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ABSTRACT

Using data from seven global model operational analyses (OA), one land surface model, and various re-

mote sensing retrievals, the energy and water fluxes over global land areas are intercompared for 2003/04.

Remote sensing estimates of evapotranspiration (ET) are obtained from three process-based models that use

input forcings from multisensor satellites. An ensemble mean (linear average) of the seven operational

(mean-OA) models is used primarily to intercompare the fluxes with comparisons performed at both global

and basin scales. At the global scale, it is found that all components of the energy budget represented by the

ensemble mean of the OA models have a significant bias. Net radiation estimates had a positive bias (global

mean) of 234 MJ m22 yr21 (7.4 W m22) as compared to the remote sensing estimates, with the latent and

sensible heat fluxes biased by 470 MJ m22 yr21 (13.3 W m22) and 2367 MJ m22 yr21 (11.7 W m22), re-

spectively. The bias in the latent heat flux is affected by the bias in the net radiation, which is primarily due to

the biases in the incoming shortwave and outgoing longwave radiation and to the nudging process of the

operational models. The OA models also suffer from improper partitioning of the surface heat fluxes.

Comparison of precipitation (P) analyses from the various OA models, gauge analysis, and remote sensing

retrievals showed better agreement than the energy fluxes. Basin-scale comparisons were consistent with the

global-scale results, with the results for the Amazon in particular showing disparities between OA and remote

sensing estimates of energy fluxes. The biases in the fluxes are attributable to a combination of errors in the

forcing from the OA atmospheric models and the flux calculation methods in their land surface schemes. The

atmospheric forcing errors are mainly attributable to high shortwave radiation likely due to the underestimation

of clouds, but also precipitation errors, especially in water-limited regions.

1. Introduction

Fundamental to World Climate Research Programme’s

(WCRP) Global Energy and Water Cycle Experiment

(GEWEX) is to use regional-to-continental datasets,

pertaining to water and energy cycles, to improve cou-

pled model prediction through evaluation of models

ranging from regional coupled models, numerical weather

prediction (NWP) models, and climate models. Numeri-

cal weather prediction is based on initial atmospheric

and land states from operational analyses (OA) in which

forecast models assimilate large amounts of observa-

tional and satellite-derived information to provide the

best possible initial condition for the forecast.
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Quantifying the errors in the energy and water bud-

gets from OA is necessary for further improving the

skill in predicting weather and climate from daily to sea-

sonal time scales. In the past decade, the Coordinated

Enhanced Observing Period (CEOP; Bosilovich and

Lawford 2002; Koike 2004; Lawford et al. 2006), based

on efforts initiated by the GEWEX Hydrometeoro-

logical Panel (GHP), has been seeking to archive data

related to land–atmospheric processes from various

data sources, including observations, remote sensing,

and numerical model outputs, with the aim of un-

derstanding and predicting local- to continental-scale

hydroclimates. Toward achieving this objective, CEOP

has archived model output from eight numerical weather

prediction and data assimilation centers (NWPCs) at

the World Data Center for Climate (WDCC) managed

by the Max Plank Institute for Meteorology (MPIM)

and the German Climate Computing Center (DKRZ).

These datasets were recently reprocessed to common

data structures for 2003/04 [Multimodel Analysis for

CEOP (MAC)] by Bosilovich et al. (2009). This pro-

vides a common framework that allows an evaluation

of the performance of individual models with the ex-

pectation of model improvements based on our im-

proved understanding of their physical and feedback

processes.

Previously, many studies have focused on assessing

the land and atmosphere water and energy budget

components of OA and historical reanalyses at point-

to-regional scales. Several studies have focused on eval-

uating model output location time series (MOLTS)

against in situ data from flux towers and field experi-

ments (Betts et al. 2006, 1998; Hirai et al. 2007; Rikus

2007; Yang et al. 2007). These studies focused on dif-

ferent surface energy and water budget variables but

there was a common consensus that there are significant

differences between the in situ data and the model out-

put. Some of these differences include too-high values

of nighttime surface latent and sensible heat flux (Betts

et al. 2006); too-high evaporation estimates due to soil

water nudging to remove low-level humidity errors

(Betts et al. 1998); high biases in modeled annual pre-

cipitation values (Rikus 2007), which could further lead

to excess evaporation; and evaporation exceeding pre-

cipitation, which could be associated with model spinup

(Yang et al. 2007). Comparisons against in situ data can

be problematic because small-scale spatial variability

contributes to differences between patch-scale, in situ

observations and coarse-resolution (tens to hundreds of

kilometers) model output (e.g., Bosilovich and Lawford

2002). At regional scales, many studies have focused

on assessing the water and energy budget components

(Betts et al. 1999, 2003a,b, 2005, 2009; Fernandes et al.

2008; Karam and Bras 2008; Luo et al. 2007; Szeto 2007)

mainly for large-scale river basins such as the Amazon,

Mackenzie, and Mississippi. They reported that the

evapotranspiration (ET) estimates from the analysis

fields of the OA models were significantly higher than

that from observation-forced land surface models and

those inferred from observations of precipitation (P) and

streamflow (Q). Evaluations of the water budgets of

model reanalyses showed significant reduction in the bias

in ET compared to OA models, but ET was sensitive to

the errors in the precipitation, runoff, and/or soil mois-

ture nudging terms (Fernandes et al. 2008; Su et al.

2006).

However, no studies exist that compare turbulent

and/or evaporative fluxes from operational NWP models

with observation-based datasets at continental-to-global

scales. This can be partly associated with the lack of ob-

servational datasets at large scales, although this has

been addressed to some extent in recent years by the

increasing availability of satellite-remote-sensing-based

datasets of ET and turbulent heat fluxes at global scales

(e.g., Fisher et al. 2008; Mu et al. 2007; Vinukollu et al.

2011). The objective of the current study is to assess the

accuracies of NWP analyses by intercomparing the vari-

ous components of the energy and water budgets with

the current best estimates that have been developed

under the auspices of the National Aeronautics and

Space Administration (NASA) Energy and Water Study

(NEWS) and GEWEX. These estimates include remote-

sensing-based data and output from observation-forced

land surface modeling—the latter of which provides

budget-constrained estimates. We evaluate seven oper-

ational models from forecast centers around the world

over 2003/04 at basin-to-global scales. Section 2 provides

detailed information regarding the OA models and the

comparison datasets considered for this study. Some in-

formation on the data processing needed for comparisons

is also presented in section 2. An extensive evaluation of

the fluxes at basin and global scales is given in section 3.

Finally, section 4 provides a summary of the current work

and suggestions toward improving our representation

and understanding of the energy and water cycles at

large scales.

2. Data and methods

a. Operational analysis model output

Data from eight international OA have been col-

lected and reprocessed through the GEWEX CEOP

Project for the period October 2002–December 2004

(Bosilovich et al. 2009). The complete list of contribut-

ing data centers and the corresponding references for
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the OA datasets are given in Table 1. Data for surface

meteorology, radiation (energy), and water budget com-

ponents have been combined and reprocessed at a 1.258

spatial resolution and at 6-hourly, daily, and monthly

scales. For the current study, we use the daily averaged

analyses from seven of the eight OA models. The Met

Office (UKMO) model output has many missing days

of data for the considered variables and thus is excluded

from the current analyses. Complete details regarding

the processing and the development of MAC can be

found in Bosilovich et al. (2009).

b. Remote sensing products

Remote sensing estimates of turbulent fluxes were

derived by Vinukollu et al. (2011) using three process-

based models: Surface Energy Balance System (SEBS;

Su 2002), a Penman–Monteith formulation (PM; Monteith

1965) with revised stomatal resistance formulation

(RSPM; Mu et al. 2007), and a Priestly–Taylor-based

approach (PT; Fisher et al. 2008; Priestley and Taylor

1972). Radiation, meteorology, and vegetation inputs for

the above process models are derived from data from

radiometric sensors on board the NASA Earth Observ-

ing System (EOS) PM (Aqua), National Oceanic and

Atmospheric Administration (NOAA) Advanced Very

High Resolution Radiometer (AVHRR) polar orbiting

satellites, and the Surface Radiation Budget, version 3.0

(SRB V3.0; Stackhouse et al. 2000) project. Vinukollu

et al. (2011) compared the predicted surface sensible and

latent heat fluxes to tower observations, which gave

mean (temporal) correlations of 0.54 and 0.57 and a

corresponding mean error (RMS difference) of 40 and

24 W m22, respectively. The ET estimates were also

evaluated at regional and continental scales against

an inferred estimate from observed P and Q, with

correlations . 0.70 across the models and error (RMS)

in the range of 120–200 mm yr21.

Precipitation estimates are obtained from four differ-

ent sources: multisatellite-based precipitation estimates

from the Global Precipitation Climatology Project (GPCP;

Adler et al. 2003; Huffman et al. 2001), Tropical Rainfall

Measuring Mission (TRMM) multisatellite precipita-

tion product (TMPA; Huffman et al. 2007), and gauge-

observation-based analyses from the University of East

Anglia Climate Research Unit Time Series, version 3.0

(CRU TS3.0; Mitchell and Jones 2005) and Global

Precipitation Climatology Center (GPCC; Rudolf and

Schneider 2005). The GPCP precipitation product is

based on existing multisatellite estimates of precipita-

tion and bias-corrected rain gauge measurements pro-

vided by GPCC.

Currently, there exists no remotely sensed or

observation-based gridded runoff product at continuous

time scales over the land surface. To incorporate the

runoff term for evaluation of the water budget compo-

nents, we use large-basin streamflow observations and

a climatological product, both available from the Global

River Discharge Center (GRDC). The climatological

product is derived by disaggregating streamflow obser-

vations to gridded runoff fields using the water balance

model (WBM) of Fekete et al. (2000). Two separate cli-

matological products were considered: one based on

disaggregated in situ streamflow measurements over a set

of selected basins and a composite global runoff field that

combines the disaggregated streamflow observations

with output from the WBM directly for regions without

streamflow observations. The basin streamflow observa-

tions were only available for 2003/04 for six basins (out

of nine analyzed) and so the climatological values were

used otherwise.

TABLE 1. The seven OA datasets, contributing data centers and the corresponding references used for the current study.

Dataset name NWP center Land scheme Reference(s)

BMRC Bureau of Meteorology Research Center,

Australia

Bucket scheme, no vegetation types Rikus (2007)

CPTEC Centro de Previsão de Tempo e Estudos

Climáticos (the Center for Weather

Forecasts and Climate Studies), Brazil

Simplified Simple Biosphere (SSiB) scheme,

13 vegetation types

Chou et al. (2007)

ECPC-RII Experimental Climate Prediction Center,

United States

Oregon State University LSM scheme,

12 vegetation types (no monthly variation)

Ruane and Roads (2007)

ECPC-SFM Experimental Climate Prediction Center,

United States

Oregon State University LSM scheme,

U.S. Geological Survey (USGS) monthly,

12 vegetation types

Ruane and Roads 2007

JMA Japan Meteorological Agency SSiB scheme, 13 vegetation types Hirai et al. (2007)

MSC Meteorological Services of Canada Interface Soil–Biosphere–Atmosphere

(ISBA) scheme, 22 vegetation types

Cote et al. (1998); Belair

et al. (2005, 2008)

NCEP National Centers for Environmental

Prediction, United States

Noah scheme, 12 vegetation types Ek et al. (2003)
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c. Land surface model (LSM) output

Land surface hydrological models are widely used to

understand the land surface water and energy budgets

at regional scales. Some of these models serve as the

land scheme in general circulation models (GCMs). One

such model is the Variable Infiltration Capacity (VIC)

model (Cherkauer et al. 2003; Liang et al. 1996, 1994),

which solves the water and energy balance at the land

surface, thus acquiring closure for both. The model uses

a variable infiltration capacity curve for each computa-

tional grid cell, which parameterizes the soil storage

capacity as a probability distribution to which the par-

titioning of precipitation into infiltration and runoff is

related.

For the current study, the VIC model estimates are

taken from the updated global, 1.08 simulation of

Sheffield and Wood (2007), which was forced by a

hybrid observation–reanalysis meteorological dataset

(Sheffield et al. 2006). The forcing dataset and the simu-

lation have been extended to 1948–2006 using the latest

versions of the CRU monthly temperature and pre-

cipitation datasets (TS3.0) and the SRB monthly down-

ward short- and longwave radiation product (V3.0). The

model parameters have also been updated via calibra-

tion based on spatially disaggregated streamflow ob-

servations (Sheffield et al. 2009a) using the sparse-grid

calibration strategy of Troy et al. (2008). The VIC data

are not computed over Antarctica.

We argue that a well-calibrated, observationally forced

LSM will provide reasonable estimates of annual and

seasonal water budgets and by inference, reasonable es-

timates of energy fluxes. Nevertheless, large errors do

exist regionally because of poor observational data, in-

sufficient calibration, and model structural error. On the

other hand, the remote sensing retrievals can provide

near-continuous spatial coverage and for regions where

ground data are sparse, although the retrieval algo-

rithms introduce errors in the same way as LSMs. Re-

cent studies by Jiménez et al. (2011) and Mueller et al.

(2011) showed large spread (up to 25 W m22) in the

annual latent heat flux estimates (LE) between remote

sensing retrievals, LSMs, and reanalyses. The remote

sensing (RS) and calibrated LSM data therefore provide

complementary information and help capture the un-

certainties derived from the modeling approach and input

data.

d. Data processing

For the comparisons, all datasets were regridded (using

a box-averaging method) to the resolution of the OA

data (1.258). The remote-sensing-based turbulent fluxes

contain missing data owing to the presence of clouds that

obscure some of the retrievals. Comparisons involving

the remote-sensing-based data must therefore consider

the missing values. For this, we filter the OA-based

fluxes using the available remote sensing fluxes at the

daily scale. These daily values are further averaged and/

or summed to monthly and annual scales for further

comparisons.

3. Results

a. Global comparisons

For the global comparisons, we start by evaluating

the individual components of the energy balance, fol-

lowed by comparisons of the individual components of

the radiation budget at the land surface, meteorological

variables, and precipitation. In all of the comparisons,

the mean of the OA, referred to as mean-OA, and range

of the OA models will be compared instead of the in-

dividual model data. However, any specific character-

istic of a particular model will be discussed as needed.

Considering the asymmetry of land and the strong sea-

sonal differences between the Northern and Southern

Hemispheres, we consider comparisons over latitudinal

bands (averaged over longitude). Although the land-

mass contributes to more than 40% in the Northern

Hemisphere, only ;20% of the Southern Hemisphere

is covered by land. Furthermore, when comparing cli-

matic variables, zonal mean values are of interest con-

sidering the relative uniformity in weather patterns in the

east–west directions. While considering the energy

components at the annual scale, we use cumulative flux

units (MJ m22 yr21) instead of the more usual con-

vention of W m22. This is important for understanding

the budget closures and the relative magnitudes of the

individual terms (Fasullo and Trenberth 2008). For

reference, a value of 100 MJ m22 yr21 corresponds to

approximately 3.2 W m22 or 40 mm yr21 in terms of

water equivalent.

1) NET RADIATION (Rnet)

Figure 1a shows the seasonal and annual net radiation

for the OA, RS, VIC model, and the SRB. The lines

represent the meridional distribution of the mean zonal

values of Rnet, with the horizontal bars (in top-right

corner plot) representing the fraction of land at each

latitude. The gray shading shows the range of the OA

models and their mean (mean-OA) is represented by

the black line. For net radiation, the authors consider

the SRB dataset (blue line) as the best observational

estimate available based on Raschke et al. (2006). Note the

distinct seasonal and annual cycle of Rnet across the land

surface. Although a general agreement among the datasets
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FIG. 1. (left) Winter, (middle) summer, and (right) annual (a) total net radiation, (b) latent heat flux, and (c) sensible heat flux as an

average across the latitudinal bands and the years 2003 and 2004 (MJ m22 yr21). Mean-OA is the ensemble mean of the OA models. Also

shown in right panel of (a) is the fraction of land per latitude band.
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can be found in the seasonality for the two hemispheres,

the mean-OA estimates tend to be higher than the SRB

estimates on an annual basis. The mean-OA estimates

have a global positive bias of ;234 MJ m22 yr21 (;10%

of mean annual net radiation) with respect to SRB, with

the Experimental Climate Prediction Center’s seasonal

forecast model (ECPC-SFM) OA model being an outlier.

This result is consistent with the analysis by Ruane and

Roads (2007), which showed that the diurnal net radiative

fluxes from the ECPC-SFM model during July–September

are significantly higher than observations over the con-

tinental United States (CONUS). The authors attributed

the bias in the fluxes to problems in the cloud and albedo

parameterizations of the model. The main outliers among

the seven analyses and the regions of largest bias are

the Centro de Previsão de Tempo e Estudos Climáticos

(CPTEC) (high latitudes; .508N), ECPC Reanalysis II

(ECPC-RII) (midlatitudes; 258–358N, 308–508S), and

ECPC-SFM (tropics; 158S–158N). Details regarding the

individual variables affecting the net radiation are dis-

cussed in section 3a(5). Within the spread of the OA

models, it is observed that the Bureau of Meteorology

Research Centre (BMRC) (in the tropics and extra-

tropics) and the Meteorological Service of Canada

(MSC) analyses closely reproduce the SRB estimates

with an annual bias of 463 and 242 MJ m22 yr21, re-

spectively. The net radiation values reported are pos-

itive downward.

To understand the bias that exists in the net radia-

tion, we looked at the latitudinal profiles (not shown)

of the components of net radiation: downward short-

wave radiation (SWY), upward shortwave radiation

(SW[), downward longwave radiation (LWY), and up-

ward longwave radiation (LW[). We found that the main

source of bias in Rnet is from the SWY, which has a bias

of 740 MJ m22 yr21 as compared to the SRB estimates.

These results are consistent with the findings by pre-

vious studies (Cess et al. 1995; Garratt and Prata 1996;

Ramanathan et al. 1995; Wild and Roeckner 2006; Wild

et al. 1995, 2001), where the authors indicate that GCMs

(including those in assimilation mode; i.e., reanalysis

models) overestimate SWY by up to 786 MJ m22 yr21

because of the underestimation of cloud shortwave ab-

sorption. Furthermore, the overestimation of net radia-

tion is affected by the underestimation of LW[, although

this is cancelled out somewhat by the underestimation

of the LWY. The biases in the Rnet components for the

OA models compared to the RS (SRB) estimates are

740, 380, 2387, and 2127 MJ m22 yr21 for SWY, SW[,

LWY, and LW[, respectively.

Estimates of Rnet from the VIC model are also plotted

in Fig. 1a, which is based on incoming short- and long-

wave radiation at the surface from the SRB dataset. As

expected, this closely follows the SRB data, except at

high latitudes where it is biased slightly low, possibly

because of differences in surface temperature or al-

bedo estimates between VIC and SRB. It is also noted

that the most differences in Rnet radiation between the

VIC and RS estimates are found in the tropics and are

likely due to differences in surface albedo and emis-

sivity. VIC uses surface emissivity of 1 for estimation

of LW[.

2) LATENT HEAT FLUX

Even though a general agreement in the seasonality

for the Northern and Southern Hemispheres can be

found for LE (Fig. 1b), a wide range of values (light gray

shade) are seen across the various OA models. It is noted

that the spread in LE is more than that in Rnet. The three

process-model-based estimates from remote sensing are

plotted in darker gray shading, and their mean (mean-

RS) is plotted in red.

Comparison of the mean annual LE estimates of

mean-OA to those from RS and VIC shows high spa-

tial correlation (t . 0.84, where t is Kendall’s tau), but

significant bias exists—a positive bias of 470 (543)

MJ m22 yr21 relative to the RS (VIC) estimates. This

suggests a poor partitioning of the surface energy bud-

get by most OA models. Visual inspection of the plots

shows overestimation of LE by almost all of the anal-

yses. However, the spread among the analyses is domi-

nated at the higher end by the ECPC-RII analysis.

Analysis by Ruane and Roads (2007), which compared

the diurnal cycle of water and energy over CONUS us-

ing data from ECPC-RII, ECPC-SFM, and the North

American Regional Reanalysis (NARR), showed that

the LE values from the ECPC-RII analysis had a higher

diurnal amplitude and mean than the observations over

the southern Great Plains. They further concluded that

the bias in the LE estimates from ECPC-RII were con-

sistent across the CONUS. This outlier was also noted

by Bosilovich et al. (2009). One factor affecting the

ECPC-RII-based LE estimates could be their fixed

vegetation cover (as compared to monthly varying

vegetation), which further affects surface characteris-

tics like surface albedo and roughness length. The

BMRC analysis, which uses a fixed bucket-based in-

teractive scheme to model soil moisture (Rikus 2007),

matches very closely to the RS estimates in the tropics

(308S–308N). Analysis of the BMRC precipitation in

the midlatitudes [section 3a(5)] shows that it is higher

than the gauge-corrected, remote sensing estimates,

which also may be the cause of the bias in the mid- and

high latitudes. Global mean monthly LE time series

(not shown) showed that all of the OA models over-

predict LE globally.

8 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 13



3) SENSIBLE HEAT FLUX

Sensible heat flux (H) is a major component of the

energy cycle and is mainly dependent on the tempera-

ture gradient between the surface and the air above. It is

one of the major contributors to the structure and di-

urnal cycle of the boundary layer. In OA models, H is

coupled to the cloud-base height and the cooling pro-

cesses (radiative and evaporation of rainfall) in the sub-

cloud layer (Betts et al. 2005). Comparisons of the

mean-OA net shortwave radiation and sensible heat flux

(not shown) reveals a high positive correlation (global

mean t 5 0.85) between the estimates. A similar result

was found by Betts et al. (2005) using the 40-yr Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-40). This suggests that

any bias in the net shortwave radiation will positively

impact the H estimates.

Comparison of H estimates from the OA models, RS,

and VIC is plotted in Fig. 1c. Although the OA models

replicate the seasonal cycle, the seasonal peak in mean-

OA has a time lag of about 1–2 months as compared to

the RS estimates (not shown). The VIC H shows major

differences (negative bias relative to the RS estimates)

in the Northern Hemisphere summertime and a mini-

mum in May (not shown), which can be attributed to the

springtime snowmelt and precipitation processes com-

bining to give higher LE (and thus lower H) estimates.

The global mean value of H from the OA models is

880 MJ m22 yr21 (RS is 1247 MJ m22 yr21 and VIC is

720 MJ m22 yr21). As is consistent with the Rnet and LE

estimates, the H estimates from the ECPC-RII analysis

form the significant outlier (bottom of the OA models

spread) except at the high latitudes (.658N) in the

Northern Hemisphere. Although the positive bias in the

LE estimates from the ECPC-RII cancel out most of

the negative bias in the H estimates, the high latitudes

suffer from a high energy balance closure problem

[shown later in section 3a(4)] at the annual scale. Com-

parisons among the seven analyses show that the CPTEC

analysis closely represents the RS estimates, while the

MSC analyses are closer to the VIC estimates. Although

the BMRC analysis falls within the spread of the RS

for the Rnet and LE estimates (in the tropics), it shows

significant differences in H as compared to the RS and

VIC estimates. This may be because the BMRC analysis

does not consider any variation in land cover and that

the surface roughness lengths over land are prescribed

constant.

Global maps of the differences in the Rnet, LE, and H

estimates between the OA models and remote sensing are

shown in Figs. 2–4 , respectively. The ECPC-RII analysis

stands out in terms of overpredicting (underpredicting)

the latent (sensible) heat flux estimates. The largest

differences in the surface fluxes are over central Africa

(all models) and eastern side of North America (six of

the seven OA models). Although the bias is reduced in

most places with the multimodel mean, we find that the

bias is reduced even more (not shown) by removing the

ECPC-RII model.

4) SURFACE ENERGY RESIDUAL AND SOIL

HEAT FLUX

Figure 5 shows the seasonal and annual energy re-

sidual over land (i.e., difference between the available

net radiation and the surface latent and sensible heat

fluxes). Although the residual should be equal to the

soil heat flux (G) (and snowpack-related heat transfer,

which we assume can be neglected as it is less than 1%

globally and 5% for high latitudes of mean annual net

radiation, as estimated from the VIC data), it is important

to note that most OA models do not close the energy

budget (Yang et al. 2007) because of their assimilation

schemes. The residual will be a combination of the soil

heat flux and a nonclosure term. This nonclosure term

is a result of the addition or subtraction of energy and

water to the atmosphere during the assimilation of ob-

servations by the OA models and is related to the

forecast error of the background model. Also, it is to be

noted that only a few models estimate the soil heat flux

explicitly and almost none report the nonclosure term.

Within the framework of the current paper, we will report

this term as an energy residual term unless otherwise

noted.

Results show a distinct seasonal variation in the mean-

OA estimates of the energy residual. At the annual

scale, it is expected that the soil heat flux should be close

to zero. It is found that the mean-OA estimates tend

to be close to zero, suggesting that the models achieve

energy balance closure reasonably well, except for the

nonclosure term mentioned above. However, as pointed

out earlier, the LE (H) estimates from OA models are

significantly higher (lower) than the remote sensing es-

timates, suggesting that the partitioning of Rnet into

surface fluxes in the OA models needs improvement.

This will be discussed further in the basin-scale energy

and water budget comparisons (section 3b). The VIC

and remote sensing estimates used in this study have

forced energy budget closure associated with the re-

spective models. The mean global energy residual

(Rnet 2 LE 2 H) or soil heat flux for the mean-OA,

remote sensing, and VIC model are 87, 23, and 307

MJ m22 yr21, respectively. For VIC, the high annual

soil heat flux values are likely related to the use of

a fixed temperature bottom soil layer boundary con-

dition over high latitudes. It is important to note that
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the remote sensing estimates of soil heat flux do not

consider the effect of snowpack over the soil surface.

The spikes in the soil heat flux over the high latitudes

by the OA models can be associated with regions with

thin snowpack, where the OA models estimate un-

realistic snow and upper-soil-layer temperatures, lead-

ing to the spikes in the modeled G values (Hinkelman

et al. 1999). Note also the outlier of the VIC energy

FIG. 2. Annual differences in net radiation (MJ m22 yr21) between the seven operational analysis models and the

remote-sensing-based SRB estimates.
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residual, and thus the soil heat flux, around 558S latitude.

This value is associated with low sensible heat flux es-

timates over a few grid points (possibly over glaciers) in

Chile.

5) PRECIPITATION AND P–ET ANOMALIES

Precipitation estimates (Fig. 6a) from remote sensing

(GPCP; gauge corrected to the GPCC) and two gauge

FIG. 3. Annual differences in the latent heat flux (MJ m22 yr21) between the various operational models and the

mean of remote-sensing (SEBS/PM/PT)-based flux estimates.
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products (CRU and GPCC) were considered. Note that

the VIC simulations use precipitation based on the CRU

data product. The mean-OA estimates of precipitation

agree well with the gauge-observed and remote sensing

estimates except for over the tropics (208S–208N), where

the OA models are higher. However, it is difficult to

assess the confidence level of observational datasets

considering that uncertainties also exist in the gauge

precipitation estimates. Rudolf and Schneider (2005)

point out the two major sources of error in the GPCC

FIG. 4. Same as Fig. 3 but for sensible heat flux.
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dataset, which also applies to the CRU data: 1) gauge

undercatch error caused by evaporation out of the gauge

and aerodynamic effects and 2) stochastic sampling er-

ror over regions with a sparse gauge network. They

quote that the sampling errors, based on the number of

stations within a grid cell, could range from 67% to as

high as 40%. The GPCC dataset uses about four times as

many gauges per unit area as the CRU dataset, although

the CRU gauge densities are generally of the order of at

least 25 gauges per 106 km2, which is about the threshold

at which spatial sampling errors become stable (Oki

et al. 1999). The uncertainties at large scales are there-

fore small and this is borne out by the low spread in the

estimates in Fig. 6. Given this, the mean-OA precipita-

tion estimates in the tropics could be well within the

range of errors of the observed precipitation estimates.

To evaluate the P and ET estimates from each of the

individual OA models, we calculate the mean global

precipitation, evapotranspiration, and their ratio (ET/P)

and compare them with the remote sensing estimates

(Table 2) and the values provided by Trenberth et al.

(2009). Note that the estimates from Trenberth et al.

(2009) are for 2000–04. The precipitation and espe-

cially evapotranspiration estimates from all the OA

models are overpredicted with the mean bias of

0.14 mm day21 for P and 0.55 mm day21 for ET (based

on the mean estimates of three remote sensing prod-

ucts). The significant bias in the evapotranspiration

estimates from the OA models leads to high values of

ET/P, which have a mean bias of 0.30 compared to the

mean-RS (mean of CRU, GPCC, and GPCP) estimates.

Note that two of the seven OA models (ECPC-RII and

ECPC-SFM) estimate ET/P ratios of greater than and

close to one over the entire land surface, which contra-

dicts the conservation of mass that ET , P over land.

Approximately 35% of the rainfall over land is attrib-

utable to marine evaporation driven by winds while

the remaining 65% comes from evaporation over land

(Chahine 1992). The problem of ET . P in the models

could be related to model spinup such that excess mois-

ture is available for evaporation above what would nor-

mally be available from precipitation (Yang et al. 2007).

As was discussed in the previous sections, the ECPC-RII

and the National Centers for Environmental Prediction

FIG. 5. (left),(middle) Seasonal and (right) annual total residual of the energy fluxes (i.e., Rnet 2 LE 2 H) as obtained using operational

analysis, land surface model (VIC), and remote sensing. Data plotted as in Fig. 1. The fraction of land per latitude band is also shown in the

middle panel.
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FIG. 6. (left),(middle) Seasonal and (right) annual (a) total P and (b) P 2 ET anomalies (mm yr21) plotted as an average across the

latitudinal bands. Precipitation data from OA models, remote sensing (GPCP/TRMM), and gauge observations (CRU/GPCC) are

plotted. A climatological runoff (Q) product from GRDC is also plotted to compare against the (P 2 ET) anomalies. The fraction of land

per latitude band is shown in the left panel of (a).
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(NCEP) models clearly overestimate evaporation. Al-

though the ECPC-RII model does not use a soil mois-

ture nudging process, the models assimilate precipitation

(pentad scale) observations to compute soil moisture.

This assimilation process, as pointed out by Kanamitsu

et al. (2002a,b) and Maurer et al. (2001), introduces a

soil moisture correction (addition or subtraction at each

time step), which is analogous to the nudging process.

Note that the VIC simulation does not include Antarc-

tica. Excluding Antarctica, global mean values of pre-

cipitation from CRU, GPCC, and GPCP are 911, 912, and

870 mm yr21, respectively. Although CRU and GPCC

(gauge based) estimates have errors associated with gauge

undercatch (Rudolf and Schneider 2005), these products

also show high uncertainty (positive bias) in regions with

no gauges, more specifically in the tropics. This may be

one reason for the differences between the remote sens-

ing (GPCP) and the gauge-based (CRU and GPCC)

products. Evaporation estimates from VIC are biased

low in comparison to the mean of the remote sensing

estimates; however, in many regions we found (not shown)

that the PM-based remote sensing estimates were closer

to VIC, which also uses Penman–Monteith as the basis for

estimating evaporation.

Figure 6b shows the P 2 ET distribution, averaged

across the longitudes, for January–March (JFM), June–

August (JJA), and the annual cycle. Note the seasonal

shift around the equator in the peak positive and nega-

tive values, which is related to the monsoons. On an

annual basis, it is expected that the mean global value is

greater than zero (i.e., runoff to the oceans). However,

as noted in Table 2, two of the seven OA models show

evaporation over land greater (or very close to) pre-

cipitation, suggesting an influence of model spinup or soil

moisture nudging. Furthermore, when considering the

terrestrial water balance, annual P 2 ET should balance

runoff over the long term (Oki et al. 1995; Seneviratne

et al. 2004; Yeh et al. 1998). Thus, we also plot in Fig. 6b

the long-term climatological runoff from the compos-

ite observation-model GRDC data (section 2b). Al-

though the errors associated with the GRDC runoff

dataset is unknown, it is likely that the errors are greatest

in ungauged regions (e.g., central Africa) and for head-

waters of large basins, where the influence of the obser-

vation data from the outlet gauging station is lowest and

short-term errors are more influential. However, the

meridional trend correlates (t 5 0.52) with the P 2 ET

estimates from remote sensing. The VIC estimates are

calibrated to GRDC runoff for a number of large basins

globally and thus correlate well with the GRDC com-

posite data (t 5 0.72). It is important to note that for

a short time period (two years in this case: 2003/04) the

assumption of P 2 ET 5 Q is not totally valid. Overall,

the OA models reproduce the latitudinal profile of the

estimates from RS, VIC, and GRDC, but there is ten-

dency to underestimate P 2 ET in midlatitudes.

Figure 7 shows global maps of P 2 ET from the seven

OA models, mean-OA, VIC, and mean-RS. The ECPC-

RII model stands out with negative P 2 ET values for

most of the midlatitudes. Although the mean-OA esti-

mate captures the major climatic zones, it is biased low,

especially in the Southern and Northern Hemisphere

subtropics to midlatitude dry regions (see maps in Fig. 7),

because of excessive evaporation relative to precipita-

tion. One notable difference is the east–west gradient of

the continental United States, which is only subtly rep-

resented by most of the OA models.

6) SUMMARY OF GLOBAL WATER AND

ENERGY BUDGETS

To summarize the surface energy and water budget

components over the land surface, we tabulate (Table 3)

the global mean annual estimates of all the components

from the various models. We also include the flux esti-

mates of Trenberth et al. (2009), referred to hereafter

as TFK2009, for the period March 2000–May 2004. The

TFK2009 estimates are based on various satellite and

reanalyses products and so are also prone to error, but

provide another estimate to help quantify the uncer-

tainties. Considering the energy balance, we find that

TFK2009 estimates of net radiation are lower than the

SRB estimates, however the difference (120 MJ m22 yr21;

,1% of the annual net radiation) is well within the

range of errors (314–472 MJ m22 yr21; Zhang et al.

2007) expected in a net radiation dataset, which is linked

to errors in input datasets like air temperature and spe-

cific humidity. With that being said, the energy residual

(Rnet 2 LE 2 H; considering a negligible annual soil heat

TABLE 2. Global averages of annual mean ET and P (mm day21),

and the ratio (ET/P) as obtained using the various datasets. Note that

the VIC model uses the CRU precipitation dataset.

Dataset P ET ET/P

BMRC 2.26 1.60 0.71

CPTEC 2.28 1.65 0.72

ECPC-RII 2.60 2.81 1.08

ECPC-SFM 1.82 1.75 0.96

JMA 2.28 1.70 0.74

MSC 2.19 1.56 0.71

NCEP 2.61 2.08 0.80

Mean-OA 2.29 1.88 0.82

PGPCP/ESEBS 2.43 1.55 0.64

PGPCP/EPM 1.07 0.44

PGPCP/EPT 1.37 0.56

Mean RS 2.43 1.33 0.55

CRU/VIC 2.50 1.12 0.45

TFK2009 2.43 1.36 0.56
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FIG. 7. Annual (mean over 2003/04) anomalies of precipitation and evaporation (i.e., P 2 ET) for each of the OA

models, their mean, mean of remote sensing estimates, and the VIC land surface model output (mm yr21).
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flux) as estimated by mean-OA, RS, and TFK2009 are

285, 33, and 26 MJ m22 yr21. As mentioned above,

the OA models overestimate Rnet and LE, which tend

to cancel each other and give the low estimate of the

energy residual. It is found that the remote sensing esti-

mates used in this study (Vinukollu et al. 2011) are close

to the energy budget estimates of TFK2009.

For the water budget (P, ET, and Q), Table 3 indicates

that the P and ET estimates from remote sensing match

well with the TFK2009 estimates. As is expected, the Q

estimates diverge, considering that the QRS is obtained

from a climatological product that considers a different

time period (1901–2000). Of the five OA models [ex-

cludes BMRC and Japan Meteorological Agency (JMA)]

that provide runoff estimates, we find that CPTEC and

best represent the observational estimates provided by

TFK2009 based on discharge-to-ocean estimates.

b. Basin comparisons

Nine major basins (see Table 4 and Fig. 8) are used to

intercompare the datasets at regional scales. The basins

were selected to cover a wide range of hydroclimates

across the six inhabited continents. We distinguish the

basins based on climatic zones and also classify them by

the primary limitation (energy/water or demand/supply;

Table 4). The major focus of this section is to under-

stand the partitioning of precipitation into the three

water budget components: river discharge, evapotrans-

piration, and change in total water storage. Similarly, we

also look at the partitioning of net radiation into the

respective heat flux components (i.e., soil heat, sensible

heat, and latent heat fluxes). We assume that total water

storage changes and soil heat are near zero. In the cur-

rent study, we use the runoff observations from GRDC

where available. For basins where data is unavailable,

the GRDC climatological data are used.

Figure 9 shows the partitioning of annual precipitation

into ET and Q for the nine basins. Diagonal lines rep-

resent mean annual P (Fig. 9) and are shown for the

mean-OA, CRU, and GPCP. If the point representing

ET versus Q coincides with the P line, the assumption

of no change in storage is valid, but only if the dataset

closes the water budget (which is the case for the VIC

model). Thus, offsets of ET and Q from the P line can

be attributed to either nonclosure of the water balance,

a change in storage, or both. Because of the assimilation

of observations, budget closure in the OA models is not

guaranteed. For budget analyses based on independent

TABLE 3. Comparison of annual estimates of energy and water fluxes over land. VIC estimates do not cover Antarctica.

Global land

SWY Albedo SW[ LWY LW Rnet LE flux H flux P ET Q

MJ m22 yr21 — MJ m22 yr21 mm yr21

SEBS RS

5749 0.23 1339 9835 12 034 2211

1387 792

887

566

329PM RS 954 1225 389

PT RS 1227 951 501

Mean RS 5749 0.23 1339 9835 12 034 2211 1189 989 887 485 329

BMRC 6492 0.26 1700 9614 11 947 2459 1429 1228 824 583 —

CPTEC 6425 0.24 1559 9337 11 379 2824 1480 1413 833 604 281

ECPC-RII 6362 0.27 1712 9596 11 847 2398 2513 2182 948 1025 113

ECPC-SFM 7000 0.27 1890 9287 11 857 2542 1566 1116 665 639 22

JMA 6644 0.27 1796 9005 11 793 2060 1519 693 833 620 —

MSC 6288 0.24 1503 9501 11 743 2543 1397 1146 798 570 62

NCEP 6333 0.30 1874 9590 11 760 2288 1862 532 951 760 354

Mean-OA 6506 0.26 1719 9419 11 761 2445 1681 849 836 686 166

VIC — — — — — 2527 1002 1232 911 409 405

TFK2009 5825 0.21 1223 9574 12 085 2091 1214 851 887 495 286

TABLE 4. Nine global basins considered in this study, their gauge location, dominant climate, upstream area, and primary limitation on ET.

River basin Gauge location Climate Upstream area (km2) Primary limitation

Amazon Obidos, Brazil Tropical 4 618 746 Energy

Amur Komsomolsk, Russia Arctic ;1 730 000 Energy

Ganges Bahadurabad, Bangladesh Midlatitude rainy ;1 000 000 Energy

Mekong Pakse, Laos Tropical ;545 000 Energy

Mississippi Vicksburg, United States Midlatitude rainy 2 964 254 Energy

Murray–Darling Australia Semiarid ;1 000 000 Water

Niger Lokoja, Niger Semiarid (north) tropical savannah (south) 2 209 300 Water

Ob Salekhard, Russia Arctic ;2 430 000 Energy

Parana Corrientes, Argentina Midlatitude rainy ;2 300 000 Water
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remote sensing products, uncertainty in the retrieved

products for each budget component results in non-

closure of the water budget (Gao et al. 2010; Sheffield

et al. 2009b).

Similar to the water budget partitioning, we evaluate

the energy balance over the basins using the net radia-

tion and the surface turbulent heat fluxes. Figure 10

shows the partitioning of the net radiation into the sen-

sible and latent heat fluxes. Although the partitioning

should include the available energy (Rnet 2 G), we as-

sume that the soil heat flux term is small compared to

the other components of the energy budget and negli-

gible at annual time scales. Also, since most OA models

do not estimate G, we do not include the G term to be

consistent. The diagonal lines represent net radiation

and the individual symbols indicate the partitioning be-

tween sensible and latent heat fluxes. Symbols below

the constant Rnet line suggest positive soil heat storage

(and/or an energy imbalance in the model/dataset).

The energy and water budgets are summarized for

all basins in Figs. 9 and 10 and in Table 5, but we focus

the discussion below on two basins, namely Amazon and

Mississippi River basins. These two basins were selected

because of availability of observational data, their large

sizes, and differing climates. Note that the remote sensing

estimates force closure of their energy balances, but not

for the water budget.

1) AMAZON RIVER BASIN

Over the Amazon River basin (ARB), all three pre-

cipitation datasets are in close agreement for annual

precipitation. The mean daily rainfall over the Amazon

from the three data sources is 4.91 (mean-OA), 5.60

(RS), and 5.65 (VIC/CRU) mm day21. Costa and Foley

(1997) and Marengo (2005) reported an all-Amazonia

rainfall estimate from rain gauge observations as ap-

proximately 5.8 mm day21 for different periods be-

tween 1920 and 1992. They also pointed out that

although the remote sensing gauge-corrected GPCP

estimates agreed qualitatively, there were differences

of up to 0.6 mm day21 (mean annual precipitation) as

compared to the rain-gauge-based observed products.

Considering the interannual differences and that the re-

mote sensing and gauge observations show minor differ-

ences, it can be concluded that the RS and VIC estimates

are well within the error estimates of precipitation over

the ARB, while the OA models clearly underestimate

their precipitation analysis. Correlations (Kendall’s tau;

not shown) between the precipitation estimates were

greater than 0.7; however, differences between the mean-

OA and RS estimates were observed to be as high as

2.13 mm day21 during the rainy season.

Net radiation estimates over the ARB show signifi-

cant differences, which is consistent with the global es-

timates as reported above. Net radiation from the mean

of the OA models is overestimated with amplitudes as

high as 136 MJ m22 month21, which is a direct effect of

the excess SWY radiation estimated by the OA models.

Furthermore, we find (not shown) that most of the bias is

centered on July–April, which includes the period of

highest cloud cover. As reported in previous studies

(Cess et al. 1995; Garratt and Prata 1996; Ramanathan

FIG. 8. Spatial location of the nine global basins considered for the current study. Basins were selected so as to

represent most climatic zones across the earth’s surface.
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et al. 1995; Wild and Roeckner 2006; Wild et al. 1995,

2001), most GCMs overestimate surface shortwave radia-

tion because of the underestimation of cloud shortwave

absorption. Although the RS and VIC estimates have

similar amplitudes (;86 MJ m22 month21), VIC esti-

mates are consistently biased low, which is a result of the

low surface temperature (not shown), and thus higher

LW[ radiation.

Based on various observational-based studies (Callede

et al. 2002; Costa and Foley 1997; Ramillien et al. 2006)

over the Amazon, the mean annual basin-scale ET

estimates were in the range of 3.3–3.7 mm day21, which

corresponds to a mean of ;1250 mm yr21. Although this

value is derived from data for different time periods, it

is considerably higher than the remote sensing (mean

RS 5 1070 mm yr21) and VIC (924 mm yr21) esti-

mates, but well represented by the mean of the OA

models (1246 mm yr21). Considering a mean value of

3.5 mm day21 as representative over the Amazon River

basin based on previous studies, it could be concluded

that the OA models (with the exception of the MSC

analysis: 890 mm yr21) are in good agreement with the

in situ observations. One possible explanation that can

be associated with the underestimation of ET by RS is

that the leaf area index (LAI) data that are used in the

process models are saturated, thus reducing the canopy

conductance values over forest land cover, and do not

include the understory LAI. Furthermore, both VIC and

RS have less radiation available for evapotranspiration

than the OA estimates. Canopy interception is also

a large component of total ET in the Amazon (Miralles

et al. 2010), which may be underestimated by VIC and

the RS data. Unfortunately, data for canopy intercep-

tion was not available for the OA models.

The OA models only report a surface runoff com-

ponent (not subsurface baseflow) and so a direct com-

parison with observed streamflow data is not possible.

Therefore, we estimate the baseflow component for the

FIG. 9. Partitioning of P from OA models, VIC, remote sensing (GPCP), and gauge observations (CRU) in the nine basins considered

for the current study. Diagonal lines represent constant precipitation. Note that if the model symbol lies above the precipitation line, then

the model represents a negative storage change; QGRDC represents the GRDC streamflow observations for 2003/04 where available and

an observed climatological runoff product when not. Gray shaded marker of the OA models represents the mean-OA estimate when the

baseflow component is included.
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OA models using the baseflow-to-surface-flow ratio

from the VIC simulation. Runoff observations over the

ARB, based on measured discharges for the Amazon,

Xingu, and Tocantins Rivers, has been estimated as

2.9 mm day21 (Marengo 2005). This value is close to the

runoff estimates of 3.13 mm day21 and 2.7 mm day21

obtained from the GRDC runoff observations and the

VIC model output, respectively. The surface runoff

component of total runoff from the VIC model is

1.43 mm day21, indicating that the surface runoff from

all the OA models (mean-OA 5 0.6 mm day21) is un-

derestimated.

With the above results in mind, we further look at

the energy balance partitioning. Figure 10 confirms the

differences in the net radiation, with the mean-OA es-

timate higher than the remote sensing and VIC esti-

mates. However, as pointed out in the global analysis,

there seems to be a reasonable closure for the OA

models. The mean-OA combination of sensible and la-

tent heat flux lies very close to (below) the net radiation

line, with the difference (231 MJ m22 yr21) associated

with the annual soil heat flux and energy balance er-

ror. This suggests that the energy budget from the OA

models has 1) a bias in the net radiation flux and 2)

improper partitioning of the surface fluxes. The im-

proper partitioning was further confirmed by compari-

son of Bowen ratio values over the nine basins: the

mean-OA is biased low by .0.5 over seven of the nine

basins, including the ARB. A summary of the statistics

of the mean-OA against the other datasets is provided in

Table 5. The correlations (t) of the various components

among the nine basins reveal that the Amazon River

basin has the lowest values, except for the precipitation

estimates. The above analysis suggests that there is

large uncertainty in our understanding of the hydrol-

ogy of the ARB.

2) MISSISSIPPI RIVER BASIN

The Mississippi River basin (MRB) is the region in

which GEWEX began performing energy and water

budget studies in the early 1990s. Considering the ex-

tensive gauge network over the basin, precipitation

FIG. 10. Same as Fig. 9, but for Rnet. Symbols that fall below the line show positive G values. Note that remote sensing and land surface

model data show forced closure of energy balance.

20 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 13



estimates are less prone to errors than for the Amazon.

Precipitation estimates from the three analyses (mean-

OA, RS, and VIC–CRU) agree well over the MRB (Fig. 9)

with values of 880, 892, and 822 mm yr21 from mean-OA,

RS, and VIC/CRU, respectively. We consider that, over

the MRB, the best estimates are provided by the North

American Land Data Assimilation System (NLDAS;

Mitchell et al. 2004). Over the MRB, the NLDAS reports

values of approximately 814 mm yr21, which is less than

0.20 mm day21 difference compared to the mean-OA

estimates. Errors in the GPCP estimates could be re-

lated to the gauge undercatch and orographic effects as-

sociated with the GPCC estimates (Adam and Lettenmaier

2003; Adam et al. 2006; Huffman et al. 2001; Rudolf and

Schneider 2005). The mean-OA estimates of precipita-

tion shows a difference of approximately 1 66 mm yr21

(0.18 mm day21); the offset mainly due to the ECPC-

RII (948 mm yr21) and NCEP (956 mm yr21) analyses.

Discharge observations are available from the

Vicksburg gauge managed by the U.S. Army Corps

TABLE 5. Statistics of the mean-OA P, ET, Q, and Rnet compared to various observational datasets over the nine basins listed in Table 4.

Considering that no gridded runoff product is available over the 2003/04 period, surface runoff is evaluated against a simulation of the VIC

land surface model, which is calibrated to observed streamflow data. The third header row shows the comparison datasets for each

variable. Kendall’s tau correlations are calculated using monthly data.

Basin

RMSE

P (mm day21) ET (mm day21) Q (mm day21) Rnet (MJ m22 day21) H (MJ m22 day21)

vs GPCP vs SEBS vs PM vs PT vs VIC vs SRB vs SEBS vs PM vs PT

Amazon 0.43 0.29 0.30 0.25 0.17 0.47 0.70 1.02 1.03

Amur 0.22 0.27 0.47 0.34 0.12 0.90 0.86 0.88 1.39

Ganges 0.92 0.26 0.43 0.79 0.10 0.56 0.94 0.92 1.45

Mekong 0.52 0.23 0.34 0.76 0.14 0.42 0.62 0.81 1.10

Mississippi 0.21 0.43 0.48 0.39 0.11 0.72 0.72 0.70 0.85

Murray–Darling 0.19 0.59 0.56 0.37 0.04 0.99 1.34 0.96 2.24

Niger 0.21 0.19 0.21 0.29 0.02 0.41 0.79 0.62 0.82

Ob 0.20 0.35 0.43 0.32 0.19 0.68 0.95 1.19 1.65

Parana 0.40 0.38 0.40 0.59 0.03 0.66 0.86 0.90 1.07

Average 0.37 0.33 0.40 0.46 0.10 0.65 0.86 0.89 1.29

Basin

Bias

P (mm day21) ET (mm day21) Q (mm day21) Rnet (MJ m22 day21) H (MJ m22 day21)

vs GPCP vs SEBS vs PM vs PT vs VIC vs SRB vs SEBS vs PM vs PT

Amazon 20.68 20.10 0.08 0.60 22.55 0.74 0.49 0.05 21.23

Amur 20.01 0.66 0.86 0.51 20.26 20.73 22.33 22.83 21.97

Ganges 0.53 0.21 1.52 0.94 21.26 1.41 0.43 22.81 21.36

Mekong 1.06 0.11 1.01 0.76 20.94 0.95 0.33 21.89 21.26

Mississippi 20.03 1.22 1.54 1.13 20.37 0.12 23.29 24.06 23.06

Murray–Darling 20.35 0.73 0.60 20.32 20.13 1.48 20.40 20.10 2.19

Niger 20.65 0.17 1.07 0.29 20.54 2.31 1.98 20.25 1.69

Ob 20.09 0.73 0.86 0.53 20.29 0.23 21.85 22.17 21.35

Parana 20.87 1.11 1.05 0.84 20.63 0.96 21.92 21.79 21.26

Average 20.12 0.54 0.95 0.58 20.77 0.83 20.73 21.76 20.85

Basin

Kendall’s t

P ET Q Rnet H

vs GPCP vs SEBS vs PM vs PT vs VIC vs SRB vs SEBS vs PM vs PT

Amazon 0.85 20.14 0.01 20.34 0.28 0.77 0.57 20.17 0.05

Amur 0.91 0.85 0.81 0.88 0.43 0.93 0.80 0.78 0.61

Ganges 0.88 0.86 0.64 0.07 0.62 0.87 0.66 0.73 0.45

Mekong 0.91 0.81 0.70 0.09 0.72 0.89 0.56 0.38 0.06

Mississippi 0.78 0.80 0.81 0.80 0.43 0.93 0.80 0.80 0.75

Murray–Darling 0.83 0.39 0.40 0.64 0.46 0.86 0.75 0.83 0.48

Niger 0.93 0.82 0.74 0.69 0.89 0.79 0.41 0.65 0.46

Ob 0.70 0.81 0.78 0.79 0.45 0.91 0.74 0.67 0.59

Parana 0.88 0.77 0.67 0.59 0.93 0.86 0.62 0.57 0.54

Average 0.85 0.66 0.62 0.47 0.58 0.87 0.66 0.58 0.44
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of Engineers (USACE). Converting these discharge

observations to runoff gives an annual estimate of

213 mm yr21. The Mississippi is highly managed, but

out-of-basin extractions are rather small, with most dams

in the upper reaches (primarily the Missouri River) for

flood control and energy, while along the main stem the

dams are mostly low head and related to navigation.

Thus, dam operation and extractions have minimal

impact on the annual observed flows. The GRDC

observation-based climatological estimates of runoff

(203 mm yr21) agrees well with the observations con-

sidering the interannual differences that could be ex-

pected over the different time periods of the datasets.

Although the VIC-estimated runoff is based on a cali-

brated simulation, annual runoff (;252 mm yr21) is

higher than observed runoff. For the OA models, we

apply the ratio of surface to total runoff as estimated

from the VIC data to the mean-OA surface runoff es-

timate. The estimated total runoff for the ensemble

mean (mean-OA) is 146 mm yr21, which is an under-

estimate as compared to the GRDC and VIC estimates.

One of the best available estimates of evapotranspi-

ration over the MRB is available from the VIC NLDAS

dataset of Troy et al. (2008), which is calibrated to stream-

flow observations from a large set of unmanaged basins

across the CONUS. Based on their simulations, the annual

ET over the MRB for the period 2003/04 is 540 mm yr21.

This is higher than the VIC estimates considered in this

study (VIC GLOBAL; 497 mm yr21) by Sheffield and

Wood (2007). However, as noted earlier, the precipita-

tion and other input forcings for the two datasets differ

(VIC GLOBAL uses CRU P and VIC NLDAS uses

NDLAS P), and also since the calibrated runoff from

the VIC GLOBAL simulations is higher than the ob-

served, the impact is seen as an underestimation of ET.

It is also observed that all the remote sensing retrievals

underestimate ET over the MRB. Two reasons can be

associated with this underestimation: 1) saturated values

of remote-sensing-based LAI leading to low conduc-

tance values and thus lower evaporation, and 2) low bias

in canopy evaporation, which is a result of the low bias

in the remote-sensing-based precipitation (and the pa-

rameterization of canopy evaporation).

ET estimates for the OA models show a wider spread

over the MRB as compared to the ARB, with a range of

721–1304 mm yr21 and a model mean of 910 mm yr21.

The two outliers of the OA models that offset the mean are

ECPC-RII (1304 mm yr21) and NCEP (1001 mm yr21).

Removing the above two analyses reduces the mean

(mean-OA) to approximately 750 mm yr21. This esti-

mate is still higher than the VIC NLDAS estimates,

and as pointed out before for the ARB, the reason for

this overestimation is twofold: 1) the precipitation

estimates are higher than the NLDAS, which are con-

sidered as the best available estimates; and 2) the soil

moisture nudging process used in the operational models

nudges the models toward their climatology. The bias

(compared to RS estimates) in the precipitation (radi-

ation) estimates is approximately 211 (20) mm yr21,

while the ET estimates are biased high by 532 mm yr21.

Clearly the nudging process in the operational models

has a huge impact on the water budget closure. However,

the largest impacts are seen in the ECPC-RII and NCEP

analyses.

Energy partitioning over the MRB shows a significant

spread, with H estimates ranging from 2553 MJ m22 yr21

(ECPC-RII) to 1330 MJ m22 yr21 (CPTEC). Similar to

the results from the ARB, the mean-OA estimate of

soil heat flux (Rnet 2 LE 2 H 5 202 MJ m22 yr21) is

high for an annual flux. Removing the ECPC-RII and

NCEP analyses reduces the soil heat flux estimate to

165 MJ m22 yr21, which is less than 50 MJ m22 yr21.

This confirms the observation by Bosilovich et al. (2009)

that adding better (high correlation, lower error) mem-

bers to an ensemble reduces the error of the ensemble,

yet adding members with lower skill does not significantly

degrade the ensemble while the better members are in

place.

3) OTHER BASINS

The two basins discussed above are energy-limited

basins. Although few studies have concentrated on the

water-limited basins considered in this study, we find

some distinct features that are comparable to the energy-

limited basins. Firstly, precipitation estimates by the OA

models were biased low (compared to the RS and VIC

estimates), which is different from the high bias (except

for over Amazon) seen in the energy-limited basins. In

general, the energy-limited basins showed better

agreement in the runoff estimates between the data-

sets. Table 5 shows the statistics of the various energy

and water components as compared to the RS/obser-

vational estimates.

4. Summary and conclusions

One of the main objectives of the CEOP Water and

Energy Simulation and Prediction (WESP) group is to

address the question: what is our skill in predicting

hydroclimatological water and energy budgets? To-

ward answering this question, this study serves as an

evaluation of the predictive skill (for energy and water

fluxes) of seven general circulation models (GCMs) run

in operational assimilation mode against one LSM out-

put and remote sensing retrievals at regional-to-global

scales. The current study also serves as an extension to
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the work by Yang et al. (2007), who compared MOLTS

from five GCMs and three Global Land Data Assimilation

System (GLDAS) LSMs to CEOP EOP-3 tower obser-

vations. The time period of the comparisons (2003/04) was

dictated by the availability of the processed OA data

(Bosilovich et al. 2009) and future work should extend

this to a longer time period that better represents the

mean climate and captures more variability and extreme

events. Nevertheless, 2003/04 was not particularly out-

standing globally in terms of ENSO activity, although

events such as the European heat wave and above-

average West African rainfall in 2003, and continuing

drought in the U.S. west and eastern Australia through

2004, were important regionally (Levinson and Waple

2004; Levinson 2005).

At global scale, the mean-OA energy fluxes have

significant biases relative to the RS and LSM data. Net

radiation is biased high, because of overestimation of

SWY and underestimation of LW[, mainly in the tropics.

A positive bias (463 MJ m22 yr21) in latent heat flux,

relative to the RS data, is balanced by a negative bias

(2367 MJ m22 yr21) in the sensible heat flux. However,

the biases in the ensemble mean and spread were mainly

caused by two of the models (ECPC-RII and NCEP).

All the OA models consistently overestimated (under-

estimated) latent (sensible) heat flux over the eastern

part of the North American continent. There is an op-

posite bias over central Africa, although the uncertainties

in the observational data and spread in the RS estimates

are much higher here. Finally, the annual energy balance

(Rnet 2 LE 2 H) was represented well by the OA models

with a mean-OA residual of 87 MJ m22 yr21 globally,

which is likely due to a nonclosure term associated with

model forecast error. This suggests that although the

energy balance is reasonable in the OA models, the

partitioning of the fluxes needs further improvement.

This is also true for the RS and VIC models, which

show quite different partitioning in some regions.

Comparison of the OA model precipitation with

gauge-based data and remote sensing retrievals showed

better agreement than the energy fluxes. The largest

differences were in the deep tropics (158S–158N), al-

though the uncertainties in the gauge-based datasets are

higher because of interpolation of data from fewer sta-

tions. Comparison of ET/P and P 2 ET showed that the

two analyses from the EPCP had significant bias, with

ET/P ratios close to or greater than 1, which is physically

unrealistic.

Over the Amazon River basin, OA model precipitation

estimates are well correlated (t 5 0.85) with the gauge-

based and remote sensing estimates, with a negative bias

of 0.70 mm day21. Net radiation was also highly corre-

lated but with a high positive bias (273 MJ m22 yr21),

due mainly to overestimation of SW[ radiation during

July–April. OA model ET estimates were higher and

out of phase with the remote sensing and VIC estimates,

however other studies have indicated that the mean-OA

(annual) estimates of ET are in good agreement with

observations. The runoff estimates by most OA models

are underestimated significantly (.700 mm yr21). Over

the Mississippi, the three precipitation analyses (mean-

OA, RS, and gauge observations) agreed well. Com-

parison with a fourth precipitation product (NLDAS,

which is a high-resolution gauge-radar analysis with oro-

graphic adjustments for the continental United States;

Cosgrove et al. 2003) showed that the CRU data were

reasonable and the mean-OA estimates were within the

errors associated (bias , 0.20 mm day21) with a precipi-

tation product. The ECPC-RII and NCEP models were

outliers over the MRB, mainly in their estimates of sen-

sible heat flux. The bias in the OA ET is more than twice

the bias in precipitation estimates, which may be attributed

to the nudging process and the model spinup errors that

have been a priori recognized as affecting the water budget

closure (Maurer et al. 2001). Energy budget partitioning

shows significant scatter among the surface fluxes, with

a large error associated with the annual soil heat flux

(.200 MJ m22 yr21). The ensemble mean is significantly

improved by the addition of a skillful analysis model, but is

not significantly degraded by the addition of lower skill

models provided the better models were in place.

The errors in the OA-simulated surface fluxes are

due to a combination of errors from their land surface

scheme and the atmospheric model/assimilation system.

Errors in the representations of clouds (e.g., for the

ECPC-SFM) are a source of error in the radiation and

may be linked to biases in the precipitation, although

globally the models represent precipitation reasonably

well. In water-limited regions, biases in the precipitation

are more important and will induce biases in soil mois-

ture and ET, but it is more likely that the land scheme

induces biases in ET either directly or via its represen-

tation of the dynamics of soil moisture (e.g., Sheffield

et al. 2012). The OA model land schemes are summa-

rized in Table 1. Some OA models use simple bucket

hydrology schemes with a single vegetation type, while

the majority uses soil–vegetation–atmosphere transfer

(SVAT) schemes of varying levels of complexity. Each

scheme uses different vegetation and soil characteristics

and spatial distributions (including specification of albedo

and emissivity values), which will induce further dif-

ferences in their estimates. Offline comparisons of land

schemes have shown that no one model outperforms the

others for all components of the water and energy

budgets (e.g., Mitchell et al. 2004; Dirmeyer et al. 2006;

Mueller et al. 2011), but SVATs tend to do better at

FEBRUARY 2012 V I N U K O L L U E T A L . 23



simulating energy fluxes and hydrological-orientated

LSMs tend to do better at simulating runoff, soil mois-

ture, and snow (Xia et al. 2011, manuscript submitted to

J. Geophys. Res.). Model uncertainties (spread among

models) have previously been found to be largest for soil

moisture in comparison to variables more directly tied

to the meteorological forcings such as surface temper-

ature or net radiation, with evapotranspiration falling

somewhere in between (Dirmeyer et al. 2006). It is

therefore expected that the type and complexity of the

land scheme play an important role in the level of errors

in the surface fluxes, especially in moisture-limited re-

gions where soil moisture is a dominant control. How-

ever, the model with the simplest scheme (BMRC) and

the model with probably the most complex scheme

(MSC) have the least error in net radiation. On the other

hand, the BMRC does poorly at representing sensible

heat flux and the MSC is an outlier in terms of ET over

the Amazon. Furthermore, overestimation of ET by the

ECPC-SFM model exemplifies that the role of the forc-

ings can also be dominant. It therefore appears to be

difficult to distinguish the role of the land scheme

relative to the atmospheric/assimilation model with-

out the use of offline experiments with the land

schemes.

Betts (2004) addresses the importance of global models

to understand the land–atmosphere climate system at

local-to-global scales. He further points out the impor-

tance of the ET as ‘‘One way to encapsulate hydrome-

teorology is to ask what controls ET . . . .’’ Results from

the current study support the importance of the ET

process by analyzing the biases that exist in the OA es-

timates of latent heat flux, which lead to improper parti-

tioning of the energy and water budgets. These biases can

have a significant impact on the forecasting capability of

models by enhancing the precipitation due to the over-

estimation of evapotranspiration. For the Amazon River

basin, one important finding is the low correlation be-

tween the remote sensing and OA estimates (except for

precipitation) of the various energy/water components.

This questions our understanding of the energy and water

cycles over this major basin. This work also demonstrates

the challenge in evaluating predictions of the water and

energy budgets at regional-to-global scales, whether they

are from remote sensing observations and retrievals, in

situ observations (given their sparse nature), LSMs, or

OA models. This is an ongoing challenge to GEWEX

since one of their scientific goals is to use remote sensing

observations and retrievals to improve OA models.
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