in the mean was applied to eval-

uate the significance in the difference between the mean

relative RMSE reductions (or ACC increases) obtained

FIG. 5. Maps of standard deviation of normalized ensemble mean innovations evaluated over the 3-yr time series

for the (a) CTRL and (b) SREM2D assimilation experiments (dimensionless). The average standard deviation is 1.18

for CTRL and 1.15 for SREM2D.

FIG. 6. Normalized RMSE reduction vs rainfall climatology parameter DP for (a) surface and (b) root zone soil

moisture.
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by SREM2D versus CTRL. The test is performed using

independent samples of the performance metrics from

the two experiments. We devise a null hypothesis that

the difference in the mean of the two relative RMSE

reductions (or ACC increases) is equal to zero, while the

alternative hypothesis is that the difference in the mean

is different from zero. The significance test is presented

for two main classes of rainfall climatology: negative DP

(drier conditions) and positive DP (wetter conditions).

Table 1 summarizes the mean relative RMSE reduction

for SREM2D and CTRL for the two rainfall regimes

(DP , 0 and DP . 0) and for both soil moisture depths,

and Table 3 lists the corresponding results for the confi-

dence levels at which the null hypothesis is rejected. For

surface soil moisture, the RMSE reductions for CTRL and

SREM2D differ by 2.3% and are statistically different

from zero at the 20% confidence level in dry climatological

conditions. In wet conditions, the surface soil moisture

RMSE reductions for CTRL and SREM2D differ by 4.3%

and are statistically different at the 15% confidence level.

In the case of root zone soil moisture, the differences in

RMSE reduction are 3.3% in dry conditions and 4.4% in

wet conditions. These differences are statistically differ-

ent from zero at the 5% significance level. In other words,

Table 3 shows that the root zone soil moisture RMSE

values obtained with SREM2D are better than those

obtained with CTRL at the 5% significance level.

Tables 2 and 4 present the analogous analysis for ACC.

For near-surface soil moisture the difference in the mean

ACC increase between SREM2D and CTRL is 1.6% in

dry rainfall regimes—a difference that is statistically dif-

ferent from zero at the 25% significance level. In moist

conditions the difference in the mean of ACC increase

between the two rainfall error models is 2.5% and the

null hypothesis of equal means is rejected at 25% con-

fidence level. Similar results are obtained for root zone

soil moisture, where the difference between the ACC

increase for SREM2D and CTRL is significant at the

25% level in both dry and wet rainfall regimes.

The improvement from using SREM2D in the as-

similation system is higher in wet rainfall regimes than in

dry rainfall regimes for both surface and root zone soil

moisture (i.e., larger RMSE reductions and ACC in-

creases). This is expected as soil water content is highly

dependent on rainfall variability and consequently varies

considerably in response to rainfall forcing. In summary,

our numerical experiment shows that the use of the more

elaborate SREM2D rainfall error model provides slightly

higher mean relative RMSE reductions and ACC in-

creases than the CTRL rainfall error model when used in

the assimilation of synthetic soil moisture observations

within GMAO-LDAS, especially in the wet rainfall re-

gime. The greatest impact from using the SREM2D error

model in data assimilation is in the RMSE reduction of

root zone soil moisture in both dry and wet rainfall re-

gimes (significant at 5% confidence level).

FIG. 7. As in Fig. 6, but for ACC.

TABLE 3. Significance levels at which the null hypothesis of equal

mean for relative RMSE reductions (values shown in Table 1) is

rejected.

DP , 0 DP . 0

Surface soil moisture 20% 15%

Root zone soil moisture 5% 5%

TABLE 4. As in Table 3, but for ACC increases.

DP , 0 DP . 0

Surface soil moisture 25% 25%

Root zone soil moisture 25% 25%
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5. Conclusions

This study investigated the effect of two satellite rainfall

error models of different complexity on the efficiency of

assimilating (synthetic) surface soil moisture observations.

Specifically, four numerical experiments have been run

by perturbing input model precipitation (separately)

with two rainfall error models of different complexity,

without (open-loop runs) and with the assimilation of

the synthetic near-surface soil moisture (assimilation

runs). Surface and root zone soil moisture outputs from

each experiment were compared against the ‘‘refer-

ence’’ soil moisture to derive performance metrics.

This comparison showed that assimilation provides an

improvement in terms of lower RMSE values and higher

ACC values. Merging synthetic surface soil moisture

into the model through data assimilation not only leads

to better estimates of surface soil moisture but also to an

increase in skill for the root zone soil moisture. Exam-

ining the average metrics, slightly better improvements

due to assimilation were obtained with the more elab-

orate SREM2D rainfall error model compared to the

CTRL error model, while performances of the two error

models are very similar in the open-loop simulations.

An analysis of the innovation statistics showed that

the innovation means are close to zero in both CTRL and

SREM2D assimilation experiments. Standard deviations

of normalized ensemble mean innovations are shown to

be close to the expected value of 1 (dimensionless), with

slightly better results in the case of SREM2D. This dem-

onstrates that the filter largely operates in accordance with

its assumptions.

A further investigation based on different rainfall cli-

matological regimes showed that the relative improvement

due to the assimilation of soil moisture observations with

respect to the open-loop case is higher when SREM2D is

employed (i.e., larger relative RMSE reductions and ACC

increases). The relative enhancement due to the use of

SREM2D is shown to be larger for root zone soil mois-

ture, which carries the memory of previous precipitation

events, and in wetter rainfall conditions, which is ascribed

to the high dependence of soil moisture on precipitation

variability. In summary, using a more complex rainfall

error model, the relative improvement provided by the

data assimilation slightly enhances surface and root zone

soil moisture estimates, exhibiting lower RMSE and higher

ACC values. Regardless of the results of the assimilation,

the use of a more sophisticated error model, which includes

a more descriptive characterization of uncertainties, is

encouraged for rainfall and other model forcing variables

and parameters. In addition, a more inclusive description

of rainfall uncertainties could be obtained by taking into

account for temporal correlation within the error models.

A supplemental analysis (not shown) suggests that the

temporal error correlation coefficient for CMORPH

precipitation (versus WSR-88D estimates) is less than

0.3 for the periods and storms examined in this study.

Further studies should investigate the benefit of the

more sophisticated rainfall error model at the event

scale. Specifically, accounting for uncertainties in the

presence (or absence) of rainfall might be more signifi-

cant during summer months with large but spatially

limited convective storms than during winter months,

when stratiform rainfall dominates. Moreover, the work

presented in this study is a controlled experiment that

makes use of synthetic soil moisture observations, and

that is based on the assumptions of unbiased rainfall

forcing and zero mean perturbations of soil moisture. A

challenging step for future research is to demonstrate

improvements based on actual satellite soil moisture

retrievals, where these assumptions might not hold.

The broader impacts of this study include a direct

contribution to the development of the NASA Global

Modeling and Assimilation Office (GMAO) land data

assimilation system. In particular, the study provides valu-

able insights about the use of satellite rainfall data and

associated error structure for modeling hydrologic pro-

cesses and useful feedback to future satellite hydrologic

missions, such as the Global Precipitation Measure-

ment mission and NASA’s Soil Moisture Active Pas-

sive mission.

The presented work was done with a view toward a

global-scale land data assimilation, for which the GMAO-

LDAS has been applied successfully (Reichle et al. 2007).

But our results are strictly valid only for a specific as-

similation system—the GMAO-LDAS—which is built

on the Catchment land surface model and the ensemble

Kalman filter. Likewise, we concentrated only on the

Oklahoma region for the experiments. Future studies

should investigate the sensitivity of these results to dif-

ferent combinations of land models and assimilation

methods, and to other hydroclimatic regimes. However,

we are confident that our general conclusions can be

extended to different land data assimilation approaches

and can be transferred to regions of the world with cli-

matology and terrain that are not too different from that

of the Oklahoma region.
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