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ABSTRACT

Ocean heat content (HC) is one of the key indicators of climate variability and also provides oceanmemory

critical for seasonal and decadal predictions. The availability of multiple operational ocean analyses (ORAs)

now routinely produced around the world is an opportunity for estimation of uncertainties in HC analysis and

development of ensemble-based operationalHC climate indices. In this context, the spread across the ORAs

is used to quantify uncertainties in HC analysis and the ensemble mean of ORAs to identify, and to monitor,

climate signals. Toward this goal, this study analyzed 10 ORAs, two objective analyses based on in situ data

only, and eight model analyses based on ocean data assimilation systems. Themean, annual cycle, interannual

variability, and long-term trend of HC in the upper 300 m (HC300) from 1980 to 2009 are compared.

The spread across HC300 analyses generally decreased with time and reached aminimum in the early 2000s

when the Argo data became available. There was a good correspondence between the increase of data counts

and reduction of the spread. The agreement of HC300 anomalies among different ORAs, measured by the

signal-to-noise ratio (S/N), is generally high in the tropical Pacific, tropical Indian Ocean, North Pacific, and

North Atlantic but low in the tropical Atlantic and extratropical southern oceans where observations are very

sparse. A set of climate indices was derived as HC300 anomalies averaged over the areas where the covari-

ability between SST and HC300 represents the major climate modes such as ENSO, Indian Ocean dipole,

Atlantic Niño, Pacific decadal oscillation, and Atlantic multidecadal oscillation.

1. Introduction

Ocean reanalyses (ORAs) are now routinely produced

at operational centers around the world particularly for

initializing the ocean as part of dynamical seasonal

forecast systems (Balmaseda et al. 2009). The current

generation of operational ORAs has improved in quality

because of advances in data assimilation schemes, im-

provements in oceanmodels, increasedmodel resolutions,

and dramatic improvements in the global ocean ob-

serving system (Behringer and Xue 2004; Usui et al. 2006;

Zhang et al. 2007; Balmaseda et al. 2008; Drévillon et al.

2008; Yin et al. 2011; Vernieres et al. 2012).

Operational ORAs are now routinely used at national

climate centers for ElNiño–SouthernOscillation (ENSO)

monitoring, and prediction, efforts. It is also becoming

evident that modes of ocean climate variability other

than ENSO also have significant influence over different

areas of the globe, and therefore, there is an increasing

requirement to monitor, predict, and understand such

modes (Xue et al. 2010).

Increasing use of ORAs in the areas of societal rele-

vance, however, raises questions about their fidelity and
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suitability: what are the similarities and differences

among ORAs; could better monitoring products, to-

gether with errors bars, be developed based on an en-

semble of ORAs? Indeed, theOceanObs’09 Conference

called for an intercomparison of operational ORAs, and

development of ocean monitoring products based on

an ensemble of operational ORAs (Xue et al. 2010). As

a follow up to that recommendation, the focus of this

paper is to analyze the depiction of the upper ocean heat

content variability from an ensemble of ORAs.

The upper-ocean heat content (HC) provides the

ocean memory for potential predictability for climate

variability on interannual to decadal time scales. For

example, HC in the tropical Pacific is the ocean memory

for the long-lead predictability of ENSO (Ji et al. 1998;

Balmaseda and Anderson 2009; Xue et al. 2000; Clarke

and Van Gorder 2003). HC variability is also associated

with the Indian Ocean dipole (IOD) (Saji et al. 1999;

Rao et al. 2002) and SST variability in the southwestern

Indian Ocean (Huang and Kinter 2002; Xie et al. 2002),

as well as the Atlantic Niño (Zebiak 1993; Ruiz-Barradas

et al. 2000; Keenlyside and Latif 2007). An improved

monitoring of HC variability can help us better under-

stand, and forecast, those SST modes.

On decadal to multidecadal time scales, HC variability

in the North Pacific is found to be associated with de-

cadal variability of SST, for example, the Pacific decadal

oscillation (PDO; Mantua et al. 1997), and ecosystem

indicators along the west coast of North America

(Mantua et al. 1997; Di Lorenzo et al. 2008). HC vari-

ability in theNorthAtlantic has been linked to theAtlantic

meridional overturning circulation (AMOC) (Hakkinen

and Rhines 2004; Böning et al. 2006; Huang et al. 2011)

and Atlantic multidecadal oscillation (AMO) (Zhang

2008). Therefore, an accurate ocean initialization of HC

in coupled climate models could be an important factor

in enhancing skill in decadal climate prediction efforts

(Meehl et al. 2009; van Oldenborgh et al. 2012).

A common practice for model-based operational

ORAs is to assimilate various ocean observations into

an ocean model that is generally forced by fluxes at the

air–sea interface from an independent atmospheric re-

analysis (Balmaseda et al. 2009). For ocean data assim-

ilation a hierarchy of methods has been adopted that

range from optimal interpolation (OI) (Balmaseda et al.

2008), three-dimensional variational (3DVAR) methods

(Behringer et al. 1998; Usui et al. 2006), andKalman filter

(Drévillon et al. 2008; Keppenne et al. 2008; Yin et al.

2011). Several groups have also been developing coupled

ocean and atmosphere data assimilation systems (Zhang

et al. 2007; Sugiura et al. 2008; Saha et al. 2010).

Accuracy of HC analyses based on ocean data as-

similation systems can be affected by many factors that

include uncertainties in surface fluxes, biases in ocean

models, deficiencies in data assimilation schemes, and

changes in ocean observing systems. Several studies have

been performed to compareHC variability frommultiple

ocean data assimilation systems. For example, Carton

and Santorelli (2008) examined the consistency of the

decadal variations of the ocean heat content in the upper

700 m (HC700 hereafter) in 1960–2002 in nine ocean

reanalyses. They found some significant disagreements in

the representation of climate anomalies, particularly in

regions of poor historical observation coverage like the

Southern Hemisphere but also in other areas. Lee et al.

(2009) and Stammer et al. (2010) provided a summary of

results of a comparison of ocean reanalysis carried out by

the Climate Variability and Predictability (CLIVAR)–

Global Synthesis and Observations Panel (GSOP) com-

munity. Stammer et al. (2010) examined the consistency

of the decadal variations in HC700 in the past 50 years

in 11 ocean reanalyses and noted the surprisingly large

spread across products toward the end of the time series

despite the fact that this period is best observed. Re-

cently, Zhu et al. (2012) conducted an ensemble estima-

tion of HC variability in the tropical Atlantic using six

ocean reanalysis products. HC700 from multiple ocean

reanalysis products have also been compared in the con-

text of studying the impacts of different XBT bias cor-

rection schemes (Levitus et al. 2009; Lyman et al. 2010;

Giese et al. 2011). Those studies suggest that it is very

difficult to remove all XBT biases associated with the

assumptions used for the XBT fall rate.

In this study, we compared HC in the upper 300 m

(HC300 hereafter) variability from 10 ORAs, two ob-

jective analyses based on in situ data only, and eight an-

alyses based on ocean data assimilation systems. The

mean, annual cycle, interannual variability, and long-term

trend of HC300 from 1980 to 2009 from each of the

products are compared. Our study differs from earlier

studies in that we only included ocean reanalysis products

that are updated operationally on a real-time basis. Our

goal is not only to conduct a comprehensive comparison

of HC300 analyses but eventually to extend the compar-

ison in real time in support of climate monitoring, climate

assessment and climate prediction. A goal of this study

is to lay down the foundation and implementation strat-

egy for the development of operational ensemble ocean

heat content monitoring products.

In our study, we did not attempt to quantify errors in

each analysis by validating against in situ observations.

Instead, we focused on documenting and understanding

the differences and similarities among HC300 analyses,

with the premise that errors in the analysis of HC300 can

thus be estimated. We selected one analysis as the ref-

erence and calculated various statistics relative to the

6906 JOURNAL OF CL IMATE VOLUME 25



reference analysis. We also used the ensemble method

of Lee et al. (2009), in which the signal is estimated as

the temporal standard deviation of the ensemble mean,

and noise as the spread across different ocean analyses.

Zhu et al. (2012) also demonstrated that the ensemble

mean of multiple analyses is superior to any individual

analysis.

We investigated the influence of evolving ocean ob-

serving systems on the spread of HC300 analyses. In

principal, when more ocean observations are available,

as different ORAs are better anchored by increasing

observations, ensemble spread should decrease. There-

fore, ensemble spread can be used to measure influences

of ocean observing systems on the convergence of mul-

tiple ocean reanalysis products. The ensemble spread also

helps us identify outliers, which would encourage analysis

centers to understand the sources for large departures

in subsequent studies.

Section 2 describes the 10 ORAs, and the methodol-

ogies used in the comparison. Section 3 discusses the

ensemble spread among HC300 analyses, and how it

varies with changing ocean observing systems. Section 4

discusses the capability of the current generation of op-

erational ocean reanalyses in describing HC300 variabil-

ity associated with the major modes of climate variability

on interannual, decadal and long-term time scales. The

summary and discussion are given in section 5.

2. Operational ORAs and analysis methods

The main features of the 10 operational ORAs used

in the study are summarized in Table 1, and a brief de-

scription of each ORA is provided in the appendix. In-

formation on operational ORAs can also be found in the

review paper by Balmaseda et al. (2009) and in individual

references for each ORA.

In the study, HC300 is defined as the average tem-

perature in the upper 300 m. To facilitate comparison,

the monthly mean HC300 for 1980–2009 was first cal-

culated on the native model grid of each ORA and then

linearly interpolated to a common 18 by 18 grid. We de-

fined a common ocean mask that is shared by all ORAs,

which roughly covers the domain from 708S to 708N.

The monthly climatology for each ORA was obtained

by taking the first three harmonics of the monthly aver-

ages over the period 1985–2009. The first few years (1980–

84) were not included in the climatology since a large

initial drift was found in a few ORAs, for example, in the

Global Ocean Data Assimilation System (GODAS),

Climate Forecast System Reanalysis (CFSR), and Geo-

physical Fluid Dynamics Laboratory (GFDL). The

anomalous HC300 (HC300a) was derived by removing

the 1985–2009 climatology for each ORA separately. For

the comparison of HC300 it is useful to choose a refer-

ence analysis. Since the Met Office analysis (EN3) is

based on an objective analysis of the in situ data only, and

has a monthly resolution, it was used as the baseline for

various comparison statistics described below. It is im-

portant to emphasize that this does not mean that EN3 is

viewed as ‘‘the truth.’’

In the comparison of HC300 across ORAs, we fre-

quently looked at the spread. For spatially and temporally

varying HC300, the spread among ORAs was calculated

as the standard deviation of the departure of ORAs from

the ensemble mean at each grid point and each month in

1980–2009. For temporally fixed maps such as the cli-

matological mean, linear trend, and anomaly correlation

of HC300, the spread was simply the standard deviation

from the ensemble mean for the respective quantity.

In the analysis, we also frequently used a signal to

noise ratio (S/N hereafter), where signal is the temporal

standard deviation of the ensemble mean of HC300 over

a period, and noise the average of standard deviation of

the spread of ORAs relative to the ensemble mean over

the same period. When S/N is larger than 1, the signal in

the quantity analyzed is larger than the noise and more

confidence can be placed in the ensemble mean as an

estimate of the climate signal.

To measure how well HC300 variability in each ORA

resembles that of EN3, the anomaly correlation (AC)

with EN3 HC300 was calculated. To identify the regions

where HC300 variability is highly correlated with SST

variability, HC300 from each ORA was correlated with

the monthly mean observed SST derived from the

weekly Optimal Interpolation SST version 2 (OISST)

(Reynolds et al. 2002). Because HC300 has slower var-

iability than SST does, it represents a potential mecha-

nism for predictability of SST variations on time scales

of a season and longer. As expected, those regions with

highHC300–SST covariability are associatedwith ENSO,

PDO, AMO, IOD and Atlantic Niño.

3. Uncertainties in HC300 analysis and the
influences of ocean observing systems

Estimation of HC300 can be influenced by many fac-

tors, of which the distribution of in situ observations

plays a critical role. The temperature observations as-

similated in different ORAs generally include profiles

from XBTs, CTDs, mooring arrays and Argo profiling

floats (see Table 1). The number of temperature profiles

per month increased significantly around 1985, and in-

creased dramatically around 2002 with the introduction

of Argo data (see Fig. 11 from Saha et al. 2010). The al-

timetry sea surface height (SSH) data, available since

1993, was included in some of the ORAs, for example, in,
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European Centre for Medium-RangeWeather Forecasts

(ECMWF), GFDL, Global Modeling and Assimilation

Office (GMAO), Mercator-Ocean (MERCATOR), and

Japan Meteorological Agency (JMA) (Table 1). The

analysis in this section aims to estimate uncertainties in

the mean of HC300 analysis and how they vary with

changing ocean observing systems.

a. Analysis of mean HC300

The HC300 from EN3 was used as the baseline mea-

sure for comparison of themeanHC300 over 1985–2009.

Figure 1 shows the mean HC300 for EN3, the offset in

the mean for the other nine ORAs relative to EN3, the

ensemblemean of the offsets for themodel-basedORAs,

and the ensemble spread of model-based ORAs.

The mean HC300 from EN3 shows that the average

temperature in the upper 300 m of the tropical oceans

is generally above 178C except in the eastern tropical

Pacific andAtlantic, and in the southwest tropical Indian

Ocean. Those regions with low mean HC300 are also

where covariability between HC300 and SST anomalies

are highest and will be discussed in next section.

The mean offsets of HC300 from EN3 are generally

small in the tropical Pacific except in the GFDL anal-

ysis, which is colder along the equatorial waveguide (Fig.

1g). The mean offsets are also small in the extratropical

northern oceans except near the western boundary cur-

rents and Labrador Sea. In the tropical IndianOcean, the

mean offsets are generally small except in the Bay of

Bengal and near the west coast of Australia (Figs. 1f,g,i).

However, the mean offsets are relatively large in the ex-

tratropical southern oceans and the tropical Atlantic

where observations are sparse. The ensemblemean offsets

of model-based ORAs are generally smaller than those of

any individual ORA, but remain large near the western

boundary currents, Gulf of Mexico and extratropical

southern oceans (Fig. 1k). Themodel-basedORAs also

show large spread in HC300 climatology in some of

FIG. 1. MeanHC300 (8C) in 1985–2009 for (a) EN3, (b) NODCminus EN3, (c) GODASminus EN3, (d) ECMWFminus EN3, (e) JMA

minus EN3, (f) CFSR minus EN3, (g) GFDL minus EN3, (h) GMAO minus EN3, (i) MERCATOR minus EN3, (j) BOM minus EN3,

(k) the mean of eight model-based analyses minus EN3, and (l) the spread of mean HC300s among eight model-based analyses.
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these poorly observed areas, like the Antarctic Cir-

cumpolar Current (Fig. 1l).

To quantify the temporal variations in the total

HC300 in each ORA, 2-yr running-means of HC300

averaged in different ocean basins are shown in Fig. 2.

The spread among analyses generally decreases with

time, particularly after the early 2000s when Argo data

became available. Temporal variations are in best

agreement in the northern oceans where the S/N ratio

is 2.3, but they are barely significant in the tropical

Pacific (Fig. 2a) and tropical Atlantic (Fig. 2c) where

the S/N ratio is 1.3 and 1.1, respectively. The S/N ratio

in the tropical Indian Ocean and southern oceans is

very poor.

b. Spread of HC300 and influences of ocean
observing systems

The spread of HC300 across ORAs varies with time

due to changes in the coverage of in situ observations.

Figure 3 shows the spread averaged over each ocean

basin calculated, where spread is computed either using

all 10 ORAs (thick black line) or with only nine ORAs

with one ORA withheld (thin lines). The latter is an

attempt to identify the ORAs that are outliers and have

a large contribution to the spread.

Removing one ORA generally reduces the spread.

For the tropical Atlantic removing CFSR reduced the

spread significantly through the whole period, indicat-

ing CFSR as an outlier. CFSR is also an outlier in the

tropical Indian Ocean during 1980–85. GODAS and

GFDLwere identified as outliers in the southern oceans,

probably because both analyses have the largest vari-

ability in those regions (see discussion related to Fig. 9).

In the tropical Pacific, the spread decreased substantially

around 1985 and 2003 when the TAO and Argo data

began to be assimilated into ORAs. The peaks around

82–84 and 97–99 are associated with the 1982/83 and

1997/98 El Niño events. The advent of the Argo data is

clearly seen in the tropical Indian Ocean (Fig. 3b) and

extratropical southern oceans (Fig. 3e), but is not as

clear in the tropical Atlantic (Fig. 3c) and extratropical

northern oceans (Fig. 3d).

FIG. 2. Time series of 2-yr running mean of HC300 (8C) averaged in different ocean basins from each ORA (thin

lines) and the ensemble mean of 10 ORAs (thick black line). (top right) The signal-to-noise ratio, defined as the

standard deviation of the ensemble mean (with period mean removed) divided by the standard deviation of the

ensemble spread over 1985–2009, is shown. (a) Tropical Pacific (308S–308N), (b) tropical Indian Ocean (308S–308N),

(c) tropical Atlantic (308S–308N), (d) northern oceans (318–708N), and (e) southern oceans (708–318S) are shown.
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The temporal variations of the spread can be partially

attributed to the temporal variations of data counts in

each ocean basin (Fig. 4). The data counts in Fig. 4 in-

clude the instrument casts that contain temperature

measurements for at least one depth in the upper 300 m,

regardless of the depth(s) at which the measurement(s)

was (were) made. Temperature profiles are from bottle/

CTD, XBT, MBT, moored buoy and Argo; those from

gliders and drifting buoys (other than Argo) were ex-

cluded as theymay skew the counts due to their very large

numbers of profiles in a very small area. Each temperature

profile is either from a completely separate instrument, or

separate casts of the same instrument.

In the tropical Pacific, the data counts increased sub-

stantially in the early 1990s because of the completion of

the Tropical Atmosphere Ocean (TAO) array, and then

increased further in the early 2000s when the Argo data

became available (Fig. 4a). The Argo data also dramati-

cally increased the data counts in the tropical Indian, the

tropical Atlantic, and the southern oceans (Figs. 4b,c,e).

However, the data counts decreased gradually from 1986

to 2010 in the northern oceans (Fig. 4d) and from 1986 to

2002 in the global ocean (Fig. 4f) because of the decrease

of counts from bottles/CTDs and XBTs (not shown).

To see how observations influence the spatial distri-

bution of uncertainties in the mean HC300, Fig. 5 shows

the ensemble spread of HC300 analyses in 1985, and

the corresponding data counts, the changes of the en-

semble spread from 1985 to 1995, and from 1995 to 2006,

and corresponding changes in the data count. The data

counts are the number of profiles with temperature data

in the upper 300 m that passed quality control checks in

EN3 averaged into one degree grid boxes.

In 1985, the ensemble spread is above 0.48C in parts of

the tropical Pacific, tropical Indian Ocean and tropical

Atlantic, and above 18C near the western boundary cur-

rents and extratropical southern oceans (Fig. 5a), while

the data coverage is mostly confined to north of 108S
(Fig. 5d). In 1995, the full implementation of the TAO

mooring array dramatically increased the data density

in the tropical Pacific (Fig. 5e), which led to a reduction

in the ensemble spread by as much as 40% (Fig. 5b).

The data increase in the Bay of Bengal, subpolar North

Atlantic, and subtropical southern oceans also led to

FIG. 3. Time series of 2-yr running mean of the spread of the analyses of HC300 from the ensemble mean (8C)
averaged in different ocean basins computed using either 10 ORAs (thick black line) or nine ORAs with one ORA

withheld (thin lines). (a) Tropical Pacific (308S–308N), (b) tropical Indian Ocean (308S–308N), (c) tropical Atlantic

(308S–308N), (d) northern oceans (318–708N), and (e) southern oceans (708–318S) are shown.
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a reduction in the ensemble spread in those regions

(Figs. 5b,e). The spread increased across the tropical

IndianOcean and the North Pacific, and corresponds to

a decrease in data counts over those regions.

The introduction of Argo in the early 2000s signifi-

cantly improved the global data coverage (Fig. 5f). From

1995 to 2006, the data coverage increased over most

of the global ocean except in the South China Sea, the

western tropical Atlantic andmidlatitude NorthAtlantic.

There is a good correspondence between the increase of

data counts and reduction in the spread, particularly in

the tropical Indian Ocean, equatorial eastern Atlantic,

and high-latitude southern oceans (Fig. 5c). Despite the

reduction in the ensemble spread, the spread in 2006 is

still above 0.78C near the western boundary currents,

Gulf of Mexico, western tropical Atlantic, and extra-

tropical southern oceans, indicating a need for further

improvement of HC300 analysis in those regions.

c. Uncertainties in HC300 analysis near the equator

Because of the global influence of oceanic variability

in the equatorial oceans, time variations of uncertainties

in HC300 analysis in the equatorial ocean zones are

investigated further. Figure 6 shows the time evolution

of the spread of HC300, and the offsets of HC300 from

EN3 for each ORA in the equatorial Pacific from 1980–

2009. The spread ofHC300, that is, the standard deviation

around the ensemble mean of the 10 ORAs, reduces sig-

nificantly around 1993 when the TAO mooring array was

almost fully implemented (Fig. 6a). The spread is largest

during the 1982/83 and 1997/98 events, during which the

differences between EN3 andNational Oceanographic

Data Center (NODC) are particularly large (Fig. 6b).

A further examination of the NODC and EN3 analysis

suggests that the differences between EN3 and NODC

are probably caused by differences in the TAO buy data

retained in each analysis. A future study is needed to

understand differences in the quality control procedures

in the two analyses.

The GMAO and Bureau of Meteorology (BOM)

analyses agree very well with the EN3, particularly after

1990. The GFDL analysis has a significant cold offset

before 1993 that gets smaller after 1993 and is mostly

gone after 2003 (Fig. 6g). The cold offset identified here

was attributed to a too large observation error used in the

analysis, which has been fixed in a later version of the

FIG. 4. Time series of data counts per year for each ocean basin shown in Fig. 2 and the global ocean. (a) Tropical

Pacific (308S–308N), (b) tropical Indian Ocean (308S–308N), (c) tropical Atlantic (308S–308N), (d) northern oceans

(318–708N), (e) southern oceans (708–318S), and (f) global ocean (708S–708N) are shown.
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analysis. The CFSR analysis has a cold offset before 1999

and a warm offset afterward, which does not diminish in

the recent period (Fig. 6f). The switch from cold to warm

offset in the CFSR is related to a sudden change in the

quality of the trade winds, which were too strong before

1998 but became close to observations once theAdvanced

Television and Infrared Observation Satellite Operational

Vertical Sounder (ATOVS) satellite observations were

assimilated in the atmospheric analysis (Xue et al.

2011; Zhang et al. 2012). The GODAS has some warm

offsets that do not diminish in the recent period (Fig. 6c).

Other analyses (ECMWF, JMA, MERCATOR) have

some warm offsets relative to EN3 early in the period.

The spread in the analyses of HC300 in the equatorial

Indian Ocean is generally small in the central basin, but

relatively large in the western and eastern Indian

Ocean (Fig. 7a), which is consistent with the standard

deviation of HC300 (Fig. 9a). The spread is reduced

significantly around 2003 in the eastern Indian Ocean

when the two RAMA mooring lines were installed at

80.58 and 908E. The NODC analysis agrees well with

EN3 except during 1997–2001 when the NODC anal-

ysis was colder (Fig. 7b). It is interesting that the

model-based ORA offsets from EN3 are mostly nega-

tive (positive) in the eastern (western) tropical Indian

Ocean before 1997, which suggests that the east-west

FIG. 5. (a) The spread of the analyses of HC300 (8C) among 10 ORAs in 1985, the percentage change in the spread

(b) from 1985 to 1995, and (c) from 1995 to 2006. (d) The data counts in 1985, and the changes of the data counts

(e) from 1985 to 1995, and (f) from 1995 to 2006.
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thermocline slope (Fig. 1a) is smaller in all models than

in the EN3 analysis. A reduction in offsets around 1997

might be related to an improvement in atmospheric

reanalysis winds due to assimilation of satellite scat-

terometer winds (Chelton and Freilich 2005). In fact,

a similar reduction in the offset around 1997 is found in

the control simulation (without data assimilation) of

the BOM analysis (Yonghong Yin, personal commu-

nication). Soon after, differences between the analyses

diminish significantly because of the implementation of

Argo and RAMA.

The spread in the analyses of HC300 in the equatorial

Atlantic Ocean is unevenly distributed across the basin,

with the largest spread confined east of 108W (Fig. 8a).

The spread in the eastern Atlantic was significantly less

after 2006, while the spread in the west-central Atlantic

decreased considerably after 1995 (Fig. 8a). Note that

the Pilot Research moored Array in the Tropical At-

lantic (PIRATA)moorings implemented at 358, 238, and

108W on the equator around 1998 have contributed to

reduce the spread in the western equatorial Atlantic but

had very little effect in the eastern Atlantic. In this re-

gion it is only after 2005/06 with the advent of Argo that

the spread is substantially reduced.

The offsets relative to EN3 are generally small except

in JMA, BOM, GFDL, and CFSR. The JMA and BOM

analyses have significant cold offsets in the eastern

equatorial Atlantic throughout the whole period, while

the GFDL analysis is colder in the early period. The

CFSR has alternating warm and cold offsets and is re-

lated to model drifts, and discontinuities across the six

streams in which the CFSR was executed (Xue et al.

2011). In summary, the HC300 analysis in the equatorial

Atlantic has the largest spread (uncertainty) among the

three equatorial oceans, but spread reduced significantly

in the last few years of the analysis period that may be

due to enhanced observations from the Argo floats and

PIRATA moorings.

FIG. 6. Longitude–time plot of 13-month runningmeanHC300 (8C) averaged over the 28S–28N band in the equatorial Pacific for (a) the

spread of the analyses of HC300 among 10 ORAs, (b) NODC minus EN3, (c) GODAS minus EN3, (d) ECMWF minus EN3, (e) JMA

minus EN3, (f) CFSRminus EN3, (g) GFDLminus EN3, (h) GMAOminus EN3, (i)MERCATORminus EN3, and (j) BOMminus EN3.
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4. Interannual, decadal, and long term variability in
HC300

a. Analysis of variability of monthly mean HC300
anomaly

The magnitude of HC300 variability is quantified

based on the standard deviation (STD) ofmonthlymean

HC300 anomalies. Further, the STD of ORAs is com-

pared with that from EN3 (Fig. 9). The STD from EN3

shows that HC300 variability is relatively large in the

eastern equatorial Pacific and western tropical Pacific.

The STD in the tropical Indian Ocean is weaker than

that in the tropical Pacific with maximum amplitude in

the eastern and western tropical IndianOcean and south

of the equator near 108S. The STD in the tropical At-

lantic is the weakest among the tropical Oceans. In the

northern oceans, the STD is relatively high near the

Kuroshio-Oyashio Extension (KOE), the Gulf Stream

(GS), and subpolar North Atlantic. Large HC300 vari-

ability is also observed in the midlatitude South Atlantic

near the coast of South America and South Africa.

The STD of NODC is about 15%–30% weaker than

that of EN3 (Fig. 9b), which may be partially related to

the fact that the NODC (EN3) is a seasonal (monthly)

analysis. The STD of the model-based ORAs is gener-

ally larger than EN3 near the western boundary currents

and in the southern oceans. A few exceptions are as fol-

lows: 1) the STD in GMAO,MERCATOR, and BOM is

generally weaker thanEN3 in the southern oceans, which

might be related to a strong relaxation to climatology

(Table 1); 2) the STD in MERCATOR is weaker than

that of EN3 in the North Pacific; and 3) the STD inCFSR

is more than 100% stronger than EN3 in the tropical

Atlantic, which is related to the six analysis streams and

model drift within each analysis stream (Xue et al. 2011).

Near the Antarctic Circumpolar Current (ACC), the

HC300 variability is particularly strong in GODAS and

GFDL, probably because they do not include a relaxation

to climatology (Table 1). In data sparse regions such as

near the ACC, the analysis is essentially the model run

forced by reanalysis fluxes (GODAS) or the fully coupled

model run (GFDL).

FIG. 7. As in Fig. 6, but for the equatorial Indian Ocean.
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Consistency of HC300 variability in different ORAs

with EN3 is measured by anomaly correlation (AC).

Figure 10 shows the AC of each analysis with EN3, the

ensemble mean and the spread in AC calculated over

1985–2009. The AC is generally low near the GS and

KOE. This is understandable since the resolution of the

climate models cannot represent the ocean dynamics

necessary for analyzing the correct location or strength

of the GS and KOE (Kwon et al. 2010). On the other

hand, the data-only analyses, that is, EN3 and NODC,

may not represent the location and strength of the GS

and KOE either due to their coarse resolution.

The ACs averaged in different ocean basins are

summarized in Table 2. In terms of average ACs, the

consistency in the North Pacific (mean 5 0.67, spread/

mean 5 9%, i.e., spread is 9% of the mean) is slightly

higher than that in the North Atlantic (mean 5 0.62,

spread/mean5 11%). In the tropical Pacific, the average

AC ranges from 0.74 in CFSR to 0.86 in BOM, and the

spread/mean is 4%, indicating a high consistency among

ORAs. In the tropical Indian (Atlantic) Ocean, the

mean AC is 0.58 (0.45) and the spread/mean is 8%

(20%). Therefore, consistency in the tropical Atlantic is

the lowest of the three tropical oceans. The low consis-

tency in the tropical Atlantic is largely attributed to the

poor AC (0.24) in CFSR, which is much lower than the

ACs in other ORAs (.0.42). The consistency of AC in

the three extratropical southern oceans is generally low,

indicating large uncertainties in HC300 variability over

those regions.

We next quantify the strength of the interannual vari-

ability in the ensemble mean of monthly mean HC300

versus the amplitude of the spread across the HC300

analyses over 1985–2009. In this calculation, the CFSR

was excluded since doing so significantly reduces the

ensemble spread in the tropical Atlantic (Fig. 3c). Fur-

ther, since the S/N in the tropical Indian was improved if

NODC and EN3 were also removed, the signal, the noise

and S/N shown in Fig. 11 were calculated from the en-

semble of 7 ORAs.

The STD of the ensemble mean HC300a (Fig. 11a) is

comparable to that ofEN3HC300a (Fig. 9a) in the tropical

FIG. 8. As in Fig. 6, but for the equatorial Atlantic Ocean.
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Pacific, southwestern tropical Indian Ocean and near the

western boundary currents, but is much smaller in the

western/eastern tropical Indian Ocean, the tropical At-

lantic and midlatitude southern oceans, indicating en-

semble averaging damps variability in those regions. On

the other hand, the noise is the largest near the western

boundary currents and midlatitude southern oceans (Fig.

11b). If the S/N is larger than 1, a climate signal represented

by the ensemblemean is regarded as significant, and so can

be used to monitor an aspect of climate variability.

The S/N in the tropical Pacific is above 4, which is

lower than the estimation by Zhu et al. (2012). The S/N

is more than 1.5 in the eastern and southwest tropical

Indian Ocean, suggesting that the common variability in

ORAs is larger than the noise. In contrast, the S/N is

near 1 in the tropical Atlantic where there is hardly a

consistent signal in HC300 across the ORAs. We also

noticed that the S/N is larger than 2 in the eastern North

Pacific, where both the signal and noise are relatively

weak, and subpolar North Atlantic, where the signal is

strong and the noise is weak. We will show next that the

regions where the S/N is large coincide with the areas

where HC300 variability is also significantly correlated

with SST variability.

b. Interannual variability of HC300 associated with
major climate modes

The level of anomaly correlation between HC300 and

SST helps identify the regions where HC300 variability

may have significant influences on SST variability,

therefore providing a source of potential predictability

for climate variability on seasonal and longer time scales.

Figure 12 shows that monthly mean HC300a is signifi-

cantly correlatedwith SST anomaly (SSTa) inmany areas

of the global ocean. The AC is generally above 0.6 in the

central and eastern tropical Pacific, eastern North Pacific

and subpolar North Atlantic. The high AC in the eastern

tropical Pacific is attributable to strong air-sea cou-

plings and ocean dynamics associated with ENSO,

while the high AC in the North Pacific and subpolar

FIG. 9. Standard deviation of monthly mean HC300 anomalies (8C) over 1985–2009 for (a) EN3, relative differences from EN3 (%) of (b)

NODC, (c) GODAS, (d) ECMWF, (e) JMA, (f) CFSR, (g) GFDL, (h) GMAO, (i) MERCATOR, and (j) BOM.
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NorthAtlantic is probably associated with atmosphere-

driven strong vertical mixing and convection resulting

in variations in mixed layer, SST and HC300. The high

AC between HC300 and SST in the subpolar North

Atlantic provide a source of long-lead SST prediction

skill (van Oldenborgh et al. 2012). Other regions where

theAC ismoderately high (.0.4) are thewestern tropical

Pacific, southwest tropical Indian Ocean, and eastern

tropical Atlantic.

The spread in AC (Fig. 12i) is relatively small in the

tropical Pacific, North Pacific, southwest tropical Indian

Ocean, and subpolar North Atlantic, suggesting that

uncertainties in HC300-SST covariability are relatively

small and the relationship is robust. However, the spread

is relatively large near the GS and KOE, in the southeast

tropical Indian Ocean, tropical Atlantic, and extra-

tropical southern oceans, indicating that the correlations

between HC300a and SSTa have large uncertainties in

those regions.

The boxes in Fig. 12 highlight regions of maximum

covariability between HC300a and SSTa that are asso-

ciated with ENSO, IOD, and Atlantic Niño. The ACs

averaged over the boxes as well as the box definitions

are listed in Table 3. In the Niño-3 region (58S–58N,

1508–908W), the meanAC between HC300a and SSTa is

0.77 and a spread/mean of 5% (Table 3). The AC in the

western tropical Pacific is much lower, with a mean of

0.39 and a spread/mean of 11%. In the southeastern

tropical Indian Ocean, the AC ranges from 0.16 in EN3

and NODC to 0.39 in MERCATOR. We will show later

that the EN3 and NODC analysis are problematic in this

region. The AC in the southwest tropical Indian Ocean

has a mean of 0.44 and a spread/mean of 11%. The

moderately high correlation is expected in the southwest

tropical Indian Ocean where the mean thermocline is

shallow, and strong upwelling and vertical mixing tend to

bring subsurface temperature anomalies near to the sur-

face (Xie et al. 2002). In the equatorial eastern Atlantic,

FIG. 10. Anomaly correlation of HC300 analysis with EN3 in 1985–2009 for (a) NODC, (b) GODAS, (c) ECMWF, (d) JMA, (e) CFSR,

(f) GFDL, (g) GMAO, (h) MERCATOR, (i) BOM, (j) the ensemble mean of correlations, and (k) the spread of correlations from the

ensemble mean. The anomaly correlations averaged in different ocean basins are shown in Table 2.
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the AC ranges from 0.35 in CFSR to 0.60 in GFDL, and

has a mean of 0.50 and a spread/mean of 18%.

With the goal of monitoring interannual variability of

HC300a associated with ENSO, IOD, and the Atlantic

Niño in real time, a set of climate indices were derived as

the average HC300a in the boxes shown in Fig. 12. In

Fig. 13, the box average HC300a from individual anal-

ysis (thin line) and the ensemble mean (thick black line)

are shown along with the S/N displayed on the top right

corner of each panel. The S/Ns were derived for the

period 1985–2009, excluding the early years when some

ORAs had considerable initial drift.

TABLE 2. Anomaly correlation (AC) of HC300 analysis from nine ORAs with EN3 HC300 in 1985–2009 averaged in various ocean

basins. The ensemble mean is the average AC for nine ORAs, and the spread is the standard deviation from the ensemble mean. AC less

than 0.4 and spread/mean larger than 12% are in bold.

North

Pacific

218–708N

North

Atlantic

218–708N

Tropical

Indian

208S–208N

Tropical

Pacific

208S–208N

Tropical

Atlantic

208S–208N

South

Indian

708–218S

South

Pacific

708–218S

South

Atlantic

708–218S

NODC 0.73 0.72 0.59 0.82 0.54 0.47 0.52 0.43

GODAS 0.74 0.64 0.60 0.82 0.53 0.28 0.44 0.28

ECMWF 0.64 0.59 0.56 0.81 0.42 0.27 0.45 0.29

JMA 0.64 0.61 0.58 0.80 0.45 0.28 0.41 0.33

CFSR 0.67 0.57 0.49 0.74 0.24 0.18 0.35 0.25
GFDL 0.65 0.56 0.51 0.78 0.43 0.19 0.33 0.19

GMAO 0.60 0.53 0.63 0.81 0.48 0.29 0.40 0.27

MERCATOR 0.62 0.60 0.59 0.79 0.43 0.20 0.34 0.25

BOM 0.79 0.73 0.64 0.86 0.53 0.39 0.52 0.44

Mean 0.67 0.62 0.58 0.80 0.45 0.28 0.42 0.30

Spread/mean 9% 11% 8% 4% 20% 32% 16% 25%

FIG. 11. (a) Signal, defined as the temporal standard deviation of the ensemble mean of monthly HC300 anomalies

(8C) from 7ORAs (GODAS, ECMWF, JMA, GFDL,GMAO,MERCATOR, and BOM) over 1985–2009, (b) noise,

defined as the standard deviation of the spread from the ensemble mean over 1985–2009, and (c) the signal-to-noise

ratio.
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The S/N is high in the eastern (5.5) and western (6.5)

tropical Pacific, consistent with that shown in Fig. 11c.

The tropical PacificHC300a has a decadal shift (Figs. 13a,

b): variability is muchweaker, and the equatorial western

Pacific is much warmer after 2000. In the southeast

tropical Indian Ocean, the large HC300a variability is

associated with the IOD events in 1982, 1994, 1997 and

2006 (Fig. 13c). Note that the NODC and EN3 analyses,

without the benefit of the model dynamics responding to

the observed surface forcings to compensate for sparse

observations in the region, missed the large positive

anomaly in 1999 (Fig. 13c). The S/N is 2 when all 10

ORAs were included, while it is 2.7 if NODC and EN3

were excluded, suggesting that model-based ORAs were

more consistent. Similarly, the S/N increased from 2.4 to

2.7 in the southwest tropical Indian Ocean (Fig. 13d)

without NODC and EN3. The HC300a in the southwest

tropical Indian Ocean are highly correlated with those in

the tropical Pacific, indicating strong influences of

ENSO on HC300a variability over this region. In ad-

dition, the large positive HC300a in 1994 and 2006 are

associated with IOD events (Rao et al. 2002). The S/N

in the equatorial eastern Atlantic (Fig. 13e) is 1.3 when

all 10 analyses were included, but it is 1.6 when CFSR

was excluded, indicating that HC300a variability asso-

ciated with the Atlantic Niño is marginally represented

by the ensemble mean of ORAs. The Atlantic Niño has

higher frequency variability than ENSO during 1980–

2000, and there is a warming trend over much of the

period from 2000–08.

c. Decadal and long-term variability

Large multidecadal variability of the heat content in

the upper 300 mwas first reported a decade ago (Levitus

et al. 2000). Recent studies suggest that earlier estima-

tions ofmultidecadal heat content variability, and a global

FIG. 12. Anomaly correlation between HC300 and SST in 1982–2009 for (a) EN3, (b) NODC, (c) GODAS, (d) ECMWF, (e) JMA, (f)

CFSR, (g) GFDL, (h) GMAO, (i) MERCATOR, (j) BOM, (k) the ensemblemean of correlations, and (l) the spread of correlations from

the ensemble mean. The anomaly correlations averaged in the boxes drawn here are listed in Table 3, and the time series of HC300

anomalies averaged in the boxes are shown in Fig. 13.
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warming trend, might be contaminated by large biases

in XBT data (e.g., Domingues et al. 2008). It is very dif-

ficult to remove all biases associated with the assumption

used for the XBT fall rate. In fact, uncertainty due to

choice of XBT bias correction dominates variability

across different estimates in global heat content estima-

tion during 1993–2008 (Lyman et al. 2010). Among the 10

ORAs used in the study, twoORAs (GFDLandGMAO)

include XBT corrections, while others do not. Although,

we do not discuss the impacts of XBT bias on decadal

variability and long-term trend of HC300, we focus on

a discussion of ensemble mean signal and spread for the

long-term trend.

The quasi-global (708S–708N) means of HC300 from

the 10 ORAs are shown in Fig. 14a. There are differ-

ences among ORAs, but there is a consensus that the

global ocean increased from 1984 to 1992 followed by a

short cooling episode in 1992/93, and then increased

from 1994 to 2003/04, followed by flattening or a de-

crease. The GFDL analysis has the strongest warming

trend from 1984 to 2003, and the steepest cooling trend

from 2003 to 2009. The BOM analysis also has a sub-

stantial cooling trend after 2003 (Fig. 14d). It is noted

that the GODAS and CFSR are the warmest in 1980/81,

which is related to the initial spin up (Xue et al. 2011).

The cooling in the early 1980s may not be reliable due to

the large spread (Fig. 14c), but the cooling in 1992/93 are

most likely related to the dimming affect of aerosols

(Church et al. 2005) associated with eruptions of the

Mt. Pinatubo volcano in June 1991.

The variations in HC300a are similar to those in total

HC300 except that the estimates are closer together

(Fig. 14b) due to removal of differences in mean values.

It is noticed that the GMAO and CFSR analyses have

a third cooling period around 1997/98 when other

analyses remain fairly constant. Most of the analyses

have maximum values around 2002–04, while CFSR,

JMA, and GMAO have peak values in 2006, 2007, and

2009 respectively (Fig. 14d).

The spread in the mean HC300 (solid line in Fig. 14c)

decreases from 1980 to 1995, but increases from 1995 to

2003. The spread then decreases after 2003 when the

Argo array reaches a global coverage. It is interesting to

note that the spread of HC300a is generally smaller than

that of total HC300, and the increase of the spread

during 1995–2003 is also less pronounced. The increase

of the spread during 1995–2003 is significantly reduced if

GFDL is not included. The S/N for HC300a in 1985–

2009 is 1.8, indicating the global mean HC300 variability

is reasonably well represented by the set of ORAs.

The positive trend in the quasi-global mean of HC300

has contributions from different ocean basins. We cal-

culated the linear trends for the 1985–2009 and 1993–

2009 periods separately, and found the trend patterns

are similar over the two periods while the trend over

1993–2009 has a stronger amplitude. Figure 15a shows

the ensemble mean of the linear trends over 1993–2009.

The uncertainty of the trend is estimated by the ratio

of the ensemble mean of the trends to the ensemble

spread of the trends from 10ORAs (Fig. 15b). Themean

trend can be viewed as a robust estimate if the ratio is

large. Next we will discuss HC300 variability in the re-

gions where the trend is robust.

For the North Pacific, Xue et al. (2011) calculated the

dominant empirical orthogonal functions (EOFs) of

HC300a using the NODC, GODAS, and CFSR prod-

ucts for the period 1979–2009. They found that the first

two EOFs and their principal components (PCs) are

highly consistent among the three ocean reanalysis

products, and also, are very similar to those derived from

sea surface height in an ocean model simulation of the

1950–2004 period (Di Lorenzo et al. 2008). The first PC,

TABLE 3. AC between each HC300 analysis and SST in 1982–2009 averaged in various ocean regions depicted in Fig. 12. The ensemble

mean is the averageAC for 10ORAs, and the spread is the standard deviation from the ensemblemean.AC less than 0.4 and spread/mean

larger than 12% are in bold.

Eastern Pacific

58S–58N, 1508W–908W
Western Pacific

108S–108N, 1308E–1808
Southeast Indian

108S–08, 908–1108E
Southwest Indian

128–68S, 508–808E
Eastern Atlantic

48S–28N, 208W–08

EN3 0.80 0.39 0.16 0.42 0.57

NODC 0.74 0.37 0.16 0.42 0.47

GODAS 0.78 0.39 0.25 0.41 0.46

ECMWF 0.78 0.41 0.32 0.48 0.58

JMA 0.77 0.38 0.36 0.51 0.45

CFSR 0.75 0.37 0.30 0.40 0.35
GFDL 0.76 0.38 0.24 0.45 0.60

GMAO 0.77 0.36 0.29 0.42 0.48

MERCATOR 0.78 0.41 0.39 0.47 0.56

BOM 0.79 0.39 0.34 0.45 0.47

Mean 0.77 0.39 0.28 0.44 0.50

Spread/mean 5% 11% 29% 11% 18%
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representing the temporal variation of the PDO (Di

Lorenzo et al. 2008), is well described by the HC300a

differences in the eastern North Pacific and west-central

North Pacific shown as boxes in Fig. 15. It is seen that the

PDO was in a positive phase from 1980 to 1998, except

for a brief period in early 1990s, and switched to a neg-

ative phase around 1999, staying negative since then

(Fig. 16a). The S/N of the PDO is 4.2, indicating a high

consistency among ORAs, except that the GMAO has

slightly weaker amplitude than other analyses in the

early 2000s.

The decadal variability of HC300 in the subtropical

North Pacific and South Pacific can be described by the

HC300a differences in the eastern and western sub-

tropical Pacific shown as boxes in Fig. 15. The S/N for

the subtropical North Pacific and South Pacific is 4.9 and

5.4 respectively. The two indices are highly correlated

with each other (Figs. 16b,c), and are negatively corre-

lated with that in the tropical western Pacific (Fig. 13b).

They are dominated by strong interannual variability

from 1980 to 1999, switching to a colder state around

1999, followed by a cooling trend overlain with weak

interannual variability.

The subtropical southern Indian Ocean has a weak

warming trend from 1993 to 2009, which is robust despite

considerable spread among analyses (Fig. 16d). The

warming trend in HC300 is consistent with that in SSH in

a model simulation of Han et al. (2010), who suggest that

the warming trend started in early 1960s. The subtropical

North Atlantic has a weak warming trend from 1984 to

2003 and a moderate cooling trend from 2003 to 2009

(Fig. 16e). The S/N is 2, indicating a better consistency in

the subtropical North Atlantic than in the subtropical

South Indian Ocean. The first EOF of altimetry sea sur-

face height shows a weakening of the North Atlantic

subpolar gyre since 1995 (Hakkinen and Rhines 2004).

Consistent with Hakkinen and Rhines (2004), the sub-

polar HC300a increased substantially around 1995,

reached a peak value around 2006, and decreased since

then (Fig. 16f). The S/N is 4, indicating a high consistency

among HC300a analyses.

5. Summary and conclusions

The availability of multiple ORAs that are now rou-

tinely produced by operational and research centers

provides an opportunity to assess uncertainties in HC300

analyses, to help identify gaps in observing systems as

they impact the quality of ORAs (and therefore climate

model forecasts), and help identify deficiencies in data

assimilation schemes. Multiple ORAs also provide the

basis for development of real-time multimodel ensemble

HC300 (and other) monitoring products.

We analyzed 10 ORAs, two objective analyses based

on in situ data only, and eight model analyses based on

ocean data assimilation systems. The mean, annual cy-

cle, interannual variability, and long-term trendofHC300

in 1980–2009 from the 10 ORAs was compared. In this

comparison, we selected the EN3 analysis as the refer-

ence (without regard to its quality) to assess similarities

and differences among analyses. We also defined a signal

to noise ratio (S/N), where signal is the temporal standard

deviation of the ensemble mean of HC300, and noise the

temporal standard deviation of the spread of ORAs.

The mean HC300 in 1985–2009 was highly consistent

amongORAs north of 308S except near the Gulf Stream

and Kuroshio-Oyashio Extension, in the tropical At-

lantic, and some regional seas (Fig. 1). The model-based

ORAs show large spread in their mean value in some of

FIG. 13. Time series of 7-month running means of HC300

anomalies (8C) averaged in various regions (shown as boxes in

Fig. 12 and defined in Table 3). (a) Eastern equatorial Pacific,

(b) western tropical Pacific, (c) southeast tropical Indian Ocean,

(d) southwest tropical Indian Ocean, (e) eastern equatorial At-

lantic are shown. (top right) The S/N is shown. The S/N and en-

semble mean (thick black line) were calculated with 10 ORAs in

(a),(b), eight ORAs without NODC and EN3 in (c),(d), and nine

ORAs without CFSR in (e). The numbers in parentheses in (c),(d),

(e) are the S/N calculated with 10 ORAs.
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these poorly observed areas, like the Antarctic Cir-

cumpolar Current. This is a strong indication that both

improvements in the first guess (model1fluxes) as well

as in observation coverage are needed to representH300

in those areas.

The spread in the estimate of the mean HC300 in

different ocean basins generally decreased with time and

reached a minimum in the early 2000s when the Argo

data became available (Fig. 2). There is a warming trend

in the northern oceans that is well represented by the

ensemble where the S/N is 2.3. In the tropical Pacific and

tropical Atlantic, the S/N is 1.3 and 1.1, respectively.

There is no robust trend before 2000 because of the large

spread among analyses, however there is a rapid warm-

ing in early 2000s and a cooling trend after 2005 that are

consistent among analyses. The S/N in the tropical Indian

Ocean and southern oceans is too low (0.6, 0.2 respec-

tively) to detect any decadal variability or long-term trend.

The ensemble spread, calculated as the standard de-

viation from the ensemble mean at each grid point and

each month, was found to be strongly influenced by the

distribution of in situ data. There was a good correspon-

dence between the increase of data counts and reduction

of the spread (Fig. 5). In the tropical Pacific, the averaged

spread decreased substantially around 1985 and 2003

when the TAO and Argo data began to be assimilated

into ORAs (Fig. 3a). The impacts of the Argo data was

also clearly seen in the averaged spread in the tropical

IndianOcean (Fig. 3b) and extratropical southern oceans

(Fig. 3e), but not as clear in the tropical Atlantic (Fig. 3c)

and extratropical northern oceans (Fig. 3d).

The standard deviation of monthly mean HC300

anomaly was generally consistent among ORAs except

near the western boundary currents, in the tropical At-

lantic and southern oceans (Fig. 9). In the southern

oceans, the BOM, GMAO, and MERCATOR have

much weaker STD than that of EN3, probably related to

a strong relaxation to climatology (Table 1). On the

other hand, the HC300 variability is particularly strong

in GODAS and GFDL near the Antarctic Circumpolar

Current (ACC) since they do not include a relaxation to

climatology.

Uncertainties in HC300 anomaly were quantified by

anomaly correlation (AC) with EN3 (Fig. 10) and the

S/N ratio (Fig. 11). TheACwith EN3 is generally high in

the tropical Pacific, tropical IndianOcean, North Pacific,

and North Atlantic, but it is low in the tropical Atlantic

and extratropical southern oceans where observations

FIG. 14. Time series of 2-yr runningmean of (a) total HC300, (b) anomalous HC300 averaged in 708S–708N, (c) the

spread of total HC300 (solid line) and anomalous HC300 (dash line) among 10 ORAs, and (d) as in (b), but only for

the period 2001–08. (top right) The S/N is shown in (a),(b). The S/N, the spread, and ensemblemean (thick black line)

were calculated with 10 ORAs.
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are very sparse. The S/N was above 4 in the tropical

Pacific, while it was more than 1.5 in the eastern and

southwest tropical Indian Ocean and near 1 in the trop-

ical Atlantic. The S/N was larger than 2 in the eastern

North Pacific and subpolar North Atlantic. The regions

where the S/N is large coincide with the areas where the

AC with EN3 is high.

As for a larger spread over the tropical Atlantic, we

propose two factors contributed to the relatively low S/N

in the tropical Atlantic: 1) the amplitude of signal is

weaker and is about 1/3 of that in the tropical Pacific

(Fig. 11a); 2) the amplitude of noise is the largest in the

tropical oceans (Fig. 11b). The large noise in the tropical

Atlantic may be attributed to large uncertainties in the

surface forcings used in ocean reanalyses. Balmaseda

andMogensen (2010) showed that the improved surface

forcings from the ERA-Interim significantly improved

sea surface height anomaly correlation with satellite

observations in two ocean reanalysis systems. It is ex-

pected that the signal will enhance and the noise will

reduce in the tropical Atlantic when better, and more

consistent, surface forcings are used in the next gener-

ation ocean reanalyses.

Monthly mean variability in HC300a was significantly

correlated with SST anomaly (SSTa) in many areas of

the global ocean (Fig. 12). The AC was generally above

0.6 in the central and eastern tropical Pacific, North Pa-

cific, and subpolar North Atlantic. Other regions where

the AC was moderately high (.0.4) were the western

tropical Pacific, southwest tropical Indian Ocean, and

eastern tropical Atlantic.

With the goal of monitoring interannual variability,

a set of climate indices were derived as HC300a aver-

aged over the areas where the covariability between SST

and HC300 was associated with ENSO, IOD, and At-

lantic Niño (Fig. 13). The S/N was high in the eastern

(5.5) and western (6.5) tropical Pacific. In the southeast

tropical Indian Ocean, the S/N was 2 when all 10 ORAs

FIG. 15. Linear trend of HC300 anomalies over 1993–2009 (8C/
decade). (a) Ensemble mean of linear trends based on 10 ORAs,

(b) ratio between ensemble mean, and ensemble spread. Time

series of the average HC300 anomalies in the boxes drawn here are

shown in Fig. 16.

FIG. 16. Time series of 7-month running means of HC300

anomalies (HC300a, 8C) averaged in various regions (shown as

boxes in Fig. 15). (a) Pacific decadal oscillation 2 HC300a differ-

ences in (258–408N, 1458–1208W) and (258–408N, 1608E–1458W),

and (b) Subtropical North Pacific Ocean 2 HC300a differences in

(78–208N, 1508–1008W) and (78–208N, 1308E–1508W), (c) sub-

tropical South Pacific Ocean 2 HC300a differences in (208–78S,
1508–808W) and (208–78S, 1508E–1508W), and (d) subtropical

southern Indian Ocean (308–158S, 458–1108E), (e) subtropical

North Atlantic Ocean (158–308N, 808–108W), and (f) subpolar

North Atlantic Ocean (508–658N, 708–108W) are shown. (top right)

The S/N is shown. The S/N and ensemble mean (thick black line)

were calculated with 10 ORAs.
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were included, while the S/N was 2.7 if NODC and EN3

were excluded, indicating a consistency in the forced

ocean models when data is sparse in this region. The S/N

in the equatorial eastern Atlantic was 1.3 when all 10

analyses were included, but it was 1.6 when CFSR was

excluded. This indicates that HC300 variability associ-

ated with the Atlantic Niño is marginally represented by

the ensemble mean of the ORAs.

HC300 has large multidecadal variability and long-

term trends. The consensus among ORAs suggests that

the mean HC300 in 708S-708N increased from 1984 to

1992 followed by a short cooling episode in 1992/93, and

then increased from 1994 to 2003/2004, followed by flat-

tening or a decrease. A set of climate indices were de-

rived based on HC300a average in those regions where

the trend was robust.

Our analysis suggests that the suite of operational

ocean reanalyses can be used to monitor climate signals

related to variability on interannual to decadal time scales.

The ensemble mean of climate indices represent our

best knowledge of climate variability, while the ensem-

ble spread provides an estimation of uncertainties. We

envision this activity could be extended to routine ex-

change of climate information from ORAs, and imple-

mentation of operational monitoring of climate indices

using multimodel analyses in the near future.
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APPENDIX

Summary of Operational Ocean Reanalyses

A brief description of each ORA is provided below.

a. GODAS

The operational GODAS was implemented at Na-

tional Centers for Environmental Prediction (NCEP),

National Oceanic and Atmospheric Administration

(NOAA)/United States, in 2003 (Behringer and Xue

2004), providing oceanic initial conditions from 1979 to

present for the NCEP Climate Forecast System (Saha

et al. 2006). GODAS is based on the Geophysical Fluid

Dynamics Laboratory’s Modular Ocean Model version

3 (MOM3) (18 with 0.38 equatorial refinement and 40

levels) with forcings from the NCEP–Department of

Energy (DOE) Reanalysis and a 3DVAR data assimi-

lation scheme. At first, only observed temperature and

synthetic salinity profiles (Behringer et al. 1998) were

assimilated; subsequently, beginning in August 2006,

satellite altimetry sea surface height (SSH) was added

(Behringer 2007). In the 3DVAR system the influence

of the satellite SSH is projected onto the subsurface

temperature and salinity fields by including the differ-

ence between the satellite SSH and the model dynamic

height, linearized in temperature (T) and salinity (S), in

the cost function. Only the variable part of the satellite

SSH is assimilated, which is accomplished by removing

the annual averages for the years 1993–99 from the

satellite SSH and themodel dynamic height. Themodel

SST is nudged strongly to the NOAA weekly OI SST

(OISST, hereafter) product (Reynolds et al. 2002)

(with a relaxation coefficient equivalent to time scale of

5 days). The GODAS is updated daily in real-time with

a 2-day delay, and pentad and monthly averages are

used for real-time global ocean monitoring products

(http://www.cpc.ncep.noaa.gov/products/GODAS).

b. CFSR

A new reanalysis for the atmosphere, ocean, sea ice

and land, known as the CFSR (Saha et al. 2010), was

implemented in March 2011, and was used to provide

atmospheric and oceanic initial conditions from 1979 to

present for the NCEP Climate Forecast System version

2. The oceanic component of CFSR includes many ad-

vances over that of GODAS: (i) the MOM version 4

(MOM4) ocean model at ½8 with 1/48 equatorial re-

finement and 40 levels with an interactive sea ice model,

(ii) 6-h coupled model forecast as the first guess, (iii)

inclusion of the mean climatological river runoff, (iv)

high spatial (0.58) and temporal (hourly) model outputs,

and (v) strong relaxation to the NOAA daily OISST

product (Reynolds et al. 2007). See details in Xue et al.

(2011). The execution of the CFSR was completed with

six parallel streams with one year overlap across dif-

ferent streams (Saha et al. 2010).

c. GFDL ocean reanalysis

The GFDL ocean data assimilation system consists of

an Ensemble Kalman Filter applied to GFDL’s second

generation fully coupled climate model (CM2.1) (Zhang

et al. 2007). The ocean component is the MOM4 con-

figured with 50 vertical levels and 18 horizontal resolu-
tion, telescoping to 1/38 meridional spacing near the

equator. The atmospheric component has a resolution of

2.58 longitude and 2 o latitude with 25 vertical levels. The
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first guess is from a fully coupled model where the at-

mosphere component is constrained by winds, sea level

pressure and temperature data from the NCEP–DOE

reanalysis. For the ocean component, observed tem-

perature (T) and salinity (S) profiles, and the OISST

(Reynolds et al. 2002) were assimilated. Chang et al.

(2011) constructed so-called pseudo salinity profiles

from the weighted least squares procedure that mini-

mizes the misfits between the predetermined vertical

coupled T–S EOF modes and the observed tempera-

ture and altimetry SSH data. These pseudo salinity

profiles are assimilated into the GFDL analysis. The

altimetry SSH data is partially used for the generation

of pseudo salinity profiles, but not directly assimilated

to the current analysis (see details in http://www.gfdl.

noaa.gov/ocean-data-assimilation).

d. GMAO ocean reanalysis

The GMAO reanalysis uses the Goddard Earth Ob-

serving System coupled atmosphere–ocean general cir-

culation model (GEOS-5) and is based on MOM4 (0.58
with 1/48 equatorial refinement and 40 levels) and the

GEOS-5 AGCM (18 3 1.258 with 72 levels) model. The

atmosphere is constrained by the atmospheric fields from

the Modern Era Retrospective-analysis for Research

and Applications (MERRA) (Rienecker et al. 2011) and

the first guess for the ocean comes from a coupled forecast

(Vernieres et al. 2012). The ocean data assimilation uses

a multivariate ensemble optimal interpolation (EnOI) to

infer background-error covariances from a static ensem-

ble of 50 model state–vector EOFs. Observed tempera-

ture (T) and salinity (S) profiles, along-track sea level

anomalies (SLA) from Archiving, Validation, and In-

terpretation of SatelliteOceanographic data (AVISO) are

assimilated daily. The T/S profiles are from the un-

corrected EN3 dataset. The XBT temperature profiles

have been corrected according to Levitus et al. (2009).

Synthetic salinity profiles are generated for all temperature-

only observations. Ten percent of observations (se-

lected randomly) from the NOAA daily OISST of

Reynolds et al. (2007) are assimilated daily. The clima-

tological sea surface salinity is also assimilated to com-

pensate for errors in freshwater input from precipitation

and river runoff. Ten percent of T and S profiles ran-

domly extracted from the World Ocean Atlas 2009 grid-

ded climatology (Antonov et al. 2010; Locarnini et al.

2010) are also assimilated every five days with very small

weights. The SLA assimilation corrects only the model

surface height field. To assimilate the SLA a constant

offset between the AVISO anomalies and the model’s

surface height was removed. This offset was calculated

from themean difference between theAVISO anomalies

and an ocean analysis which did not assimilate SLA.

More details are available at http://gmao.gsfc.nasa.gov/

research/oceanassim/.

e. ECMWF ocean reanalysis

TheECMWFocean reanalysis, referred to asORA-S3,

has been operational since August 2006, providing ocean

initial conditions for the ECMWF seasonal and monthly

forecasts since March 2007. The ORA-S3 is based on the

Hamburg Ocean Primitive Equation (HOPE) model

(18 with 0.38 equatorial refinement and 29 levels), and a

3D multivariate OI scheme to assimilate temperature,

salinity, altimeter-derived sea level anomalies, and global

sea level trends (Balmaseda et al. 2008). It spans the

period 1959–present. Forcing fluxes are provided by

the 40-yr ECMWF Re-Analysis (ERA-40) until 2002

and ECMWF operational analysis thereafter. ORA-S3

uses the daily interpolated SST used in ERA-40 from

1959 until 1982 and the OISST (Reynolds et al. 2002)

thereafter. The model SST is nudged strongly to the

externally analyzed SST product (with a relaxation

coefficient equivalent to time scale of 3 days). The T/S

profiles are from the EN2 dataset (Ingleby and Hud-

dleston 2007) where the XBTs were not corrected, for

the historical period (prior to operational running) and

directly from the GTS ever since the system became

operational. Both altimeter-derived sea level anoma-

lies maps from AVISO as well as the global sea level

trends are assimilated. The model sea level anomalies

are computed respect a mean dynamic topography

from an equivalent experiment assimilating T and S

only. Because of the Bousinesque approximation, the

model mean sea level is blind to the global thermal

expansion. Therefore, the global mean sea level is re-

moved from model and altimeter maps before assimi-

lation. These ‘‘zero-global-mean’’ sea level anomalies

are assimilated using the scheme of Cooper and Haines

(1996) as described inBalmaseda et al. (2008) andVidard

et al. (2009). The global mean sea level from AVSIO

maps is then compared with the model-diagnosed steric

height, and the difference is added as a uniform fresh-

water flux. The assimilation procedure uses an adaptive

bias correction to correct systematic model errors.

A selection of historical and real-time ocean analysis

products can be found online (http://www.ecmwf.int/

products/forecasts/d/charts/ocean).

f. MERCATOR reanalysis

The MERCATOR ocean reanalysis, also referred to

as PSY2G2, covers the 1979–present time period and is

used at Météo-France for coupled seasonal forecasts.

The PSY2G2 is based on the Océan Parallélisé version

8.2 (OPA8.2) ocean model in the ORCA2 global config-

uration at 28 with 0.58 equatorial refinement and 31 levels.
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The surface forcing used is ERA-40 until 2002 and

ECMWF operational analyses afterward. In situ tem-

perature and salinity profiles, OISST maps are assimi-

lated weekly using a fixed basis reduced order Kalman

filter (Drévillon et al. 2008). Along-track altimetry SLA

data is assimilated together with a mean dynamic to-

pography (or mean sea surface height) derived from a

long model simulation without data assimilation. The

underlying assumption is that the mean sea level will not

be changed by data assimilation but only its variability.

The background covariance error is inferred from a static

seasonally variable ensemble of ;300 ocean states.

g. JMA ocean reanalysis

The JMA ocean reanalysis, also referred to as the

multivariate ocean three-dimensional variational esti-

mation (MOVE)/ Meteorological Research Institute

Community Ocean Model (MRI.COM) global system

[MOVE/MRI.COM-G (Usui et al. 2006)], was imple-

mented in March 2008. The analysis system covers the

quasi-global ocean (758S–758N) at 18 grid with 0.38
equatorial refinement and 50 vertical levels. The anal-

ysis scheme adopted in the MOVE system is a multi-

variate 3DVAR analysis scheme with vertically coupled

temperature–salinity EOF modal decomposition of a

background error covariance matrix. Temperature and

salinity profiles and along-track altimetry SSH anomaly

are assimilated. The along-track SSH anomaly is assimi-

lated along with the mean surface dynamic height (SDH)

calculated from a preliminary analysis that assimilates

temperature and salinity observations only (Usui et al.

2006). The Centennial in situ Observation-Based Esti-

mates (COBE)Analysis SST (COBE-SST) product (Ishii

et al. 2005) is assimilated as well. The system provides

pentad andmonthly fields from 1979 to present (http://ds.

data.jma.go.jp/tcc/tcc/products/elnino).

h. BOM ocean reanalysis

The BOM ocean reanalysis, also called the Predictive

Ocean Atmosphere Model for Australia (PEODAS)

Ensemble Ocean Data Assimilation System (POAMA;

http://poama.bom.gov.au is for the period from 1980 to

present. It is an approximate form of ensemble Kalman

filter system (Yin et al. 2011) wherein a single (central)

analysis is computed utilizing an ensemble-based

covariance and each of the perturbed ensemble

members is nudged toward the central analysis to

control the ensemble spread and constrain the mean.

Both in situ temperature and salinity observations are

assimilated every three days, and corrections to the

ocean currents are generated based on the ensemble

covariances. See details in Yin et al. (2011).

i. EN3 objective temperature analysis

The EN3 of the Met Office is an objective monthly

temperature analysis based on in situ observations

with a 18 grid and 42 levels (EN3_v2a; Ingleby and

Huddleston 2007). A historical reanalysis for the period

1950 to present is available, and the real time updates

have an approximately one-month delay (http://www.

metoffice.gov.uk/hadobs/en3). This analysis does not

include XBT bias corrections.

j. NODC objective temperature analysis

The NODC analysis is an objective seasonal temper-

ature analysis based on in situ observations. The analysis

is on a 18 grid with 16 levels ranging from the ocean

surface to 700 m in depth from 1955 to 2009 and includes

XBT temperature corrections (Levitus et al. 2009). How-

ever, for this comparison study, an uncorrected XBT

version of the analysis was generated. That is, the

NODC product shown in this paper is from a seasonal

temperature analysis similar to that of Levitus et al.

(2009) except that XBT temperature corrections were

not included. Discrepancies between EN3 and NODC,

therefore, should be due to factors other than XBT

corrections.
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