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ABSTRACT

Small-scale variability of rainfall has been studied employing six dual rain gauge sites at Wallops Island,

Virginia. The rain gauge sites were separated between 0.4 and 5 km, matching the beamwidth of Tropical

Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) precipitation radars.

During a 2-yr observational period, over 7100 rainy samples were received at 5-min integration. A single

gauge did not report as high as 67% of the time when at least one of the other gauges had rainfall in one of the

seasons. Since rainfall from one of the six rain gauges is sufficient for the rainy footprint from a satellite, this

demonstrates the common occurrence of the partial beamfilling. For the periods where all gauges were

reporting rainfall, a single gauge had at most 13% difference from the areal average rainfall in one of the

seasons. This suggests that at the spatial scale of 5 km, the variability caused by the rain gradient is relatively

less important than the variability arising from a partially filled footprint. During the passage of frontal

systems and tropical cyclones, the beam was filled by rain most of the time and this resulted in relatively higher

correlation distances. The correlation distance had a sharp drop off from 45 km in moderately variable

rainfall to 3 km in highly variable rainfall and ranged from 5 to 35 km between the different seasons. This

demonstrates its highly variable nature. Considering temporal sampling, the monthly rainfall error was 35%

and 73% for 3-hourly and twice-daily observations, respectively.

1. Introduction

Satellite measurements are the only option to estimate

surface precipitation over oceans and the vast majority of

land surfaces that lack precipitation-measuring instru-

ments. The precipitation retrieval algorithms from active

and passive microwave sensors on board polar orbiting

earth observing satellites rely on a number of assump-

tions regarding precipitation microphysics and suffer

from the nonuniform characteristics of precipitation

within their respective footprints.

The Tropical Rainfall Measuring Mission (TRMM),

a joint project between the National Aeronautics and

Space Administration (NASA) and the Japanese Aero-

space Exploration Agency (JAXA), is dedicated to pre-

cipitation measurement over the tropics and subtropics.

The TRMM satellite carries the first precipitation radar

(PR) and nine-channel microwave sensors, among other

instruments (Kummerow et al. 1998). The PR provides

the vertical profile of reflectivity, which is corrected for

attenuation (Iguchi et al. 2000). Nonuniform beamfilling

is a key source of error for this attenuation correction

since the reflectivity profile for the inhomogeneous rain

differs from that of homogeneous rainfall, even when

the footprint average rainfall is the same (Takahashi

et al. 2006). To conserve fuel and thus extend its lifetime,

the orbital altitude of the TRMM satellite was boosted

from 350 to 402.5 km in August 2001. The PR near-nadir

field of view then increased from 4.3 to 5.0 km, making

nonuniform beamfilling a more serious problem for the

PR algorithm (Liao and Meneghini 2009).

The precipitation retrieval algorithms from the TRMM

microwave imager (TMI) and many other passive mi-

crowave sensors employ a radiative transfer and cloud

model or PR data and use explicit physical assumptions

to derive relations between brightness temperature and
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rainfall. Varma et al. (2004) showed a significant dis-

agreement between the observed brightness tempera-

ture and rainfall at two different frequencies of the TMI

in convective rain. They attributed this disagreement to

the differences in the instantaneous field of view. Prior

to this study, Kummerow (1998) recognized that the

homogeneous rainfall assumption is the largest un-

certainty in physically based precipitation retrieval al-

gorithms. The instantaneous field of view of the TMI is

elliptical and at the earth’s surface, prior to boost, had

a diameter in the cross-track direction of 4.1 km and

a down-track diameter of 6.7 km at 85.5 GHz at vertical

polarization (Kummerow et al. 1998). The TMI instan-

taneous field of view is larger at lower frequencies,

reaching 60.1 and 36.4 km in down-track and cross-track

directions, respectively, at 10.65 GHz at horizontal po-

larization. Like the PR, the increase in the instanta-

neous field of views after the boost exacerbates the

beamfilling problem particularly for physically based

precipitation retrieval algorithms.

TRMM is one of the oldest active satellites in space

within NASA’s Earth Science Observing System. The

next satellite that is dedicated to precipitation measure-

ments, Global Precipitation Measurement (GPM), is

scheduled to launch its core satellite in 2013. The GPM

core satellite will carry a dual-frequency precipitation

radar (DPR) and a 13-channel microwave imager (GMI).

The core satellite will fly at a 405-km altitude and the

DPR will have a 5-km footprint at nadir (Nakamura and

Iguchi 2007). The instantaneous field of view of the GMI

will range from 4.4 3 7.3 km2 at 183.3 GHz to 19.4 3

32.2 km2 at 10.65 GHz (Hou et al. 2008). Both TRMM

and GPM satellites are in a non-sun-synchronous orbit,

which allows them to cover the globe spatially within

their altitude of inclinations. Temporal sampling is lim-

ited to twice-daily sampling on the earth’s surface. To

enhance temporal sampling, the precipitation estimates

from various microwave sensors have been combined

into a single product. The TRMM Multisatellite Preci-

pitation Analysis (TMPA) is a 3-hourly 0.258 3 0.258

precipitation product that covers 6508 latitude (Huffman

et al. 2007). The TMPA merges the microwave sensor

precipitation estimate with a microwave-calibrated

infrared precipitation estimate. It also includes gauge

rainfall at a monthly scale. With the additional satel-

lites that carry microwave imagers, GPM is committed

to providing a precipitation estimate every 1–2 h at

every location on land and every 2–4 h over ocean

(Hou et al. 2008).

Ground validation is one of the main components of

the TRMM and GPM projects. The direct comparison

between ground-based and spaceborne precipitation es-

timates helps to evaluate the performance of the satellite

algorithm (Liao et al. 2001; Wolff et al. 2005; Liao and

Meneghini 2009). Various assumptions of the satellite

algorithm can be further evaluated by employing ground-

based observations from field campaigns. Kummerow

(1998), for instance, employed shipborne radar observa-

tions from the Tropical Ocean Global Atmosphere Cou-

pled Ocean Atmosphere Experiment (TOGA COARE)

to examine the nonuniform beamfilling effect on micro-

wave precipitation retrievals. The same radar dataset has

been used to examine the factional rain area and distri-

bution of rainfall within the TMI field of view (Varma et al.

2004).

Rain gauges are an integral component of the satel-

lite precipitation algorithm validation studies. They

play an important role in constructing and validating

radar rainfall estimates (Wolff et al. 2005). Dense rain

gauge networks that are operated in field campaigns

help to determine the variability of rainfall within the

scale of a radar pixel and satellite footprint. The TRMM

postlaunch field campaigns in east-central Florida and the

southwest Amazon basin of Brazil included such dense

rain gauge networks. Gebremichael and Krajewski

(2004) used both gauge networks to evaluate the ability

of the radar-derived products to characterize the small-

scale (less than 20 km) variability of rainfall. Habib and

Krajewski (2002) and Datta et al. (2003) also used the

gauge network in east-central Florida for studying the

variability of rainfall within the scale of a radar pixel.

The former study was interested in the rainfall vari-

ability at time scales of 1 h or less, while the later study

examined the variability for an event as well as for 5- and

30-day periods. These dense rain gauge networks in-

cluded collocated gauges, which helped to determine the

gauge random error. At the same time, the experiments

were relatively short (approximately 2 months) to de-

termine the variability for different types of storms and

for seasons and longer climatological periods. Rain

gauge networks that have been operating 2 yr or longer

allow for studying the small-scale variability between

the different years. However, operations are costly and

the gauge maintenance can be challenging, especially in

remote locations.

The TRMM satellite validation office has been oper-

ating a gauge network at NASA Kennedy Space Flight

Center (KSC) for over a decade. Wang and Wolff (2010)

employed 1 yr of these gauge observations to evaluate

the TRMM radar rainfall product. The distances be-

tween the rain gauges at KSC range from approximately

2 to 32 km distance with no collocated gauges at any site.

Among other rain gauge networks that are relevant to

studying the rainfall variability within the satellite field

of view and radar pixel are the University of Oklahoma

Environmental Verification and Analysis Center (EVAC)
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PicoNet, which included 24 dual- and 1 five-collocated

gauges. Ciach and Krajewski (2006, hereafter CK06)

used two years of this dataset to model the spatial cor-

relation of rainfall over a nearly square area where the

intergauge separation distances ranged from just under

0.5 to about 3.4 km. The site previously hosted 15 collo-

cated gauges to study the local random errors of tipping-

bucket gauges (Ciach 2003). Villarini et al. (2008, hereafter

VMKM08) and Villarini and Krajewski (2008), on the

other hand, used a unique gauge dataset from southwest

England to study the spatial and temporal sampling

uncertainties of rainfall. The 6-yr dataset included 50 rain

gauges where the separation distance ranged from 0.5 to

15 km. The rain gauges were deployed during the Hy-

drological Radar Experiment (HYREX; Moore et al.

2000). It should be noted that all the gauges mentioned

above were tipping bucket and the studies did not include

mixed phase or frozen precipitation.

This study uses a rain gauge network at NASA’s

Wallops Flight Facility (WFF), Wallops Island, Virginia

(37.848N, 75.488W). The main objective of this study is to

investigate the spatial variability of rainfall within a 5-km

distance, which coincides with approximate diameter of

the instantaneous field of view (IFOV) of the TRMM PR.

The GPM DPR will have similar IFOVs at both Ku- and

Ka-band frequencies. A description of the dataset and

instrumentation can be found in section 2. The non-

uniform beamfilling is discussed in section 3, while section

4 presents the errors in monthly rainfall due to temporal

sampling of satellite measurements. A spatial correlation

function and the variability of its parameter for different

subsets of observations are discussed in section 5. The

dependence of the spatial correlation function on various

integration periods is also given in this section. Conclusive

remarks will be presented at the end.

2. Rainfall measurements

As part of the TRMM satellite validation program,

a dense rain gauge network has been operated at NASA

WFF for 2 yr starting from December 2005. The net-

work consisted of six dual Met One Inc. tipping-bucket

sites (Fig. 1). The gauges were aligned nearly in a

straight line across Wallops Island where the minimum

and maximum distances were 0.4 and 5.0 km, respec-

tively (Fig. 2). The Met One gauge has 20.3-cm diameter

orifice, and each tip corresponds to 0.254-mm rainfall.

The time stamp of the tip was recorded to a battery-

operated MadgeTech datalogger. The logger was lo-

cated inside a waterproof box that fit inside the gauge

cylinder. A technician visited each gauge every month—

essential to maintain a high-quality dataset. The failure

of one of the two collocated gauges was rarely observed

during the 2-yr-long experiment period. A continuous

gauge record of rainfall was available at each site, and the

G03 site had a continuous record for both collocated

gauges throughout the experiment.

During the experiment period, gauges recorded

1960 mm of rainfall in more than 7100 rainy samples

when the rainfall was averaged between the six gauge

sites. The rainy samples were based on 5-min accumu-

lation periods at 0.5-mm (two tips) threshold. Although

longer accumulation periods and other rain–no-rain

thresholds were also included as a sensitivity study, 5-min

integration with 0.5-mm threshold was considered as the

base of this study. Since the rain gauges were not heated,

the rare snow events were excluded. False tips typically

occur following a snow event once the snow in the gauge

melts and multiple tips in a minute are observed when no

precipitation is reported by nearby operational gauges.

These false tips were carefully eliminated from the re-

cord. While 2-yr accumulation matched with the local

climatology, there were noticeable differences between

the observed and the climatological rainfall on monthly,

seasonal, and yearly totals (Figs. 3a–c). Only 45% of the

mean seasonal rainfall fell in spring 2006 in drought

conditions, while Hurricane Ernesto (2006) contributed

abundant rainfall during autumn 2006 where rainfall was

2.3 times the seasonal average. This demonstrates that

2-month-long field campaigns may not be adequate to

collect the sufficient amount of rainfall at a midlatitude

site unless the rainfall climatology indicates abundant

rainfall in a given season. Wallops Island receives pre-

cipitation from frontal systems, air mass convection, and

remnants of tropical cyclones and is one of the rainiest

locations based on annual precipitation in the continental

United States outside the southeastern states and the

Pacific Northwest.

FIG. 1. A picture of the dual rain gauge site at NASA Wallops

Flight Facility, Wallops Island, Virginia.
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3. Nonuniform beamfilling

The nonuniform beamfilling consists of the variability

and partial coverage of rainfall within the beam. Al-

though these two factors occur simultaneously, we tried

to determine these effects separately. The percent oc-

currence, which is the ratio of rain occurrence of a single

gauge to beam rainfall, is considered to be the measure

for partial coverage. Beam rainfall is the average rainfall

between the six gauge sites for 5-min totals. Here, the

beam rainfall is calculated even if only one gauge re-

ported rainfall. The 5-min rain total is considered to be

shortest reliable gauge rainfall (Habib and Krajewski

2002) and one gauge from each site is selected for this

segment of the study. The dataset is partitioned for 15

different climatological periods including eight seasons,

four 6-month periods, two years, and one 2-yr period.

The gauge at the lower end of the network (G06) had

the highest percentage of rain occurrence for all seasons

except for two summers where the gauge at the upper end

of the gauge network (G01) had the highest occurrences

(Fig. 4). The difference of rain occurrence between G06

and other gauges was larger than 1% in all seasons except

summers, becoming nearly 10% during spring 2007. It

was interesting that G06 received distinctly higher rain

occurrences than its neighboring gauge (G05), which was

only 0.4 km away. For all seasons, at least one of the

gauges had less than 50% rain occurrence and none of the

gauges had rain occurrence more than 67%. Moreover,

all the gauges were below 50% rain occurrence during

spring 2006. This demonstrates the significance of partial

coverage within a 5-km footprint.

The intrabeam variability of rainfall is determined by

taking the ratio of the difference between the individual

gauge and complete beam rainfall to the complete

beam rainfall. The complete beam rainfall is the aver-

age rainfall of six gauges when all the gauges report

rainfall for the 5-min accumulation period. The com-

plete beam rainfall differs from beam rainfall, which

requires just one of the six rain gauges reporting rain-

fall. G06 had the highest positive deviation from com-

plete beam average for all seasons except autumn 2006

(Fig. 5). The G06 had also the maximum deviation

(13%) from complete beam average in autumn 2007.

G01, on the other hand, had the maximum negative

deviation (13%) from complete beam average in sum-

mer 2007, but the neighboring gauges (G02 and G03)

had the highest negative deviations for other seasons.

This segment of the study reveals that at the spatial

scale of 5 km, partial beamfilling from intrabeam var-

iability is relatively less important than that from rain

occurrence.

4. Temporal sampling

Polar-orbiting-satellite-based climate rainfall prod-

ucts suffer from temporal sampling errors. The TRMM

climate products, which include PR (3A25), TMI (3A11

and 3A12), and combined PR–TMI (3B31) monthly

precipitation, are based on twice-daily overpasses and

are constructed either at 58 3 58 or 0.258 3 0.258 reso-

lution. To reduce the temporal sampling errors and in-

crease the accuracy of climate rainfall products, efforts

have been made through combining multisatellite pre-

cipitation products. The TMPA, another TRMM stan-

dard climate product, is based on a 3-hourly multisensor

precipitation analysis as noted in the introduction. It is

FIG. 2. NASA Wallops Flight Facility rain gauge network. (left) The greater area of the mid-Atlantic and (right) the

expanded Wallops Island site. The distance between the paired gauge sites is also presented in a table form.
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anticipated that the GPM standard climate products will

be similar to TRMM, and monthly precipitation will

primarily rely on the use of multisatellite-based preci-

pitation estimates.

The temporal sampling errors of monthly preci-

pitation totals are investigated by employing the gauge

network introduced above. The true monthly rainfall

(raint) is based on the average rainfall from six gauge

sites for 5-min accumulations. One gauge from each

gauge site is used to determine raint. The monthly rain-

fall is recalculated for different temporal samplings

ranging from 10 min to 12 h. These estimated monthly

rain amounts (raine) assume that the rainfall was uni-

form for the period between the consecutive observa-

tions. The percent absolute error is then calculated for

a given month:

percent_absolute_error 5
jraint 2 rainej

raint

3 100. (1)

The median, mean, and standard deviation of the percent

absolute errors are calculated employing 24 monthly ac-

cumulations (Fig. 6). For a polar-orbiting satellite that

samples every place within its orbit twice a day, the per-

cent absolute error is 73% on average. If the monthly

precipitation is based on 3-hourly observations, the per-

cent absolute error is about 35% on average. As men-

tioned in the introduction, it is expected that GPM will

provide a precipitation estimate every 1–2 h on land and

every 2–4 h over ocean. The percent absolute error is

19% on average for hourly sampling, while 26% and 40%

errors are expected for 2- and 4-h samplings on average.

It should be noted that the percent absolute errors

presented above do not directly address the temporal

sampling errors in TRMM and GPM standard climate

products. The dataset used in this study does not include

mixed precipitation and/or snow, and the gauge-based

areal average rainfall could be well below the satel-

lite’s minimum detectable precipitation, which is about

FIG. 3. Areal average rainfall accumulation (dark bars) and precipitation climatology (light bars) for NASA Wallops

Flight Facility for a (a) month, (b) season, and (c) year.
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0.5 mm h21 for TRMM PR and is expected to be

0.2 mm h21 for GPM DPR (R. Meneghini, 2011, per-

sonal communication). More importantly, the TRMM

and GPM standard climate products are generated on

a much larger spatial scale than the 5 km2.

5. Spatial variability

The Pearson correlation coefficient (r) is computed

for the gauge pairs between the six different sites where

one gauge from each gauge site is used. The correlations

are computed for 15 different climatological subsets, but

the dataset is also grouped for two meteorological re-

gimes and for three different uniformity of rainfall cate-

gories, totaling 20 subsets. A three-parameter stretched

exponential model is selected to determine the inter-

gauge correlations and is expressed as

r 5 r0 exp

�
2

d

d0

� �s�
, (2)

FIG. 4. Percent occurrence of gauge rainfall with respect to the beam rainfall, which is the areal average

rainfall between the six gauge sites for 5-min accumulation. Percent occurrence is given for eight seasons,

four 6-month periods, two years, and a 2-yr period.

FIG. 5. As in Fig. 4, but for percent variability.
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where r0 is the nugget parameter, d is the distance be-

tween the two gauge sites, d0 is the correlation distance,

and s is the shape parameter. This parametric model has

been used in the past (Habib et al. 2001; Habib and

Krajewski 2002; Gebremichael and Krajewski 2004;

Krajewski et al. 2003; VMKM08) and its parameters are

quite sensitive to each other. If the shape and nugget

parameters are one, then Eq. (2) is the simple expo-

nential model where d0 is the e-folding distance (CK06).

Even when shape parameter is not one, d0 is still the

e-folding distance when d is equal to d0. In the absence of

collocated gauges, Wang and Wolff (2010) estimated r0

and d0 by setting the shape parameter to 1.0. As an alter-

native, it is feasible to estimate all three parameters, but

the model fitting is not successful with high values of

minimum root-mean-square error (rmse) (CK06). The

minimum rmse is ultimately the measure of the goodness

of fit, which determines the values of estimated parame-

ters. In this study, nonlinear least squares are employed

for fitting of the stretched exponential function.

The nugget parameter is the correlation coefficient

between the rain rates of the collocated gauges and is

related to the discrepancies between the gauge readings

as being local random errors, which depend highly on the

rain intensity and period of data integration (Ciach 2003).

In this study, the nugget parameter was determined based

on data from the G03 site where both gauges operated

with no failure during the experiment. The nugget pa-

rameter increased with the integration period from 0.97

at 5-min accumulation to 0.99 at 20-min accumulation

and remained around 0.99 for longer accumulation

periods (Fig. 7a). VMKM08 found the nugget parameter

of 0.96 for 5-min accumulation with an asymptotical

increase for longer integration periods. The increase of

nugget parameter with integration period was also evi-

dent in the CK06 study, but the correlations were above

0.99 for 5-min and longer accumulations.

The correlation distances also show an increasing trend

with integration time (Fig. 7b). The distances remain less

than 80 km up to 30-min integration, and range between

170 and 230 km for longer integration periods (except at

12 h where it is nearly 320 km). These very large corre-

lation distances should be interpreted with caution. Con-

sidering two gauge stations that are separated by 170 km,

one cannot expect a nearly 0.37 correlation in hourly

rainfall even though this is what the results suggest if the

nugget parameter is taken as 1.0. VMKM08 also showed

relatively gradual increase of correlation distance with in-

tegration periods up to 30 min, while the increase was

noticeably faster for longer integration periods. However,

the correlation distances were much shorter, reaching

110 km at 12 h. CK06, on the other hand, showed a similar

FIG. 6. Percent absolute error of monthly rainfall for a remote sensing precipitation

measurements that sample the experiment area ranging from 10-min to 12-h intervals.
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trend with shorter correlation distances than the VMKM08

study. The increase of the correlation distances with the

integration time is consistent with the predictions from

certain theoretical models of precipitation statistics (Bell

and Kundu 1996; Kundu and Bell 2003).

The shape parameter increases with the integration

from 0.37 at 5 min to 0.92 at 12 h (Fig. 7c). A similar

range, but first rapid and then gradual increase with a

break point of 30-min period, was reported in VMKM08.

CK06, on the other hand, displayed a trend similar to the

shape parameter increase of VMKM08, but the range was

between 1.1 and 1.6. The rmse decreases sharply from

5-min (0.064) to 2-h integration periods (0.007) and

remains less than 0.006 for longer integration periods

(Fig. 7d). CK06 showed a similar decrease of rmse with

integration periods as well.

The scatter of correlations of the paired gauge rainfall

around the exponential fit is a visual inspection of the

goodness of fit (Fig. 8). The scatter is noticeably reduced

from 5- to 15-min integration, and is very tight around

the exponential fit at 3-h integration. At a distance of

5 km, the correlation of the functional fit is just below

0.5 at 5-min integration, while it is 0.95 at 3-h integration.

The VMKM08 study resulted in 0.53 and 0.88 correla-

tions at 5-min and 3-h integrations, respectively, at a dis-

tance of 5 km. The CK06 study, on the other hand,

suggested 0.59 and 0.90 correlations at 5-min and 3-h

integrations, respectively, at a distance of 5 km. As noted

in the introduction, the maximum gauge spacing was less

than 5 km in CK06, while the VMKM08 gauge network

extends up to 15 km.

VMKM08 compared their findings with CK06 and

pointed out the differences in experimental design,

which included the number of gauges and their distances

with respect to each other; precipitation type; sample

size, which is related to the frequency of rain occurrence;

and the duration of the experiment. These factors play

a crucial role in the correlations between paired gauge

rainfall and parameters of the stretched exponential

model and, therefore, differences were expected be-

tween these experimental studies. In this study, the data

quality is good since each site had dual gauges. The dual

gauge platforms have advantages for years-long un-

interrupted gauge record at a site (Krajewski and Smith

2002). As noted earlier, the experiment site received

abundant rainfall from different synoptic systems. The

FIG. 7. Dependence of (a) nugget parameter, (b) correlation distance, (c) shape parameter of the exponential

function, and (d) rmse on the averaging time scale ranging from 5 min to 12 h.
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2-yr-long observations provided an adequate dataset to

determine the fitting parameters under different synoptic

configurations as well as for a season, 6-month period,

and 1 yr. The dataset for each of the 20 subsets had at

least 545 5-min samples.

The choice of rain–no-rain threshold is another factor

that affects the parameters of the stretched exponential

model. At 5-min integration, the correlation of func-

tional fit ranges from 0.68 for a single tip (0.254 mm)

rain–no-rain threshold to 0.17 for eight tips 2 mm)

threshold at a distance of 5 km (Fig. 9). Since a single tip

may occur at times where the bucket was mostly filled

but tipped from a previous rain event or perhaps from

strong winds, we considered two tips the most reliable

database for this study. The higher rain–no-rain thresh-

olds, on the other hand, ignored the rainfall from one of

the paired gauges and therefore reduced the correlation.

There was a significant variability on the functional fit

between the eight seasons (Figs. 10a,b). The most drastic

variability occurred between the two autumn seasons. The

correlations of functional fits were 0.92 for the shortest

gauge separation distance for both autumn seasons, while

the correlation of functional fits were 0.71 and 0.41 at the

largest separation distance for autumn 2006 and autumn

2007, respectively (Fig. 10b). There was a significant var-

iability between the two winter seasons as well (Fig. 10a).

While the slopes of functional fits were about the same,

the difference in correlations of the functional fits was

greater than 0.1 between the shortest and the longest

separation distances. The slopes of function fits were

also the same but the correlations were noticeably dif-

ferent between the two summer seasons (Fig. 10b). The

slopes of functional fits were quite different, crossing

each other at 3.8-km distance between the two spring

seasons (Fig. 10a).

The significant variability of functional fits was also

evident between the two first 6 months of 2006 and 2007

(Fig. 10c). The correlations of functional fits were 0.88

and 0.89 for the shortest separation distance and 0.39

and 0.67 at the longest separation distance for the first

6-month periods of 2006 and of 2007, respectively. The

correlations of function fits were within these bounds

during the second 6-month periods of the same years

(Fig. 10c). The slopes of functional fits were different

FIG. 8. Intergauge correlations (dots) and the fitted exponential function (curve) for (a) 5-min, (b) 15-min, and c) 3-h

time averaging. The parameters of the exponential function and rmse are also given. (d) The exponential fits for the

five different time averages indicated.
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between the second 6-month periods crossing each other

at 2.5-km distance. The correlations were significantly

different between the two years as well (Fig. 10d). The

correlations were relatively lower during 2006 where the

functional fit ranged from 0.70 at the shortest separation

distance to 0.42 at the longest separation distance.

The correlations were noticeably higher in weather-

event-based merged subsets than those for the entire

dataset (Fig. 11a). The weather events were determined

by examining surface weather maps. The passage of cold

fronts from the west is frequently observed in the mid-

Atlantic region. The region is also subject to the passage

of remnants of tropical cyclones like Hurricane Ernesto

(2006). At 5-km distance, the correlation of the func-

tional fit was 0.76 and 0.72 in frontal events and tropical

cyclones, respectively, as opposed to 0.50 in the entire

dataset.

The correlations and their functional fit were sub-

stantially different for uniform, moderately variable,

and highly variable observations (Fig. 11b). The unifor-

mity of rainfall is determined based on the thresholds

of the coefficient of variation (CV), which is the ratio of

standard deviation to the areal mean rainfall. The cat-

egories of uniformity of rainfall are determined follow-

ing Habib et al. (2009) and are uniform rain (CV # 0.2),

moderately variable rain (0.2 , CV # 0.5), and highly

variable rain (CV . 0.5). The functional fit in uniform

FIG. 9. Correlation of exponential fit for four different rain–no-rain

thresholds.

FIG. 10. Correlation of function fit for (a) winter and spring seasons, (b) summer and autumn seasons, (c) 6-month

periods, and (d) year and 2-yr periods.
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rain resembles 3-h averaged function fit (Fig. 8c), as the

correlations remained higher than 0.95 at any gauge

separation distance. The correlations of functional fit of

the moderately variable rainfall ranged between 0.93 at

the shortest separation distance and 0.78 at the longest

separation distance. The correlations of the functional

fits of highly variable rainfall, on the other hand, had

a wide range between the shortest and the longest sep-

aration distances as being 0.87 and 0.17 at these dis-

tances, respectively.

There have been a few studies where the gauges’ ob-

servations were grouped based on uniformity, but as far

as we know there was no study where the observations

were grouped based on weather events. Habib and

Krajewski (2002) grouped a dense network of rain gauge

measurements in central Florida to light and heavy rain

based on a coincident radar rainfall estimate. If the radar

rainfall was less than 10 mm h21, it was considered light

rain. Otherwise, it was called heavy rain. They reported

the correlation distances of 4.6 and 2.5 km for a 15-min

integration period for light and heavy rain, respectively.

CK06 implemented a similar study for two different

thresholds. While the correlations were higher for ligh-

ter rain at the 10 mm h21 threshold, the reverse was true

at the 3 mm h21 threshold. The latter authors pointed

out that the correlation functions are highly ambiguous

when the observations were subsampled based on rain

rate thresholds. The additional statistical dependences

that were imposed on the subsampled data caused the

ambiguity. CK06 also showed the storm-by-storm vari-

ability of correlation distance and shape parameter and

examined the uniformity of rainfall by employing the

correlations of the individual rain events at a 1-km dis-

tance for a 3-min integration period. The correlation of

0.9 was the breakpoint between low and high spatial

variability. They reported correlation distances of 9.8

and 4.4 km for low and high spatial variability cases,

respectively.

The parameters of the stretched exponential model

showed noticeable differences between seasons, 6-month

periods, and years as well as between different weather

systems and different uniformity of rainfall. Among the

seasons, the nugget parameter had its lowest value, 0.90,

during the spring of 2007 and its second and third lowest

values, 0.91 and 0.92, occurred during winter 2007 and

spring 2006, respectively (Fig. 12a). The nugget parame-

ter was quite low, 0.88, during the first 6 months of 2007

and was also 0.92 during 2006. It was 0.95 or above for the

other study periods.

The correlation distance ranged from 6 km in the

autumn of 2006 to 35 km in the autumn of 2007 between

the seasons when it is determined for the best goodness

of fit (Fig. 12b). For the 6-month periods, the correlation

distance ranged from 6 km in the first 6-month period of

2007 to 29 km in the second 6-month of 2007 and it was

within the range of these distances for the yearly and

2-yr periods. Interestingly, the correlation distance was

quite high, 53 km, for frontal systems, while it was 24 km

for tropical cyclones. Moderately variable rainfall re-

sulted in the correlation distance of 45 km—nearly 4 km

higher than correlation distance of the uniform rainfall.

One may expect that the correlation distance is higher

for uniform rain than moderately variable rain. The

differences in nugget parameter and rmse may account

for the rather low value of the correlation distance in

uniform rain. The highly variable rainfall had only 3-km

correlation distance.

As noted earlier, the parameters of the exponential fit

are related to each other. In the absence of collocated

gauges, a predetermined nugget or shape parameters

FIG. 11. Correlation of functional fit (a) tropical cyclone (solid)

and frontal (dashed) cases, and (b) uniform, moderately variable,

and highly variable cases. The correlation between paired gauges

was also shown for (top) tropical cyclones (d) and frontal (*) cases

and for (bottom) uniform (d), moderately variable (3), and highly

variable (w) cases.
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may be assumed to determine the correlation distance

in Eq. (2). Wang and Wolff (2010) study, for instance,

found a very low nugget parameter, 0.72, for the pre-

determined shape parameter of 1 for a 5-min accumu-

lation. In this study, two predetermined nugget (0.95

and 0.99) and shape (0.75 and 1.00) parameters were

selected to test the sensitivity of correlation distance

to preconditioned cases.

The correlation distance showed noticeable differ-

ences between its best and predetermined nugget

parameter-based values in most of the observational

periods (Fig. 12b). It increased 14% and 28% from its

best value when the nugget parameters were fixed at

0.95 and 0.99, respectively, during spring 2006. For the

frontal systems, the correlation distance decreased

and increased 13% from its best value when the nugget

parameters were 0.95 and 0.99, respectively. The cor-

relation distance became unrealistically high for uni-

form precipitation for the fixed nugget parameters and

was almost insensitive to the fixed nugget parameters for

several seasons, 6-month, and longer climatological pe-

riods as well as for highly variable rain.

The difference between the collocated-gauge-based

and predetermined nugget parameters was not neces-

sarily correlated to the difference in correlation distances.

This is probably due to the fact the shape parameter also

changes and the rmse differs. The shape parameter shows

substantial differences between its best and predetermined

FIG. 12. Parameters of exponential fit and rmse for eight seasons, four 6-month periods, two years, and

a 2-yr period as well as for frontal, tropical cyclone, uniform, moderately variable, and highly variable

cases. (a) Nugget parameter, (b) correlation distance for the best and selected nugget parameters, (c)

shape parameter, (d) correlation distance for the best and selected shape parameters, (e) rmse for the best

and selected nugget parameters, and (f) as in (e) but for selected shape parameters.
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nugget parameter-based values during winter and spring

2007, the first 6 months of 2007, as well as uniform rain

(Fig. 12c). The rmse, on the other hand, has almost no

difference between its best and predetermined nugget

parameter-based values (Fig. 12e).

The correlation distance showed major differences

between its best and predetermined shape parameter-

based values in a majority of the observations (Fig. 12d).

The difference between the best and predetermined shape

parameters was correlated to the difference in correlation

distances. When the best shape parameter was about 1.0,

which was also one of the predetermined shape parame-

ters, there was almost no difference in correlation dis-

tances between the two estimates during autumn 2006,

winter 2007, and highly variable rainfall. At the same time,

a 65% increase in correlation distance was evident be-

tween the best (1.73) and predetermined (0.75) shape

parameter fittings during spring 2007. The correlation

distances were unrealistically high for the predeter-

mined shape parameter for the uniform rainfall.

The rmse for the best fit was less than 0.1 for all ob-

servational periods except winter 2006 and highly vari-

able rainfall, with rmse of 0.183 and 0.114, respectively

(Figs. 12e,f). It differed noticeably for best and pre-

determined shape parameters during spring and summer

2007, the year 2007, and a 2-yr period, and was higher

than 0.1 for a shape parameter of 1.0 for all these four

observational periods (Fig. 12f). It also exceeded 0.1 for

2006 when the shape parameter was set to 0.75.

6. Conclusions

An experimental study was conducted to investigate

the variability of rainfall at NASA WFF with six dual

FIG. 12. (Continued)
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gauge sites located along a nearly straight line. A con-

tinuous record of rainfall was available from each gauge

site during the 2-yr observational period. The maximum

gauge separation distance, 5 km, coincided with the

TRMM and GPM precipitation radar beamwidth. The

number of gauge sites, the distances, and the configu-

ration of the sites may not be ideal for the precipitation

radar footprint, but this pilot study provides important

messages regarding rainfall variability in a 5-km2 area.

The rich dataset with over 7100 samples allows studying

the rainfall variability for a particular season, a 6-month,

and annual periods as well as for different weather sys-

tems and different uniformity conditions in the rainfall.

Partial beamfilling has been investigated by examin-

ing the percent occurrence of the gauge rainfall with

respect to the beam rainfall. Here, the beam rainfall

refers to the areal average rainfall. Therefore, if one of

the gauges reports rain, the beam will be rainy. For the

2-yr period at 5-min integration, a single gauge reported

rainfall 51%–57% of the time, but this range was only

43%–48% during spring 2006. If all the gauges were

reporting rainfall, an individual gauge had at most

613% difference from the areal average rainfall. This

suggests that at the spatial scale of 5 km, the variability

arising from rain gradients is relatively less important

than the variability caused by partially filled footprints.

Temporal sampling from remote sensing instruments

has been addressed by recalculating monthly rainfall at

different sampling intervals. The sampling at 3- and 12-h

intervals resulted in 35% and 73% errors on average in

the monthly rainfall estimate. This suggests that a polar-

orbiting satellite alone may not be adequate to determine

the monthly rainfall. Rather, multisatellite measurements

(e.g., TMPA) should be utilized for more accurate

monthly rainfall.

A three-parameter stretched exponential model has

been fit to the correlations at 15 different gauge separa-

tion distances. The nugget parameter was calculated from

collocated gauge observations from the G03 site and was

an input to the exponential model, while the correlation

distance and shape parameters were determined by

minimizing the rmse in correlations. All three parameters

of the stretched exponential model increased along with

decreases in the rmse with longer integration periods.

The stretched exponential model was sensitive to the

rain–no-rain threshold. The correlations were lower at

higher rain–no-rain thresholds, becoming less than 0.2

at 2-mm threshold at 5-km distance.

The parameters of the stretched exponential model

differed substantially between the seasons and between

the longer observational periods. The nugget parameter

was as low as 0.88 during the first 6-month period of 2007

but above 0.95 for most of the seasons and other longer

observational periods. The correlation distance ranged

from 5 to 35 km between the seasons and it was 14 km for

the 2-yr period. The shape parameters ranged from 0.37

and 1.73 for different observational periods but remained

less than 1.0 except for three seasons and one of the

6-month periods. During frontal rain, the correlation

distance had the highest best fit value, 53 km, than any

climatological duration. The correlation distance was

relatively high for the tropical cyclone rainfall as well.

This was mainly due to the fact that all gauge sites re-

ported rain during the passage of these weather systems

most of the time and the spatial variability was relatively

less than the partially covered experiment area. The cor-

relation distances had a sharp drop from moderately

variable to highly variable cases where it was 3 km—the

lowest of all different experimental periods.

The sensitivity of the parameters of the stretched ex-

ponential model was tested by selecting two nugget and

two shape parameters. The correlation distance was sen-

sitive to the changes in the nugget parameter but con-

siderably more to the shape parameter. Therefore, in the

absence of collocated gauges, it is better to assume the

nugget parameter from previous studies (such as this one)

and apply the best fit to determine the correlation shape

and shape parameters.

It should be pointed out that the stretched exponential

model tends to determine the correlation at a given dis-

tance for 20 different study periods and it should not be

used to extrapolate the correlation beyond the maximum

gauge separation distance. Another gauge network where

the gauge spacing ranges from 5 to 150 km in the southern

Delmarva Peninsula is currently operating and it is antic-

ipated that a similar study will be conducted to address the

spatial variability of rainfall from microwave sensors on

board various polar-orbiting satellites. As noted in the in-

troduction, the IFOV of microwave-sensor-based preci-

pitation estimates is much larger than that of precipitation

radars.
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