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ABSTRACT

Land surface model experiments are used to quantify, for a number of U.S. river basins, the contributions

(isolated and combined) of soil moisture and snowpack initialization to the skill of seasonal streamflow

forecasts at multiple leads and for different start dates. Snow initialization has a major impact on skill during

the spring melting season. Soil moisture initialization has a smaller but still statistically significant impact

during this season, and in other seasons, its contribution to skill dominates. Realistic soil moisture initiali-

zation can contribute to skill at long leads (over 6 months) for certain basins and seasons. Skill levels in all

seasons are found to be related to the ratio of initial total water storage (soil water plus snow) variance to the

forecast period precipitation variance, allowing estimates of the potential for skill in areas outside the veri-

fication basins.

1. Introduction

Over the past several decades, great strides have been

made in forecasting streamflow at seasonal leads, largely

through the incorporation of climate information into

hydrologic forecasts. Improved seasonal streamflow fore-

casts have many societal and economic benefits. Yao and

Georgakakos (2001), for example, demonstrated that im-

proved forecasts can increase hydropower revenues.

Hamlet et al. (2002) showed that an alternative operating

system that exploited climate forecasts could significantly

increase nonfirm energy production from a major Co-

lumbia River hydropower dam. Improved forecasts have

an obvious impact on the ability of reservoir operators to

mitigate the destructive capacity of floods and droughts.

Several potential contributors to skill in streamflow

forecasts can be identified. Skill can be derived, for ex-

ample, from the accurate forecasting of meteorological

anomalies (particularly precipitation) during the fore-

cast period. A second contributor is the quantification

of snowpack; in the western United States, for example,

precipitation is winter dominant, and thus a large frac-

tion [by some accounts more than 70% (Christensen and

Lettenmaier 2006)] of streamflow there originates from

melting snow. It is no surprise, then, that western water

resources managers rely heavily on wintertime snow sur-

veys to project water availability in the subsequent spring
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(Brumbelow and Georgakakos 2001). A third potential

contributor is knowledge of soil moisture. If the soil is

dry, incident water at the surface (either snowmelt or

precipitation) may infiltrate the soil and later evaporate

rather than run off into streams; a wet soil, on the other

hand, may encourage greater streamflow and a more ef-

ficient filling of reservoirs.

Our ability to take advantage of the first contributor is

strongly limited by the minimal skill levels achieved to

date in forecasting continental precipitation (and tem-

perature, in snow-dominant areas) at seasonal time scales;

indeed, nature, through chaotic atmospheric dynamics,

imposes upper limits to the meteorological forecast skill

that we can ever hope to achieve. In contrast, we can, at

least in principle, estimate water contents in snow and

in the soil on the forecast start date with some accuracy,

making more tenable the use of the second and third

contributors. A number of analyses (e.g., Pagano et al.

2004; Pagano and Garen 2005; Pagano et al. 2009; Wood

and Lettenmaier 2008; Li et al. 2009; Bierkens and

van Beek 2009) have analyzed the seasonal streamflow

forecast skill derived from accurate estimates of snow and

other water present in a basin on the forecast issue date.

Some recent studies have highlighted in particular the

contribution of soil moisture initialization to streamflow

forecast skill, both in snow-covered and snow-free areas

(Berg and Mulroy 2006; Mahanama et al. 2008). Using

a multiple regression approach, Maurer and Lettenmaier

(2003) characterized the joint contributions from soil moi-

sture initialization and seasonal climate forecasts in the

Mississippi River basin and found that soil moisture do-

minates runoff predictability for lead times of 1–2 months.

In a recent paper, Koster et al. (2010) used a suite of

state-of-the-art land surface models, a multidecadal data-

set of meteorological forcing, and time series of stream-

flow observations in 17 basins (ranging in size from 2000

to 1.4 million km2) to study the sources of streamflow

forecast skill—in particular, to isolate and quantify the

contributions of realistic 1 January snow and soil mois-

ture initialization to the forecast skill achieved during

the snowmelt season (March–July) in the western United

States. We expand here on that study, adding to it and to

the overall literature in four important ways: (i) we add

six verification basins in the eastern Unites States, giving

us 23 basins that span much more of the continent; (ii)

we add suites of additional forecasts, allowing us to quan-

tify the variations in the skill contributions as a function of

both forecast start date and forecast lead; (iii) we show how

the skill levels achieved can be related to the statistical

character of initial total water storage and forecast pe-

riod precipitation; and (iv) we extend the analysis in

a ‘‘synthetic truth’’ study to the full area covered by the

48 conterminous United States (CONUS). The result is

a series of maps showing where and when soil moisture

and snow initialization can be expected to contribute to

streamflow forecast skill.

2. Experimental design

a. Models

We employ four independent state-of-the-art macro-

scale land surface models (LSMs) for our numerical exper-

iments: Variable Infiltration Capacity (VIC), Catchment,

Noah, and Sacramento (Sac). VIC, Catchment, and Noah

were developed specifically for use with atmospheric

general circulation models, and their performances have

been evaluated in multiple land intercomparison pro-

jects (e.g., Bowling et al. 2003; Nijssen et al. 2003; Boone

et al. 2004; Dirmeyer et al. 2006). Sac is a lumped, con-

ceptual model generally used for operational hydrology;

for this study, it is run in distributed mode (Koren et al.

2003), and to treat cold-season processes, it is coupled to

the Snow-17 model (Anderson 1973). The four models

differ to varying degrees in their parameterizations

schemes, vertical structures, geophysical parameters, and

state variables. Details are provided in Table 1, which also

includes relevant references. In the present study, we used

model-specific default conditions for all parameters. The

model versions are essentially the same as those analyzed

for other purposes by Wang et al. (2009).

Note that an earlier version of the VIC model was

calibrated at a finer spatial resolution (1/88) to a set of

river basins having some overlap with those examined

here (Maurer et al. 2002). This should have little impact

on its performance in this study; when this model is re-

moved from the analysis and only the remaining three

models are used, the results are essentially the same.

The other three models were not subject to any direct or

indirect calibration. The behaviors of the four models were

compared extensively in a recent analysis of drought

simulation (Wang et al. 2009).

b. Numerical experiments

A set of four experiments was performed with each

LSM. To some extent the design of the experiment

mimics that of Bierkens and van Beek (2009), who ex-

amined streamflow forecast skill across Europe in the

context of land model initialization and seasonal weather

forecasts based on the North Atlantic Oscillation. The

details and the goal here, however, are different: we aim

to quantify, for a different climatic regime (the conti-

nental United States), the relative impacts of snow and

soil moisture initialization on streamflow forecast skill

for a number of different start dates and leads.

All experiments involved the integration of each

LSM on a 0.58 3 0.58 array of grid cells encompassing
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CONUS. The atmospheric forcing data used in the inte-

grations include hourly 2-m air temperature, 2-m specific

humidity, precipitation, shortwave and longwave radia-

tion, wind speed, and surface pressure covering the 89 yr

from 1915 through 2003. The data were extracted from

the National Oceanographic and Atmospheric Adminis-

tration (NOAA) Cooperative Observer (Co-op) station

archive, gridded as described by Andreadis et al. (2005).

Surface wind was taken from the National Center for At-

mospheric Research–National Centers for Environmental

Prediction (NCAR–NCEP) reanalysis (Kalnay et al. 1996).

As in Koster et al. (2010), prior to 1950, average surface

wind values computed for the post-1950 period were used.

The first of the four experiments, labeled CTRL (for

‘‘control’’), is essentially the full integration of the LSM

with the 89 yr of meteorological forcing data. For spinup,

each model was cycled 10 times through the year 1915

and then integrated through 2003. To further minimize

spinup effects, we discarded data from 1915 through 1919;

thus, we analyzed output for the 84-yr period 1920–2003.

The CTRL simulations are identical to those analyzed for

other purposes by Wang et al. (2009).

The next three experiments—labeled Exp1, Exp2,

and Exp3—are designed to quantify the degree to which

streamflow can be forecasted from different sets of ini-

tial conditions on a given forecast start date assuming no

skill (beyond knowledge of the climatology) in the sea-

sonal forecasting of meteorological forcings. Note that

while some skill in forecasting meteorological forcing

may be possible with seasonal climate forecast systems,

we do not examine this contribution here. Exp1 quan-

tifies the joint contribution of initial snow and soil mois-

ture conditions to streamflow forecast skill, whereas Exp2

and Exp3 quantify, respectively, the isolated contributions

of initial snowpack and initial soil moisture to the skill.

Exp1 consists of 12 sets of forecast simulations. The

first set consists of 84 separate 1-yr forecast simulations

(one for each year of the period 1920–2003), each fore-

cast initialized on 1 January with the 1 January snow-

pack and soil moisture states (and other, presumably

less important states such as soil temperature) produced

by CTRL for the year in question. This mirrors the ini-

tialization approach used in many seasonal forecasting

studies (e.g., Wood et al. 2005). Here, to represent a lack

TABLE 1. The LSMs used in the study with brief descriptions on model structures, snow–soil hydrology schemes, parameters, and relevant

references.

Model

Soil

hydrology

scheme

Soil layers

and depth

Snow layers

and scheme

Soil/vegetation

Parameters References

VIC Variable infiltration

capacity curve for

surface runoff, Arno

model for base flow,

and drainage given

by gravity.

Three soil layers

with depths

specified

differently cell

by cell. Total

depth ranges

from 0.8 to 3 m.

Complete energy

balance. 2-layer

snowpack with

separate canopy

snowpack.

From North America

Land Data

Assimilation (NLDAS)

(Mitchell et al. 2004).

Liang et al. (1994),

Maurer et al. (2002),

and Cherkauer

et al. (2003)

Catchment TOPMODEL-based

soil hydrology

scheme.

Three soil layers;

total soil depth is

from 1 to 3.02 m.

Three dynamic

snow layers with

complete energy

balance, liquid

retention,

densification, and

thermal insulation.

Soil depth from

the State Soil

Geographic

Database (STATSGO);

soil texture from Food

and Agriculture

Organization (FAO).

Koster et al.

(2000), Ducharne

et al. (2000), and

Stieglitz et al. (2001)

Noah Exponential

distribution of

infiltration capacity

for runoff; base

flow proportional

to storage;

drainage driven

by gravity.

Four soil layers and

fixed depth.

Total soil depth

is 2 m.

Energy balance.

Two-layer

snowpack.

Snow aging and

liquid water

retention included.

From NLDAS. Schaake et al. (1996),

Chen et al. (1997),

Koren et al. (1999),

Ek et al. (2003),

Mitchell et al.

(2004), and

Livneh et al. (2010)

Sac Runoff from

impervious and

saturated soils; base

flow and percolation

between reservoirs

based on current

storage.

Five soil water

storage reservoirs.

Total storage

capacity ranges

from 20 to

600 mm.

Snow-17: one-layer

snow model; uses air

temperature to index

energy exchange and

accumulation and

ablation processes.

Soil parameters from

NLDAS, no

vegetation.

Burnash et al. (1973),

Anderson (1973),

and Mitchell et al.

(2004)
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of knowledge of meteorological forcing during the 1-yr

forecast period, we drive the land surface models across

CONUS with the geographically varying climatological

seasonal cycle of diurnal forcings (at 1-h resolution) de-

termined from the CTRL forcing files, using (for proper

cross validation) the 83 yr not including the year of

forecast to generate the climatology. The forcing clima-

tology for the year 1932, for example, was computed by

averaging the forcings over the periods 1920–31 and 1933–

2003. As a result, any skill generated in the forecasted

streamflows can be attributed to the initialization alone.

The remaining 11 sets of forecast simulations for Exp1

are analogous to the first but with the forecast initiali-

zation on 1 February for the second set, on 1 March for

the third set, and so on through December. In this way

we can examine the impact of the initial conditions on

streamflow forecast skill as a function of both lead (up to

a year) and forecast start date.

Exp2 is a repeat of Exp1, except that soil moisture

values are initialized on the forecast start date with the

geographically varying climatological distribution of soil

moisture on that start date, as determined from aver-

aging over the 83 yr (outside the year in question) of soil

moisture fields from CTRL. Thus, in Exp2, soil moisture

initialization cannot contribute to streamflow forecast

skill; skill is derived from snow initialization alone. In

direct analogy, Exp3 is also the same as Exp1, but with

snow amounts initialized to the geographically varying

climatological values of snow variables on the forecast

start date as derived from CTRL, again using the 83 years

outside the year in question. Thus, in Exp3, no skill is

derived from snow initialization; skill is derived from soil

moisture initialization alone.

Two notes about the experimental design are war-

ranted here. First, our use of climatological seasonal cy-

cles for such forcing fields as precipitation in Exp1, Exp2,

and Exp3 has a potential drawback; rainfall in these ex-

periments is effectively characterized as a drizzle without

realistic intermittency. Koster et al. (2010) tested the im-

pact of such drizzle in a supplemental repeat of their

version of Exp1 using the Catchment LSM. In this sup-

plemental experiment, the climatological precipitation

for every 4-day period was forced to fall at night on the

first day, with no precipitation falling during the remain-

ing three days. The impact on the results was essentially

negligible.

Second, the experiments ignore the possibility, how-

ever unlikely, that soil temperature initialization plays

a significant role in streamflow forecasting. To examine

this possibility, Koster et al. (2010) performed, for the

1 January forecast start date, an experiment in which both

soil moisture and snow were initialized to climatology,

so that only the initialization of the remaining variables

(viz. soil temperatures) could contribute to skill. None

of the skill levels produced in this experiment was sig-

nificantly different from zero at the 95% confidence level,

supporting the idea that the impact of soil temperature

initialization can indeed be neglected.

c. Observational data

Again, results from running a small subset of the four

experiments (the CTRL, Exp1, Exp2, and Exp3 simu-

lations run for 7 months starting on 1 January) have al-

ready been documented (Koster et al. 2010) in an analysis

of multidecadal March–July forecasts of naturalized

streamflow (water management effects removed) in

17 western U.S. basins. The use of these naturalized

streamflow observations continues in our analyses be-

low, supplemented by observations in six additional ba-

sins covering much of the eastern United States. The

locations of the stream gauges and of the upstream basin

areas they represent [delineated using HYDRO1k data;

Verdin and Verdin (1999)] are shown in Fig. 1. Table 2

provides a description of basin properties and the pe-

riods of available data.

d. Construction of multimodel forecasts; skill metric

We combine the streamflow simulations and forecasts

produced independently by the four land surface models

via a two-step process. First, for a given experiment

(CTRL, Exp1, Exp2, or Exp3), we convert each model’s

streamflows into standard normal deviates, or Z scores;

this is achieved by subtracting the model’s mean stream-

flow in that experiment for the time of year in question

and then dividing by the corresponding standard de-

viation. Second, for a given year, we average across the

four Z scores (one for each model) to compute that

year’s ensemble mean streamflow. For a given forecast

evaluation, the time series of multimodel forecasts (one

averaged Z score for each year) is regressed against the

corresponding time series of naturalized streamflow ob-

servations. Because skill is computed from the Z scores

for a specific time of year, no artificial skill is derived from

capturing the observed seasonal cycle of streamflow.

The Z scores are used here in part because the design

of the forecast experiments strongly limits the variance

of the simulated streamflows—by design, the forecasted

streamflows do not reflect the variability of meteoro-

logical forcings during the forecast period. We do not

consider this a limitation to our analysis, as we are in-

terested in measuring the ability of the models to re-

produce the time variability and relative magnitudes of

year-to-year streamflow anomalies rather than the ab-

solute magnitudes of the variations. We quantify this ability

with the square of the correlation coefficient (r2) between

the 84 synthetic truth streamflows and the corresponding
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predictions. For the r2 calculation, the use of an aver-

aged Z score, as described above, is fully appropriate.

The r2 metric of skill is as informative as a root-mean-

square error (RMSE) metric, which is of more direct

relevance to operations, given that known biases in the

model’s statistical moments allows the conversion of the

first metric to the second (Entekhabi et al. 2010). In-

deed, through application of the observed moments of

streamflow in a considered basin, a time series of Z-score

forecasts, as produced through these experiments, can

easily be converted to a time series of forecasts with

appropriate magnitude for the basin, with the extremes

of interest to forecasters easily distinguished from non-

extreme conditions. In any case, our aim is to examine

the predictability of streamflow and not the perfor-

mance of operational streamflow forecast systems, for

which the treatment of bias is a particular concern (Shi

et al. 2008).

FIG. 1. Locations of basins examined in this study. The identifier numbers (see Table 2) are

positioned at the stream gauge measurement sites.

TABLE 2. Characteristics of the basins examined in this study.

River name Station name

Basin area

(km2)

Latitude

(8N)

Longitude

(8W)

Observation

period

1 Missouri Hermann (includes basins 2, 4, 8, and 19) 1 353 275 38.718 92.758 1920–97

2 Missouri Ft. Randall Dam (includes basins 4, 8, and 19) 682 465 43.078 98.558 1950–2009

3 Ohio Metropolis 525 770 37.158 88.748 1928–2010

4 Missouri Garrison Reservoir (includes basins 8 and 19) 469 826 47.398 101.398 1950–2003

5 Upper Mississippi Grafton 443 660 38.908 90.308 1935–2010

6 Colorado Lees Ferry (includes basins 12 and 18) 289 562 36.878 111.588 1920–2003

7 Snake Ice Harbor Dam 281 015 46.258 118.888 1927–92

8 Missouri Fort Peck Dam (includes basin 19) 149 070 48.048 106.368 1950–2009

9 Arkansas Ralston 141 064 36.508 98.738 1940–2008

10 Arkansas–Red Arthur City 115 335 33.888 95.508 1938–2001

11 Alabama Clairborne 56 900 31.558 87.518 1950–93

12 Green Greendale 50 116 40.918 109.428 1920–2003

13 Apalachicola Sumatra 49 728 29.958 285.028 1950–93

14 Delaware Memorial Bridge 28 567 39.698 75.528 1948–87

15 Willamette Above falls near Oregon City 25 900 45.348 122.628 1930–89

16 Potomac Point of Rocks 25 000 39.278 77.548 1950–96

17 Sacramento Bend Bridge 23 051 40.298 122.198 1920–2003

18 Gunnison Near Grand Junction 20 533 38.988 108.458 1920–2003

19 Musselshel Moseby 20 321 46.998 107.898 1941–2003

20 Rio Puerco Bernardo 19 036 34.418 106.858 1940–2003

21 Yakima Near Parker 9479 46.508 120.448 1925–2003

22 Tuolumne La Grange Dam 4337 37.678 120.448 1920–2003

23 San Joaquin Mokelunme Hill 1863 38.318 120.728 1920–2003
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Note that our cross-validation procedure produced

an occasional negative correlation between observa-

tions and model results, particularly in basins with little

or no snow. Any negative correlations were zeroed be-

fore computing r2.

3. Results

a. Skill as a function of start date and lead

For the 17 westernmost basins in Fig. 1, Koster et al.

(2010) demonstrated that the models show significant

skill in forecasting observed (naturalized) March–July

streamflow based on 1 January initial conditions. Both

snow and soil moisture initialization contributed inde-

pendently to skill to different degrees in different basins;

the contribution of snow initialization was generally found

to dominate, particularly in the more mountainous basins

in the northwestern part of the study area, but the con-

tribution of soil moisture initialization was still significant

in many basins, and it even dominated in some of those

toward the south-central United States.

In this section, through the experimental approach

described above, we extend this analysis to 23 basins and

to a more comprehensive collection of forecast start dates

and lead times. Some key results are summarized in

Fig. 2, which presents, for forecasts of 3-month-average

streamflow at 0-month lead, the skill levels achieved

by the multimodel system for four different start dates:

1 January, 1 April, 1 July, and 1 October. The salient

feature of this plot, relative to that in Koster et al. (2010),

is the increased relative importance of soil moisture ini-

tialization when other seasons are considered. The strong

contribution of snow initialization to springtime forecast

skill is consistent with that found in the earlier study, al-

though the six newly considered eastern basins show a

relatively significant impact of soil moisture initializa-

tion. Figure 2, though, shows that in summer, fall, and

winter, initializing soil moisture has a dominant impact

on skill across the United States, with contributions some-

times exceeding r2 5 0.6 or 0.7. Overall, the summer, fall,

and winter skill scores for Exp1 (both soil moisture and

snow initialized) rival or exceed those of spring.

Naturally, such a statement must be tempered by

knowledge of the seasonal cycle of streamflow—if skill is

higher in seasons for which streamflow is relatively low,

the usefulness of this skill for at least some applications

is accordingly diminished. The top panels of Fig. 3 show

the fraction of the observed annual streamflow that oc-

curs in each season. The western basins in particular are

dominated by snowmelt runoff, and thus streamflows

there are largest during April–June (AMJ). Even so, a

FIG. 2. Skill (measured as r2 against naturalized observations) of multimodel ensemble 3-month streamflow forecasts at 0-month lead,

for four start dates (columns) and the three experiments (rows)—snow and soil moisture initialization (Exp1), snow initialization alone

(Exp2), and soil moisture initialization alone (Exp3). Gray shading indicates that skill levels are not significant at the 95% level.
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large fraction of the streamflow occurs during the other

three seasons, suggesting that the dominant impact of soil

moisture initialization in these seasons is indeed relevant.

Note, however, that an even stronger consideration is

the seasonal cycle of streamflow variance, s2
Q. Consider

the extreme hypothetical example of a region with high

summer streamflow that is almost exactly the same every

year and moderate winter streamflow that varies strongly

from year to year. Given the very small size of the in-

terannual summer anomalies, a high r2 skill score is

clearly more important for the winter streamflow fore-

casts than for the summer forecasts. With this in mind,

the bottom four panels of Fig. 3 show a diagnostic that

we loosely term the ‘‘variance fraction’’ (VF), which is a

function of season, m:

VF(m) 5
s2

Q(m)

�
n51,4

s2
Q(n)

. (1)

This diagnostic is not meant to represent the contribu-

tion of each season to the annual streamflow variance,

since the annual variance is affected by potential cor-

relations between streamflow in adjacent seasons, which

are ignored here. Rather, VF is a simple, ad hoc, first-

order representation of how streamflow variance varies

with season, made dimensionless so that the value of the

diagnostic in different basins can be directly compared.

Notice that the seasonal variation in the bottom plots

is similar to that in the top plots; in the context of vari-

ance, spring (AMJ) is the most important time to predict

streamflow accurately. Still, significant variance does ex-

ist in other seasons, particularly summer, further sup-

porting the idea that initializing soil moisture accurately

in those seasons is important.

The experimental framework allows a look at the skill

obtained at longer leads. Figure 4 shows, for Exp1 (both

soil moisture and snow initialized), the forecast skill levels

obtained in each of the 23 basins for 3-month-average

streamflow as a function of lead and start date. A given

colored curve corresponds to a 1-yr forecast, with the

leftmost point on the curve indicating the skill levels for

0-month lead (i.e., for the first three months of the fore-

cast), the next point on the curve corresponding to the

1-month lead (i.e., for months 2–4 of the forecast), and

so on; a point farther to the right on a given curve thus

corresponds to a longer forecast lead time, unless of course

the curve has wrapped around from the right edge to the

left edge of the plot, at the December–February (DJF)–

January–March (JFM) boundary.

As should be expected, streamflow forecast skill tends

to decrease with increasing lead. (See Pagano et al. (2009)

for an operational example of the skill–lead relationship.)

The basins clearly show some variability in the lead times

allowing skillful forecasts, with some basins having little

skill beyond a 0-month lead, regardless of start date (e.g.,

the Willamette River upstream of Oregon City), and

others showing skill for leads exceeding six months

for most start dates (e.g., the Green River upstream of

Greendale). A number of basins show skillful spring or

summer forecasts at multimonth leads, with little or no skill

in the fall and winter (e.g., the San Joaquin River upstream

of Mokelumne Hill)—a reflection of the dominant con-

tribution of snowmelt to the annual runoff totals in these

basins, as indicated by corresponding plots for Exp2 and

Exp3 (not shown). Forecasts for start dates early in the year

(January–March) in mountainous areas are sometimes

characterized by skill that increases with lead and then

decreases—a reflection of the fact that skill for these basins

does not manifest itself until the snowmelt season begins.

FIG. 3. (top) Fraction of total annual runoff flowing past the stream gauges during each of four 3-month periods, from observations.

(bottom) The VF diagnostic for each of the four 3-month periods (see text for details).
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Figure 5 presents this information in a different way;

it shows, for each experiment, the number of months

into the future for which a forecast of 3-month-average

streamflow still has statistically significant skill at the

95% confidence level. (Note that the r2 value corre-

sponding to this confidence level varies with basin ac-

cording to the length of its observational record. Note

also that the skill levels at longer leads, while determined

significant, may still be very small, so that the practical

value of this particular diagnostic may be limited.) Soil

moisture initialization by itself (Exp3) is, for many ba-

sins, most effective in the fall (1 October)—a time when

snow initialization (Exp2) has no impact at all. In general,

snow initialization is most effective during winter and

spring. We explore in the next section some important

controls on the overall contribution of initialization to

skill and the reasons underlying the geographical and

temporal variations of skill. For now, though, we note

that certain aspects of the soil–snow distinction in Fig. 5

make intuitive sense. Snow is essentially absent on

1 October, necessitating a low impact of snow initialization

for 1 October starts. Soil moisture, on the other hand,

does exist (and does vary interannually) on 1 October.

At least in relatively cold regions, this soil moisture should

remain largely unchanged during winter months while

evaporation is low and the ground is, in many cases,

covered with snow; the impact of the 1 October soil

moisture should thus at least partially manifest itself dur-

ing the snowmelt season, several months into the future.

b. Skill as a function of variability in water
storage and precipitation

The spatial and temporal variations in the skill levels

illustrated in Fig. 2 can be related, at least conceptually,

to two basic water supply quantities: the total water

(Winit) stored in surface reservoirs (snow plus soil mois-

ture) on the forecast start date and the total water pre-

cipitating during the forecast period (Pfcst). Simply put,

under the assumption that Winit and Pfcst are the two

primary drivers of streamflow variability during the fore-

cast period, the relative degrees to which the two quan-

tities vary from year to year, along with our ability to

FIG. 4. Skill (r2) of multimodel ensemble 3-month forecast, as a function of start date and lead, for Exp1. Curves of a single color provide

results for forecasts of a specific start date. The leftmost point on a curve indicates a 0-month lead for the forecast; points farther to the

right on the curve (except for the wrap around at the end of the year) indicate a longer lead time. (See text for details.)
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estimate each on the forecast start date, determines the

degree to which variations in streamflow can be accu-

rately predicted. For example, if the interannual vari-

ance of Winit (sw
2) is large and that of Pfcst (sP

2) is small,

then streamflow forecast skill is mostly predicated on

our ability to estimate Winit; on the other hand, if sP
2

is large and sw
2 is small, the skill mostly depends on an

accurate prediction of Pfcst.

Under the further assumption that Winit can be rea-

sonably well estimated on the forecast start date (e.g.,

through the use of land modeling, as above, or through a

data assimilation framework) whereas Pfcst is compara-

tively unknowable given chaotic atmospheric dynamics

during the forecast period, a relatively high initial water

storage variance (sw
2) implies increased streamflow pre-

dictability, whereas a relatively high forecast period pre-

cipitation variance (sP
2) implies a decreased streamflow

predictability. More to the point, the stated assumptions

imply that forecast skill in the forecast framework pre-

sented above should increase with the dimensionless ratio

k, defined here as

k 5 sw/sp. (2)

Simply put, a higher value of k corresponds to a higher

level of knowledge, on the forecast start date, of the

basic underlying controls on streamflow predictability.

In essence, k is the dimensionless ratio of the variabilities

of the ‘‘known’’ and ‘‘unknown’’ water volumes that de-

termine streamflow.

In Fig. 6, the skill achieved for a forecast of 3-month-

average streamflow at 0-month lead is plotted against

the corresponding value of k. Each dot corresponds to

a specific basin and start date; given 23 different basins

and 12 different start dates, there are 276 dots in the plot.

The calculation of the k values required estimates for

both sw and sP. The sP values for a given start date were

computed directly from the yearly time series of 3-month

precipitation totals following that start date in the mete-

orological forcing data. The corresponding ‘‘multimodel’’

value of sw was computed from a time series of simulated

multimodel total (snow plus soil moisture) water con-

tent for the start date in question; this time series was

generated by averaging across the models the raw (un-

standardized) instantaneous soil moisture and snow wa-

ter contents generated by each in the CTRL simulation.

The scatterplot shows, to first order, an increase in

streamflow forecast skill with k. This is particularly evi-

dent at the extremes; in general, for k values below about

0.3, the skill achieved is very low (r2 , 0.1), whereas for k

values above about 3, the skill levels are high (r2 . 0.7).

The first-order relationship across the full range of k is

FIG. 5. Number of lead months for which a forecast still has significant skill at the 95% confidence level for (top to bottom) the three

experiments and (left to right) Jan, Apr, Jul, and Oct. Gray shading indicates no statistically significant contribution to skill even at a

0-month lead.
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made somewhat more evident by considering in isola-

tion the subset of the dots (the larger dots) corresponding

to times and locations for which the CTRL streamflows

were especially realistic (i.e., r2 . 0.75). A focus on such a

subset is sensible because forecast skill for the remaining

dots is additionally limited by flaws in the modeling sys-

tems, in the forcing data, and/or in the streamflow vali-

dation data—for these remaining dots, when the models

are run outside of forecast mode, with full knowledge of

precipitation during the forecast period, they still have

some trouble matching the observed streamflows.

c. Extension of variability analysis to CONUS

The intuitive relationship between k and streamflow

forecast skill levels, demonstrated to first order in Fig. 6,

has a broader significance. Given our ability to estimate

k outside of the 23 basins through analysis of observa-

tional data and land model integrations, we can estimate

for these outside locations the streamflow forecast skill

that could potentially be achieved with existing systems,

even given the absence of suitable verification data.

Such an estimation is presented in Fig. 7, which shows,

for each of the four seasons and at each 0.58 3 0.58 grid

cell across CONUS, the values of sW (calculated fol-

lowing the approach in section 3b above), sP (computed

from the gridded meteorological forcing data), and the

resulting value of k. The maps show a wide seasonal

variation in k. For much of the United States, k (and thus

expected streamflow forecast skill at 0-month lead) is

largest for JFM, with high values across the northern

half of the country and south into New Mexico and

Texas. For the north-central United States in particular,

the high k values during JFM reflect a seasonal re-

duction of sP rather than a seasonal increase in sW. For

AMJ, k values are quite high in the western third of the

country and very small elsewhere; this season indeed

features particularly low sP values and high sW values

in the southwest and particularly small sW values in the

east. For July–September (JAS), moderately high k

values are seen mostly in the northwestern quadrant

of the country and in the far west, reflecting relatively

low rainfall variability in these areas. The October–

December (OND) k distribution looks similar to that for

JFM but is weaker, with minimal values (and thus no

expected skill) in the west, where sW is now small. Notice

that most of the southern United States features low

values of k throughout the year, which is a reflection of

the consistently high sP values there; the corresponding

sW values there, while also high, are presumably limited

by the finite capacities of the soil layers, which provide for

efficient runoff as the soil gets very wet.

Again, according to the relationship illustrated in Fig.

6, these patterns can be interpreted in terms of potential

streamflow forecast skill. The relationship in Fig. 6,

however, while intuitive, is admittedly noisy. We thus

supplement the k calculations here with skill calculations

using a synthetic truth dataset. While the computation of

true skill levels outside of the basins in Fig. 1 is pre-

cluded by a lack of naturalized streamflow observations

of sufficient duration, we can utilize model-generated

streamflow data (viz. those produced through the CTRL

simulations) as verification data, as long as the basic limi-

tation of such synthetic truth is always kept in mind (i.e.,

the fact that it is based on imperfect land models in-

tegrated with imperfect meteorological forcing).

The left column of Fig. 8 is a repeat of the right column

of Fig. 7; it shows the computed distribution of k for each

season. The middle column of Fig. 8 shows the corre-

sponding distributions of 3-month runoff forecast skill at

0-month lead for Exp1, using the CTRL results as the

synthetic truth. Notice that the plots in these two col-

umns are very similar, particularly for JFM, AMJ, and

JAS. In other words, the k-based estimates of where and

when forecast skill might be achieved through land model

initialization appear to be well supported by these alter-

native calculations.

For perspective, the rightmost column of Fig. 8 shows

VF, as defined in (1), at each grid cell. A comparison of

this column with the others quickly shows that the loca-

tions for which skill from initialization is especially at-

tainable (i.e., where values of k are especially high) tend

to correspond to a low value of VF—when runoff is very

FIG. 6. Skill (r2) of 3-month streamflow forecast at 0-month lead

as a function of k—the ratio of the standard deviation of initial total

water storage (soil water plus snow) to the standard deviation of

precipitation during the 3-month forecast period. Each dot repre-

sents the skill determined for one of 12 start dates and one of 23

measured basins, for a total of 276 plotted points. The larger dots

correspond to locations and start times for which the CTRL sim-

ulation (which utilizes observed meteorology during the forecast

period) was able to capture the observed streamflow variations

with an r2 of at least 0.75.
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predictable, the variance of the runoff tends to be relatively

low. Even so, the fields show substantial overlap between

times of significant skill and sizeable runoff variance.

This latter point is demonstrated further in Fig. 9,

which shows a rough ‘‘annual’’ estimate of 3-month fore-

cast skill at 0-month lead for Exp1, computed here as a

weighted average of the r2 values over the four seasons:

r2
ann 5 �

n51,4
r2(n)VF(n), (3)

where VF is as defined in (1). The skill levels in Fig. 9

suggest that substantial skill is indeed attained during

times of significant runoff variance; if it were not, the

values plotted here would be close to zero. The weighted

skill levels are particularly large in the west (largely a

reflection of snow impacts, as suggested by Figs. 2 and 3)

and in the upper Great Plains, toward the Great Lakes.

4. Summary and discussion

The multimodel ensemble forecasts of 3-month-average

streamflow at 0-month lead are shown to have significant

skill across the 23 basins for which we have naturalized

streamflow observations (Fig. 2). Snow initialization has

a positive impact mainly in spring but also in summer,

whereas soil moisture initialization contributes to skill in

all seasons, with the largest contributions in summer and

FIG. 7. Distributions, as a function of (top to bottom) season, of (left) sW (mm), (middle) sP

(mm), and (right) the resulting diagnostic k (dimensionless).
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fall. In general, outside of spring, the impact of soil

moisture initialization dominates over that of snow

initialization. 1 October soil moisture initialization con-

tributes, in general, to skill at particularly long leads,

presumably because of the reduced activity of soil mois-

ture during the cold season.

As noted in Koster et al. (2010), the skill levels found

for Exp1 are similar to those shown in another study for

various European stations (Bierkens and van Beek 2009).

They are also similar, if sometimes slightly smaller, than

those found in two recent studies focusing on the American

west (Pagano et al. 2004, 2009). The rough agreement

with the latter two studies is interesting because the two

Pagano et al. studies examined calibrated forecast sys-

tems on (generally) much smaller basins having the

benefit, for example, of local snow-course measurements.

The models used in our study do not utilize local in situ

data or rely on calibration to observed anomalies; they

rely instead solely on the integration of antecedent me-

teorological data at the large scale. This study thus pro-

vides evidence that such large-scale, uncalibrated models

may prove useful for basin-scale prediction, perhaps in

conjunction with existing, proven operational approaches

that rely on calibrated, statistics-based models.

FIG. 8. Comparison between (left) the parameter k and (middle) the skill (r2) obtained

against synthetic truth in Exp1 for 3-month streamflow forecasts at 0-month lead for (top to

bottom) seasons. (right) The VF diagnostic: a rough measure, for a given grid cell, of the rel-

ative strength of the variance in that season (see text for details).
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It is worth mentioning that our experimental design is

limited in some ways and that overcoming or mitigating

its limitations could boost the skill levels achieved. For

example, we neglect here the time scales associated with

river routing. To produce the model-generated basin

streamflows, the contemporaneous runoffs generated

within the different grid cells of a basin are simply added

together; no account is taken of the length of time needed

to transport a grid cell’s river water to a stream gauge site.

This limitation is addressed only partially here by the

consideration of long-term average (3 month) stream-

flow totals. Another issue is the necessarily approximate

definition of the basin boundaries, given that the models

are run on a 0.58 grid. Perhaps the two most important

limitations to this study, however, involve the uncer-

tainty in the data used to force and validate the models,

particularly early in the study period, and the errors as-

sociated with the model parameterizations themselves—

land models have oversimplified representations of many

critical surface processes. Presumably, improved models

driven with more accurate forcing data and validated

against more accurate streamflow observations would

show greater skill.

Land data assimilation (e.g., Reichle et al. 2007) shows

particular promise for providing improved estimates of

soil moisture states through the mathematically optimal

incorporation of satellite retrievals or radiances into the

land modeling environment. Streamflow prediction may

thus benefit from data assimilation efforts focused on

current and upcoming satellite soil moisture missions,

particularly Soil Moisture Ocean Salinity (SMOS; launched

in November 2009; http://www.esa.int/esaLP/LPsmos.

html) and Soil Moisture Active Passive (SMAP; pro-

jected launch in 2014; http://smap.jpl.nasa.gov).

The time and space variability of the skill levels achi-

eved in our experiments is addressed in sections 3b and

3c using a simple framework that relates skill to both the

variability of water storage on the forecast start date and

the variability of precipitation during the forecast period.

The parameter k captures the joint effects of these two

controls; a higher k value implies that the control quantity

that is measurable on the forecast start date (water storage)

has an increased impact on skill relative to the immea-

surable control quantity (forecast period precipitation),

so that a higher k value implies higher skill. Our skill

levels in the 23 examined basins are indeed shown to in-

crease, to first order, with an increase in k (Fig. 6). Fur-

thermore, the spatial distributions of k across CONUS

agree, again to first order, with the spatial distributions

of skill obtained with a synthetic truth dataset (Fig. 8),

providing support for the idea that the synthetic skill levels

are indicative of what could be achieved across CONUS

with an extended streamflow forecast system.

The k framework is necessarily limited. It does not

capture, for example, the simple fact that evaporation is

higher during summer than winter, which implies a rel-

atively lower soil moisture memory for summer and thus

a reduced potential for summer soil moisture to affect

streamflow. The standard deviations used in the k cal-

culation here assume a stationarity that may not exist in

nature. The assumption that precipitation during the

forecast period cannot be estimated is not precisely true;

some predictive skill for rainfall may be attainable with

seasonal forecast systems. The k framework’s neglect of

these issues is arguably a weakness; we offer, however,

the contrasting view that the framework’s simplicity is in

fact a strength. The framework is able to capture, in a

single parameter, the joint effects of what are probably

the two main controls on streamflow prediction skill, al-

lowing a first-order understanding of where and when this

skill may be achieved.
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