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ABSTRACT

Raindrop size distribution (DSD) retrievals from two years of data gathered by the Tropical Rainfall

Measuring Mission (TRMM) satellite and processed with a combined radar–radiometer algorithm over the

oceans equatorward of 358 are examined for relationships with variables describing properties of the vertical

precipitation profile, mesoscale organization, and background environment. In general, higher freezing levels

and relative humidities (tropical environments) are associated with smaller reflectivity-normalized median

drop size (�DSD) than in the extratropics. Within the tropics, the smallest �DSD values are found in large,

shallow convective systems where warm rain formation processes are thought to be predominant, whereas

larger sizes are found in the stratiform regions of organized deep convection. In the extratropics, the largest

�DSD values are found in the scattered convection that occurs when cold, dry continental air moves over the

much warmer ocean after the passage of a cold front. These relationships are formally attributed to variables

describing the large-scale environment, mesoscale organization, and profile characteristics via principal

component (PC) analysis. The leading three PCs account for 23% of the variance in �DSD at the individual

profile level and 45% of the variance in 18-gridded mean values. The geographical distribution of �DSD is

consistent with many of the observed regional reflectivity–rainfall (Z–R) relationships found in the literature

as well as discrepancies between the TRMM radar-only and radiometer-only precipitation products. In

particular, midlatitude and tropical regions near land tend to have larger drops for a given reflectivity,

whereas the smallest drops are found in the eastern Pacific Ocean intertropical convergence zone.

1. Introduction

The raindrop size distribution (DSD) is a fundamental

quantity in radar meteorology and other remote sens-

ing applications and has been the subject of numerous

studies including parameterizations (e.g., Ulbrich 1983;

Haddad et al. 1996; Sempere-Torres et al. 1998; Testud

et al. 2001), numerical simulations (e.g., List et al. 1987;

Brown 1989; Hu and Srivastava 1995; Prat and Barros

2007), and measurements via disdrometer (e.g., Marshall

and Palmer 1948; Waldvogel 1974; Tokay and Short

1996) and radars (e.g., Williams et al. 1995; Bringi et al.

2003). Integral parameters of the DSD describe physical

quantities, such as the liquid water content W and rain

rate R as well as quantities important for microwave re-

mote sensing such as radar reflectivity Z and specific at-

tenuation k. Relationships between the remotely sensed

and physical quantities are often sought after, particu-

larly the reflectivity–rain rate (Z–R) relationship, which

is frequently parameterized as the power law Z 5 aRb.

It has been known since the early days of radar meteo-

rology (Atlas and Chmela 1957) that a single unique

Z–R relationship does not exist and, instead, local re-

lationships were often derived over long periods of time

so as to provide radar rainfall estimates that were rea-

sonable on seasonal and yearly scales at a given location

(Battan 1973).

The variability of reported Z–R relationships, both

between different locations and at the same location

at different times, provides some information about the
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microphysical processes that shape the DSD, although

it is difficult to separate effects of drop concentration

and drop size on the coefficients of the Z–R relationship

(Steiner et al. 2004). Rosenfeld and Ulbrich (2003) clas-

sified DSDs by dynamics (convective versus stratiform)

and microphysics (continental versus maritime). Strati-

form and continental DSDs are characterized by large

median volume diameter (D0) for a given W, whereas

convective and maritime DSDs of the same W have lower

D0 (and, thus, lower Z). Although the names ‘‘conti-

nental’’ and ‘‘maritime’’ suggest that the proximity to the

ocean is associated with DSD type, these designations do

not reveal the mechanism(s) behind the differences be-

tween the two ends of the continuum. In fact, maritime

DSDs have been observed over land (e.g., Fujiwara and

Yanase 1968; Carey et al. 2001; Bringi et al. 2003) and

continental DSDs have been measured in tropical oce-

anic locations such as the Florida Keys (Tokay et al.

2003). Therefore, it is useful to review the processes that

affect the DSD to understand why observed DSD char-

acteristics are often, but not always, found in the ex-

pected locations.

The formation of rain is typically classified micro-

physically as either a warm or cold process. Warm rain

formation involves the growth of cloud droplets via

collision to a critical size where fall speed is enhanced,

allowing the rapid collection of additional drops as the

fall speed of the growing raindrop increases with its mass.

Eventually, the largest drops break up due to hydrody-

namic instability. Various models (List et al. 1987; Hu and

Srivastava 1995) have shown the collision–coalescence

and breakup processes to result in an equilibrium shape

to the DSD regardless of overall concentration, which

acts as a scaling factor. This has been observed in trop-

ical convection (Atlas and Ulbrich 2000; Uijlenhoet et al.

2003), which has the requisite rainfall rates and above-

freezing column depth to achieve equilibrium. Cold rain

formation occurs with the melting of frozen hydrome-

teors such as snow, graupel, or hail. These frozen parti-

cles are larger than the cloud droplets out of which warm

rain forms and melt into correspondingly larger rain

drops. As these fall, they too are subject to breakup that

will reduce their size, although the extent to which this

occurs depends on the depth of the above-freezing layer

and the initial DSD.

Cloud dynamics influences the relative importance

of warm and cold processes via updraft strength and

vertical structure. Convective rain can contain a mixture

of warm and cold microphysics; cold microphysics be-

comes more important with stronger updrafts and cloud

tops that reach above the freezing level. Stratiform rain

can occur due to large-scale ascent or in convective out-

flow anvils. In either case, updrafts are weaker and limited

to a shallower layer than in convection, and stratiform

rain usually forms via cold processes. Besides formation

and internal processes, external processes such as evap-

oration and size sorting can also influence the DSD.

Evaporation preferentially acts on small drops, thereby

increasing D0 when rain falls into a subsaturated layer.

The influence of size sorting by wind shear and turbu-

lence on the DSD depends on the particular situation and

may act to increase or decrease the median drop size.

Considering all of the above processes, one would ex-

pect DSDs with smaller drops for a given Z to fall from

clouds where warm rain processes are predominant and

in environments with deep, humid above-freezing layers.

Meanwhile, larger drops would be expected in drier lo-

cations with a preference for deeper convection and/or

more stratiform rain. Although these expectations qual-

itatively match observed DSDs, the relative influence of

environmental and dynamical effects is not well known.

Understanding their role could aid in understanding the

effects of aerosol loading on precipitation. Studies have

suggested both suppression (Rosenfeld 2000) and en-

hancement (van den Heever et al. 2006) of rainfall with

increasing aerosol burden, depending on the aerosol

properties and interaction between cloud microphysics

and dynamics (Givati and Rosenfeld 2005). These are

also expected to affect the DSD via changing the relative

importance of warm and cold rain formation processes.

Improved understanding of the relative importance

of environmental, dynamical, and microphysical effects

on the rain DSD can also benefit global satellite-based

estimates of rainfall, which all rely on DSD assumptions

in retrieval algorithms. Microwave radiometer-derived

estimates, available on a number of satellite platforms,

are physically tied to the emission signal (over oceans),

which is roughly proportional to column-integrated W.

The relationship between W and R is not as variable as

the Z–R relationship (R is approximately proportional

to the 3.67th moment of the DSD, whereas Z is to the

sixth and W is to the third), but uncertainties in this

relationship can still cause errors of as much as 10%

(Wilheit et al. 2007) in R. Spaceborne radar-based es-

timates from the Tropical Rainfall Measuring Mission

(TRMM) (Kummerow et al. 1998) precipitation radar

(PR) rely on a set of default Z–R relationships (Iguchi

et al. 2000) that are modified to match the attenuation

inferred by the apparent decrease in the surface reflec-

tion in heavy rain (Meneghini et al. 2000). Given the

noise inherent in rain-free estimates of the surface cross

section, this method is only reliable in rain rates ex-

ceeding approximately 10 mm h21, and, in lighter rain,

the default Z–R relationship must be assumed. Rain esti-

mates from CloudSat (Stephens et al. 2002), which uses a

higher frequency (94 GHz) that is subject to far greater
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attenuation than the TRMM PR, use the surface refer-

ence technique exclusively, disregarding the reflectivity

information (Haynes et al. 2009), although a DSD is still

implied in the k–R relationship.

To improve understanding of DSD formation pro-

cesses, their geographic distribution, and how they

may affect global satellite rainfall estimates, a combined

radar–radiometer algorithm, previously developed by

Munchak and Kummerow (2011, hereafter MK11), is

utilized. A brief description of the algorithm and its

sensitivity to underlying assumptions is examined in

section 2. While a satellite retrieval cannot provide as

detailed and precise DSD information as in situ data

from field campaigns, they can be used to put the data

from these campaigns into the global context. To achieve

this objective, we analyze the output of this algorithm

as applied to two years of TRMM data. In section 3,

we describe a database containing the retrieval results

as well as ancillary variables that represent the rainfall

formation processes described previously. Their influ-

ence upon the DSD is analyzed in section 4. In section 5,

the geographical patterns of all factors that are associ-

ated with the rain DSD are examined, and it is shown

that these patterns are largely consistent with the TRMM

Microwave Imager (TMI)/PR bias patterns in Berg et al.

(2006) and the DSD map of Kozu et al. (2009). Conclu-

sions are presented in section 6.

2. Algorithm description

Although the full details of the combined algorithm

used to retrieve the DSD properties are given by MK11,

a brief summary of the relevant output parameters and

their sensitivity to internal assumptions is provided here.

The core of the algorithm is a radar profiling algorithm

that operates similarly to the standard TRMM rain

profiling algorithm (2A25) (Iguchi et al. 2000, 2009). A

gamma distribution is assumed for the rain DSD: N(D) 5

N0Dme2LD with an intercept parameter N0, shape pa-

rameter m, and slope parameter L, which is related to

the median volume diameter D0 via the relation L 5

(3.67 1 m)/D0 (Ulbrich 1983). This formulation implies

a power-law relationship between Z and D0 of the form

D0 5 aZb. In MK11, initial values for a and b are set by

rain type, indicated by the TRMM rain-classification

algorithm (2A23), which identifies profiles as stratiform,

convective, or other based on brightband detection, hor-

izontal homogeneity, and maximum reflectivity (Awaka

et al. 2007). The coefficient a is modified by a multipli-

cative factor �DSD so as to match estimates of the path-

integrated attenuation (PIA) provided by the surface

reference technique (SRT) (Meneghini et al. 2000), as

well as the microwave brightness temperatures Tb at

10, 19, and 37 GHz. Values of �DSD less than 1 repre-

sent DSDs with D0 smaller than the default relationship,

containing more liquid water at the same reflectivity,

while values greater than one represent DSD with larger

D0 and smaller W. Table 1 provides Z–R coefficients for

selected values of �DSD to aid in the interpretation and

application of results presented in this study. Analo-

gous adjustments are made to the ice particle size dis-

tribution (�ICE) and cloud liquid water path (�CLW), but

details of these are not necessary to interpret the �DSD

output.

The retrieval follows an optimal estimation frame-

work, minimizing a cost function (1) consisting of the

departure of the modeled PIA and brightness temper-

atures f(x) from their observed values y, normalized by

their covariances Sy, and the departure of the state

vector x consisting of �DSD, �ICE, and �CLW from their

default values xa, normalized by their covariances Sx.

This process is carried out over large scenes consisting of

as many as 1000 radar pixels (more computational de-

tails are given in MK11):

F 5 [y 2 f (x)]TS21
y [y 2 f (x)] 1 (x 2 xa)TS21

a (x 2 xa).

(1)

In this work, a slight departure is made from the de-

fault coefficients a and b and cloud water profiles given

by MK11. In that work, different default vales of these

coefficients for stratiform and convective rain were se-

lected to replicate the Z–R coefficients used by the 2A25

algorithm. Here, no a priori convective/stratiform sep-

aration is made because one of the goals of this work is

to determine the extent to which DSD is correlated with

observables related to these and other rain classifica-

tions. As a consequence of the minimization of (1), some

of the a priori Z–D0 relationship may be retained in

the retrieval output, making meaningful comparisons

TABLE 1. Coefficients of the relationship Z 5 ARB and R 5 aZb

for selected values of �DSD in the relationship D0 5 �DSDaZb, where

a 5 0.5794, b 5 0.1094: Z is in units of millimeters to the sixth power

per meter cubed, R is in millimeters per hour. D0 in mm, and a

gamma DSD with shape parameter m 5 3 is assumed. The values

for a and b were selected to represent an 85% stratiform-weighted

average of the Z–R coefficients given by Iguchi et al. (2000).

�DSD A B a b

0.50 40 1.29 0.0576 0.775

0.75 114 1.32 0.0274 0.760

1.00 258 1.34 0.0156 0.748

1.25 510 1.35 0.0097 0.743

1.50 902 1.34 0.0063 0.745

1.75 1440 1.32 0.0041 0.757

2.00 2085 1.29 0.0027 0.775
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between convective and stratiform DSDs difficult. Thus,

a weighted average (85% stratiform, 15% convective,

which represents their proportion in the version 6 TRMM

products) of the coefficients and cloud water profiles is

used as the default for this study.

Although the purpose of this study is to examine the

retrieved D0 values in detail, it is important to first test

the sensitivity of these retrieved values to the default D0

assumptions and identify where the retrieval results are

meaningful. The optimal estimation method provides

two information content metrics that can be used toward

this purpose, the A matrix and retrieval covariance Sx.

Assuming linearity of the Jacobian K and no error in the

forward model used in the retrieval, A represents the

fractional weight of the observations in the retrieved

value of D0 (the remainder coming from the a priori

assumption):

A 5 SxKTS21
y K. (2)

Likewise, the retrieval covariance matrix Sx, defined by

Sx 5 (KTS21
y K 1 S21

a )21, (3)

can be compared with the a priori covariance matrix Sa

(defined in MK11) to evaluate the information content

of the observations. L’Ecuyer et al. (2006) note that Sx

and S
a

both define areas in the retrieval parameter space.

The amount by which the observations reduce the space

represented by Sx from that represented by Sa is another

measure of the information present in the retrieval.

Since the values of A and Sx are dependent on the

relative contribution of the observations (SRT PIA and

Tb) and a priori assumption to the retrieved value of

�DSD, it is logical to identify threshold values of these

parameters above which meaningful analysis of the re-

trieval output can be conducted. Such a threshold can

be determined by altering the coefficients of the initial

Z–D0 relationship and identifying which profiles are

sensitive to these assumptions and whether A and Sx are

reliable proxies for this sensitivity.

The relationship between these metrics is assessed by

processing one month (January 2001) of data assuming

stratiform D0–Z coefficients and cloud/ice profiles, then

again with convective values. The root-mean-square (rms)

difference between the retrieved D0 under the two

different D0–Z assumptions is compared to the rms dif-

ference between the retrieval and default values as a

function of two information content metrics, the A and

Sx diagonal values (Rodgers 2000) in Figs. 1a and 1b,

respectively.

For both metrics, as the information content increases,

the rms difference between the retrieved values of

D0 under different DSD assumptions decreases. At the

same time, the rms difference between the retrieved and

default (a priori) values of D0 increases. Where these

values cross each other can be thought of as the point

where the observations and default assumptions equally

contribute to the retrieved value of D0. For the average

of stratiform and convective assumptions, this occurs at

an A diagonal value of 0.007 and SaS21
x value of 0.015.

At this point of crossover, the rms uncertainty in the

FIG. 1. (a) Rms difference between retrieved D0 under stratiform assumptions and retrieved D0 under convective

assumptions (black), retrieved and default D0 under stratiform assumptions, and retrieved and default D0 under

convective assumptions (red) as a function of A diagonal values. (b) As in (a) but as a function of Sa diagonal values

divided by Sx diagonal values. In both panels the fraction of profiles exceeding the information content value on the

x axis is indicated by the dashed line and tick marks on the right y axis.
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retrieved value of D0 is about 0.15 mm, and 60% of the

retrieved profiles exceed this threshold. A second thresh-

old is identified at an A diagonal value of 0.07, where

the retrieval rms error reaches an asymptote around

0.04 mm (only 20% of profiles exceed this higher thresh-

old). These asymptotic values appear to represent the

upper limit to which D0 can be retrieved using the method

of MK11.

Under the definitions of these statistics, these thresh-

olds may seem rather low but, because of the two-

dimensional, multiparameter nature of the retrieval,

the off-diagonal elements of A and Sx, which represent

covariances with other parameters (particularly �CLW)

and spatial covariances (due to the large radiometer

fields-of-view relative to the radar footprint), are large.

Thus, the retrieved D0 values in the absence of high-

resolution radar path integration–attenuation estimates

can only strictly be considered representative over the

radiometer field of view (FOV), which is 18 km by 30 km

at 19 GHz, the channel most sensitive to rain, and under

the cloud water–rainwater partitioning described in MK11.

For the analyses in sections 4 and 5, we choose A as

the information content metric to determine thresholds

subsets of data where the retrieved DSD can be consid-

ered robust. This is not to discard Sx but simply recog-

nizes their redundancy, which is clear in Fig. 1 and in their

definitions (2 and 3).

3. Profile database

Two years of TRMM data were processed with the

MK11 algorithm, one representing the preorbit-boost

period (August 1999–July 2000, weak/moderate La Niña

conditions) and one representing the postboost period

(January–December 2006, a transition from La Niña to

El Niño). To speed computations and avoid biases as-

sociated with ground clutter at off-nadir angles (Shimizu

et al. 2009), only the central 25 PR angle bins were pro-

cessed. Owing to uncertainties in surface emissivities (a

necessary component of the combined algorithm) over

land, only overocean retrievals were considered in this

analysis. These two years provided 65 782 705 precipi-

tation profiles geographically distributed as shown in

Fig. 2a. The distribution of profiles in the database is

a function of both the frequency of occurrence of rain

and TRMM’s orbital geometry. The latter enhances the

FIG. 2. (a) Number of profiles in 18 3 18 grid boxes. (b),(c) Fraction of profiles in each grid box that exceed the

threshold of information content indicated.
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number of profiles in the midlatitudes, which the central

PR swath samples more often than the equator because

of more frequent orbit overlaps.

The fraction of profiles within each 18 grid cell that

exceed the A . 0.007 and A . 0.07 thresholds estab-

lished in section 2 are shown in Figs. 2b and 2c, respec-

tively. The profiles exceeding each information content

threshold are not evenly distributed, with relatively few

of these profiles in the already sparsely precipitating

subsidence regions west of the subtropical continents.

Since the method of MK11 relies upon the 10-, 19-, and

37-GHz channels on TMI along with the radar PIA to

adjust �DSD, the unequal distribution of profiles with high

information content reflects an unequal distribution of

the ability of the algorithm to make use of these mea-

surements. The TMI observations are only used when

rain coverage within the radiometer FOV exceeds 50%;

thus, isolated profiles are not adjusted. The PIA is only

used when it exceeds the background variability (noise)

in the surface reflectivity cross section from which it

is derived; this variability is usually 2–3 dB (Meneghini

et al. 2000). The PIA is strongly related to the rain liquid

water path (LWP); thus shallow and light rain DSDs

cannot be retrieved with it, and, in fact, this is one of the

primary weaknesses of single-frequency radar rain pro-

filing algorithms such as 2A25. To illustrate the differ-

ences between the general population of profiles and

those that exceed each information content threshold,

the distribution of each population is shown as a function

of precipitation feature size and PIA in Figs. 3a and 3b,

respectively. These differences are an important caveat

to be kept in mind in the ensuing analyses.

To determine the effect of variables related to the

background environment, storm structure, and micro-

physics on the retrieved DSD, each profile was associ-

ated with the variables listed in Table 2. Many of these

variables come from products derived from various

instruments on board the TRMM satellite, ensuring

coincidence in time and space. The combined algorithm,

in addition to providing the retrieval parameters (�DSD,

�ICE, and �CLW) and their associated information con-

tent metrics, calculates the attenuation-corrected re-

flectivity profile. Vertical reflectivity structure has been

related to the DSD in a number of studies (L’Ecuyer

et al. 2004). For example, the difference in reflectivity

above and below the freezing level has been related to

updraft strength and the relative importance of cold

and warm rain formation (Shige et al. 2008), and Xu

et al. (2008) identified a warm rain signature where re-

flectivity increases toward the surface below the melting

level.1 Thus, reflectivities at levels relevent to these re-

lationships are included in the database to test them with

respect the the MK11-derived DSD. The strength of

the bright band is used to determine the density of the

melting particles as described in MK11 and Zawadzki

et al. (2005).

A number of variables are derived from PR products

2A23 (rain characteristics; Awaka et al. 2007) and

2A25 (rain profile). These include the rain classification

(stratiform or convective/other), reflectivity echo top,

precipitation feature size (number of contiguous raining

pixels), local time, and local standard deviation (within

25 km) of near-surface rain rate and reflectivity. To

classify the dynamic environment, several parameters

used by Elsaesser et al. (2010) to classify tropical con-

vection are also included in the database. These are the

number of profiles with echo tops ,5 km, between 5 and

9 km, and .9 km within a 18 box surrounding each

profile.2 The same echo-top classes are again used for

FIG. 3. (a) Histogram of profiles by precipitation feature size for different information content thresholds, and (b) as

in (a) but as a function of surface reference path-integrated attenuation.

1 In our database, this is defined as the near-surface reflectivity

minus the lowest valid reflectivity within 1 km below the melting level.
2 A 25 3 25 PR pixel box, approximately 100 km on each side.
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convective profiles only. The 18-average convective rain

rate and convective rain fraction are also used in this

classification scheme.

Background parameters total precipitable water (TPW)

and sea surface temperature (SST) were derived from

TMI data using the methods of Elsaesser and Kummerow

(2008) and Gentemann et al. (2004), respectively. Note

that these represent the nearest value outside of the

raining area. Additional meteorological parameters aug-

menting those available from TRMM observations were

taken from the Modern Era Retrospective-Analysis For

Research And Applications (MERRA) (Bosilovich (2008))

so as to further identify meteorological regimes that

might be associated with the DSD. These include tem-

peratures and geopotential heights at selected pressure

levels [850 and 500 mb (hPa)], the 850–300-mb wind

shear magnitude, the surface–850 mb lapse rate (LR),

700-mb vertical velocity, and boundary-layer relative

humidity (BLRH).3 As with any reanalysis data, these

variables should be considered representative of the syn-

optic environment, and moisture/vertical velocity values

in particular may be in error near convective rain.

A number of variables related to cloud microphysics

are included. The 12-mm channel on the TRMM Visible

and Infrared Scanner (VIRS) instrument (Kummerow

et al. 1998) was used to determine the cloud top tem-

perature. The cloud top effective radius Re is retrieved

from the VIRS data using the method of Nakajima and

King (1990). Since the visible–infrared retrieval tech-

nique only works during daytime, daily and monthly

composites of these variables were constructed and used

where coincident data were unavailable. The lightning

flash rate comes from the TRMM Lightning Imaging

Sensor (Boccippio et al. 2002). The Spectral Radiation-

Transport Model for Aerosol Species (SPRINTARS)

(Takemura et al. 2000) aerosol optical depth (AOD) re-

analysis was included as an additional microphysics

variable.

Table 2 lists all of these variables, their distribution

shape, and their correlation to �DSD at both thresholds

established in section 2. For those variables distributed

lognormally, the correlation coefficient was derived in

log space. Since �DSD itself is distributed lognormally,

all correlations here and elsewhere in this study are ac-

tually in relation to ln(�DSD). Many of the observed and

theoretical relationships in section 1 are confirmed with

this data. For example, �DSD decreases with increasing

melt density (weaker bright bands) and increasing spa-

tial variability of reflectivity, both of which are com-

monly used to identify convective rain (Awaka et al.

2004). Microphysics within the profile are also important;

large amounts of ice, lightning activity, and an absence

of the warm rain signature in the slope of the reflectivity

TABLE 2. List of profile database variables with their source and distribution shape. The correlation coefficient of ln(�DSD) with each

variable for profiles exceeding the A threshold of 0.007 (0.07) is given by r1 (r2).

Variable Source Distribution r1 r2

Melt density PR Normal 20.21 20.19

Total precipitable water (TPW) TMI Normal 20.09 20.13

Ice water path (IWP) TMI1PR Lognormal 0.19 0.19

Near-surface dBZ PR Normal 20.07 0.02

Max dBZ in melting layer PR Normal 0.15 0.24

Max dBZ in ice layer PR Normal 0.13 0.10

Reflectivity slope in rain layer PR Normal 20.26 20.25

Cloud-top temperature VIRS Multimodal 20.10 20.08

Mean cloud effective radius VIRS Normal 0.00 0.00

Lightning flash rate LIS Lognormal 0.11 0.14

Aerosol optical depth SPRINTARS Lognormal 20.02 20.01

Echo-top height PR Multimodal 0.11 0.07

Precipitation feature size PR Lognormal 20.04 20.01

Profiles with echo top ,5 km within 18 PR Lognormal 20.20 20.17

25-km reflectivity standard deviation PR Normal 20.14 20.20

Surface–850 mb lapse rate MERRA Normal 0.14 0.10

850-mb temperature MERRA Normal 20.13 20.14

500-mb height MERRA Normal 20.14 20.16

Freezing level MERRA Normal 20.16 20.17

850–300-mb shear MERRA Normal 0.07 0.08

700-mb vertical velocity MERRA Normal 0.04 0.00

Boundary layer relative humidity MERRA Normal 20.18 20.14

3 The boundary layer top is defined as the height at which po-

tential temperature exceeds the surface value by more than 3 K;

results were insensitive to a range from 2 to 5 K.
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profile below the melting level are also associated with

high values of �DSD. However, background environment

microphysics (cloud Re and AOD) are uncorrelated with

�DSD. There also appears to be an environmental rela-

tionship with warmer, more humid environments favor-

ing smaller �DSD. Although many of these relationships

make sense from a physical point of view, many of these

variables are correlated with each other. Thus we will

examine the relationship between �DSD and multiple

variables in section 4 to identify those that have signifi-

cant predictive ability.

4. Sources of DSD variability

The purpose of this section is to more clearly identify

the variables in Table 2 with the physical mechanisms

described in section 1, simultaneously describing as much

of the variability in �DSD as possible given the limitations

of the retrieval itself, described by MK11 and in section 2.

To accomplish this task, we use principal component

(PC) analysis to identify correlated behavior among the

variables and its association with �DSD, which we then at-

tempt to reconcile with the known physical mechanisms.

As a first step, we separate the database into warm

and cold rain because many of the variables in Table 2

only take on physically meaningful values in cold rain

(e.g., melt density, IWP), using a simple test of whether

or not a valid echo exists within 500 m of the freezing

level as determined by the top of the interpolated bright

band height. Within the warm and cold rain subsets,

we performed a PC analysis of those variables most

strongly correlated with �DSD. This analysis creates new

proxy variables (the PCs) that represent correlated

behavior among this set of physical variables. These

PCs are also, by definition, uncorrelated with each

other. The empirical orthogonal functions (EOFs) are

the regression of the (standardized) physical variables

onto the PCs. The number of PCs/EOFs (modes) is the

same as the number of variables analyzed, but an im-

portant consideration in this type of analysis is assess-

ing the significance of each mode. For the purposes of

this section, we consider a mode significant if a similar

mode, explaining a similar fraction of variance in the

database and having a similar correlation with �DSD, is

present in subsets of the data (central pixels only and

individual pre/postboost years), and that mode explains

more variance than a single independent variable (i.e., for

a subset of n variables, the variance explained must be

greater than 1/n). Note that the sign of the EOFs is ar-

bitrarily chosen such that positive values correspond to

smaller �DSD.

In warm rain, the individual variables most strongly

correlated with �DSD are the echo top, the total number

of echo tops under 5 km within 18 surrounding each

radar pixel, the boundary layer relative humidity, lapse

rate, and freezing level. Cloud-top temperature was also

included since cold cloud tops may indicate the influence

of cold rain processes even if the detected echo top is

below the freezing level. The first three PCs (Table 3) of

these five variables are significant under the criteria es-

tablished previously. The first mode consists primarily

of environmental variables: high boundary-layer rela-

tive humidity, high freezing levels, and small lapse rates

together are negatively correlated with �DSD. The sec-

ond mode and third modes represent the organization

of precipitation in terms of low cloud concentration,

cloud-top temperature, and echo-top height.

The behavior of �DSD with respect to these three modes

at the A . 0.007 threshold is illustrated in Fig. 4 (similar

behavior occurs at the A . 0.07 level). The smallest values

of �DSD are noted when PC1, PC2, and PC3 are all posi-

tive; this represents warm-topped, shallow precipitation

in tropical environments with numerous low clouds, in-

dicative of large areas of weak convection (Elsaesser

et al. 2010). The largest values, meanwhile, occur when

PC1 and PC2 are negative and PC3 is positive, repre-

senting colder-topped clouds in extratropical environ-

ments with numerous deep clouds. The presence of colder

clouds tops in this mode may be an indicator of cold rain

processes even though the echo top does not extend above

the freezing level. In these profiles, there may be errors in

the interpolated freezing height and/or there may be un-

detected cold processes due to the extension of cloud top

above the 17-dBZ echo top or influence of neighboring

pixels (Liu and Zipser 2009). Additionally, since these are

occurring in extratropical environments, the underlying

TABLE 3. Significant EOFs of warm rain variables in order of variance explained (VE). The correlation of each PC with the number of

echo tops under 5 km within 18 (N5), echo top height (ETH), boundary-layer relative humidity (BLRH), lapse rate (LR), freezing level

height (FLH), cloud-top temperature (CT), and �DSD (r1 and r2 have the same meaning as in Table 2) is given in the table. Correlations

with an absolute value above 0.5 are in bold font to highlight the variables most strongly represented by each mode.

Mode VE (%) FLH LR BLRH N5 CT ETH r1 r2

1 28.2 0.55 20.70 0.79 0.13 20.32 0.35 20.26 20.22

2 23.5 0.28 20.35 0.17 20.51 0.78 20.55 20.01 0.01

3 19.2 20.39 20.08 0.34 0.71 0.06 20.60 20.22 20.24
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forcing may be different (we will examine these relation-

ships in different meteorological regimes in section 5).

Aside from the possible intrusion of cold rain pro-

cesses, the primary mechanisms affecting the DSD in

warm rain are subcloud-base humidity and echo-top

height. The effect of humidity is consistent with theory;

smaller values of �DSD are retrieved in more humid en-

vironments where the effect of evaporation on DSDs

below cloud base is minimized. Echo top increases

toward negative values of PC2 and PC3 (the lower right

of the PC2–PC3 plane in Fig. 4), and a corresponding

increase of �DSD is consistent with the longer path for

drop growth via collision.

In cold rain (Table 4), additional variables not avail-

able in warm rain are included in the PC analysis. These

additional variables are the density of melting particles

(a proxy for bright band strength), the difference in

maximum reflectivity above and below the melting layer,

FIG. 4. Mean value of �DSD in the PC1–PC2, PC2–PC3, and PC1–PC3 planes for warm rain.

TABLE 4. Significant EOFs of cold rain variables in order of variance explained (VE). In addition to the variables for warm rain in

Table 3 this table includes melting particle density (RHOM), maximum reflectivity above the melting layer minus maximum reflectivity

below melting layer (ZDIFF), and the slope of reflectivity below the melting layer (ZS). Correlations above 0.5 are in bold font to highlight

the variables most strongly represented by each mode.

Mode VE (%) FLH LR BLRH N5 ZDIFF RHOM ZS r1 r2

1 27.1 0.83 20.44 0.52 20.61 20.44 0.23 0.15 20.18 20.17

2 24.9 20.19 0.38 20.19 0.29 20.73 0.77 0.54 20.21 20.20

3 17.4 20.30 20.57 0.60 0.64 0.01 20.05 0.24 20.26 20.21
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and the slope of reflectivity below the melting layer.

Cloud top temperature and echo-top height (ETH) have

little correlation with the DSD in cold rain once the re-

flectivity structure is accounted for, so they were re-

moved. As with warm rain, three significant modes of

variability are present among these variables. The first

mode primarily represents environmental properties with

positive correlation between high freezing-level heights

(FLHs), high relative humidity in the boundary layer,

and low concentrations of shallow clouds. The warmer,

more humid environments in this mode tend toward

smaller values of �DSD. The second mode represents the

coordinated variation in the properties of the vertical

reflectivity structure. Profiles with low reflectivity above

the melting layer relative to below, weak bright bands,

and an increase in reflectivity toward the surface within

the rain layer tend to have smaller values of �DSD. The

third mode represents a different combination of envi-

ronment and organization from the first mode; this time,

stable lapse rates and high humidity are positively cor-

related with numerous low clouds.

The mean value of �DSD as a function of the first three

PCs for cold rain is illustrated in Fig. 5. The smallest

values of �DSD are found in tropical environments with

numerous shallow precipitating clouds and all of the

profile characteristics of warm rain: weak bright bands,

high reflectivities below the melting layer than above,

and an increase in reflectivity towads the surface in-

dicating an active coalescence process. Large values of

�DSD are found in dry extratropical environments with

steep lapse rates. Interestingly, the trend in �DSD with

respect to the profile shape is different in the extra-

tropics than in the tropics, with an increase in �DSD in

profiles with weaker bright bands and higher reflectivities

below the melting layer than above. Steiner and Smith

(1998) find that the dense particles in weak bright bands

may be composed of either small, heavily rimed ice par-

ticles or larger graupel or hail, with the latter being

FIG. 5. As in Fig. 4 but for cold rain.
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preferred in stronger updrafts. In extratropical environ-

ments, convective updrafts can be stronger than in the

tropics owing to larger thermal buoyancy and stronger

dynamic forcing (Xu and Randall 2001). The increase

in drop size with weaker bright bands in these colder

environments is consistent with both of these ten-

dencies. In addition, the distribution of profiles in the

PC1–PC3 plane implies that many of these colder envi-

ronments are also dry. Thus, these profiles may be more

representative of graupel-containing convection (con-

sistent with the weak bright band) and with evapora-

tion offsetting any warm rain processes in the shallow

submelting layer.

To determine the total variance in �DSD explained by

the first three principal components of the warm and

cold rain database variables, three-dimensional lookup

tables were created (the two-dimensional means of these

tables are shown in Figs. 4 and 5) with 100 indices in each

dimension. The mean value of �DSD for each threshold

of information content was then taken at each index.

The value predicted from this table was then compared

to the actual retrieved value. By this method, the data-

base principal components explain 23% of the variance

in �DSD at the A . 0.007 threshold and 20% at the

A . 0.07 threshold.

5. Distribution of DSD variability by geographic
region and meteorological regime

Global maps of the mean and PC-predicted values of

�DSD are presented in Fig. 6. Many of the observed global

patterns are reproduced by the PC-predicted values,

including the maximum over the Mediterranean Sea and

other midlatitude locations, along with the minima over

the eastern Pacific and southern Indian Oceans. The

increase in �DSD from the eastern to western Pacific is

also predicted, but underestimated in magnitude. Also,

high values of �DSD in the Caribbean, Gulf of Mexico,

and south-central Pacific are underestimated by the PC-

based prediction. Overall, 45% of the variance in the

18 gridded mean values of �DSD are explained by this

analysis, twice as much as at the individual pixel level.

Increasing the information content threshold to A .

0.07 does not eliminate the residual biases, so they are

likely not an artifact of limited information content bi-

asing the mean �DSD in some regions more than others.

To determine if the relationships derived in section 4

are equally valid under different meteorological condi-

tions, a meteorological regime classification was per-

formed using a k-means clustering technique (Anderberg

1973) on selected parameters in Table 2. The k-means

clustering is used to objectively identify self-similar re-

gimes and has been used in previous studies of clouds and

precipitation (e.g., Jakob and Tselioudis 2003; Boccippio

et al. 2004; Caine et al. 2009). First, the background en-

vironment was classified into three regimes (tropical,

subtropical, and extratropical) by TPW and 850-mb tem-

perature. Within the tropical regime, precipitation was

classified as belonging to shallow, midlevel, or deep re-

gimes as defined by Elsaesser et al. (2010). These clusters

represent different modes of organization in convection

fields (both in a horizontal spatial extent and vertical

extent). The subtropical and extratropical regimes were

both broken into two categories by precipitation area,

FIG. 6. Mean and predicted values of �DSD for the A . 0.007 threshold gridded at 18 resolution.
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cloud-top temperature, and convective fraction. In both

environments, a cluster representing organized frontal

precipitation, with large precipitation areas, cold cloud

tops, and low convective fractions and a cluster repre-

senting isolated, shallow convective precipitation were

identified. In subtropical environments the former cate-

gory can be thought of as precipitation associated with

‘‘atmospheric rivers’’ (Zhu and Newell 1998), long but

narrow plumes of moisture extending from the tropics to

midlatitudes. In extratropical environments this same

category may be found as part of the warm and cold

conveyors of extratropical cyclones (Browning 1986).

The shallow isolated cluster in the subtropics exists often

under a subsidence inversion, whereas its extratropical

counterpart is often triggered when cold continental

air is brought over the warm ocean surface after a

frontal passage and the resulting instability forces shallow

convection in an otherwise subsident environment. The

primary and secondary cluster types are mapped in Fig. 7,

and contoured frequency by altitude (CFAD) diagrams

of each are shown in Fig. 8.

The mean retrieved and predicted value of �DSD in

each meteorological regime and information content

threshold is given in Table 5. The mean of most clusters

closely matches the predicted value, although the trop-

ical midlevel and subtropical isolated shower means

are overestimated and both extratropical classifications

are underestimated. An examination of maps of the

residual error for each cluster (not shown) produces no

regional patterns for the extratropical clusters, but the

FIG. 7. Primary (most common) and secondary (secondmost common) cluster type gridded at 18 resolution.

Environment abbreviations are T: Tropical, ST: Subtropical, and ET: Extratropical.

FIG. 8. Two-dimensional histograms of reflectivity profiles by height for each cluster: abbreviations are as in Fig. 7, and shading is linear

from zero to the maximum frequency for each cluster.
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subtropical and tropical clusters do produce patterns

that constribute to the overall biases. In the subtropical

clusters, �DSD is underpredicted near land areas and

overpredicted in the midlatitude oceans far from land,

whereas in the tropical clusters, �DSD is underpredicted

near land areas and overpredicted over the eastern Pa-

cific and southern Indian oceans. These regional pat-

terns suggest that the relationships identified in section 4,

while generally valid, do not fully account for all of the

processes that affect �DSD. Differences in �DSD from one

cluster to another and the difference between the cluster

mean and PC predicted may not be the result of differ-

ences in observable background parameters but, instead,

may be related to cloud system scale parameters that

influence organization of convection that are largely un-

observable from satellite or realized in reanalysis data-

sets. One possibility is that convective updraft strength,

which modulates the warm rain formation process by con-

trolling the rate at which cloud droplets grow (Rosenfeld

and Ulbrich 2003), is higher near land owing to the

origination of systems over land with higher convec-

tive available potential energy (CAPE) (Zipser 1994),

while the opposite is true over the eastern Pacific (Shige

et al. 2008). Therefore, caution should be exercised when

applying the relationships derived here to systems over

land. In addition, the eastern Pacific contains more

‘‘pure’’ warm rain profiles that are not part of a larger

system that extends above the freezing level (Liu and

Zipser 2009), and these are not fully accounted for by

the variables that define the first three warm PCs in

section 4.

6. Summary and conclusions

In this study we have used the combined radar–

radiometer retrieval technique of MK11 to analyze two

years of rain DSD retrievals from the TRMM satellite,

focusing on the factors that influence the reflectivity-

normalized median drop size (�DSD) and how these are

related to properties of clouds and their environment.

Previous studies, summarized by Rosenfeld and Ulbrich

(2003), have pointed to a variety of sources of variability

in the rain DSD and its expression in the coefficients of

Z–R power laws. We have found that

(i) smaller median drop sizes (both in absolute and

reflectivity normalized values) are found in warm

rain than cold rain, as defined by the presence of

a radar echo within 500 m of the freezing level;

(ii) within the warm rain subset, the smallest drops are

found in organized but shallow convective systems

in humid tropical environments;

(iii) within the warm rain subset, drop size increases

with echo-top height, consistent with the longer

path through which drop growth via collision takes

place;

(iv) within the cold rain subset, smaller drops are found

in more tropical environments where there is also

evidence of warm rain processes in the vertical

profile of reflectivity (weak bright band and an in-

crease of reflectivity below the melting level); and

(v) brightband strength does not correlate with h�DSDi
in the extratropics as strongly as in tropical envi-

ronments. This is consistent with stronger convec-

tive updrafts in the extratropics, which form larger

graupel and hail particles than weaker updrafts

in tropical convection, which form heavily rimed

small ice particles.

Together, these environment and cloud properties

can be organized into three modes of variability repre-

senting the synoptic meteorology, mesoscale organiza-

tion, and cloud-scale vertical structure that explain about

23% of the variability in retrieved values of h�DSDi. While

this may seem low, it is sufficient to reproduce almost

twice as much (45%) of the observed regional varia-

tion (Fig. 6) as well as the differences in cluster means

(Table 5), suggesting that the remaining variability

might be related to inadequate resolution of the low-

frequency microwave footprints used to adjust the

DSD or temporal variability within a given set of

environmental, microphysical, and dynamical factors.

Other factors unobservable by the TRMM instruments

and inadequately represented in the MERRA rean-

alysis, such as updraft strength, could also be sources

of the large amount of variability unexplained in this

analysis.

The regional DSD patterns, which have been pro-

duced for both stratiform and convective rain, are gen-

erally similar to those presented by Kozu et al. (2009)

for convective rain, although absolute values of the Z–R

coefficients differ because of the inclusion of stratiform

rain in this study. Much of the bias between PR and TMI

TABLE 5. Mean and predicted (P) values of h�DSDi by meteorological

regime and information content threshold.

Environment Cluster

A . 0.007 A . 0.07

h�DSDi h�DSDPi h�DSDi h�DSDPi

Tropical Shallow 0.92 0.93 0.94 0.93

Midlevel 0.91 0.94 0.92 0.94

Deep 0.95 0.96 0.95 0.96

Subtropical Organized frontal 0.91 0.91 0.94 0.94

Isolated shallow 0.88 0.91 0.91 0.92

Extratropical Organized frontal 0.96 0.95 0.98 0.96

Isolated shallow 1.04 1.02 1.04 1.03
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rain estimates appears to be related to these DSD as-

sumptions via two pathways: 1) insufficient adjustments

to the default DSD by the PR 2A25 algorithm, espe-

cially in light and moderate rain where surface reference

estimates of the path-integrated attenuation do not ex-

ceed the noise level, and 2) incorrect assumption of

DSD and/or vertical distribution of rainwater in the

database of profiles used by the Goddard profiling al-

gorithm (GPROF) algorithm for TMI, which affects the

liquid water content–rain rate conversion. The former

issue could be addressed by including a ‘‘warm’’ versus

‘‘cold’’ rain identification process and default DSDs in

addition to the stratiform versus convective identifica-

tion in future versions of the PR 2A25 algorithm. Biases

introduced by the latter issue should be reduced sub-

stantially when a database of radiometer-adjusted PR

precipitation profiles, with Tb that are consistent with

Z and R, are used in place of cloud-resolving model-

derived profiles in upcoming versions of passive radiom-

eter rain retrieval algorithms (Kummerow et al. 2011);

however, this remains to be seen.

Much work remains to be done to verify the rela-

tionships identified in this work, and in particular to

identify biases in the combined radar–radiometer algo-

rithm that may create spurious relationships between

the DSD adjustment and unrelated factors. Neverthe-

less, the relationships that we have found are consistent

with what is known about the processes that shape the

rain DSD. They may be used to create time-varying Z–R

relationships for ground-based radars or to enhance over-

land TRMM PR retrievals, where radiometer-enhanced

retrievals are complicated by the unknown factors re-

lated to surface emissivity and radar-only retrievals must

rely on the surface reference estimate of attenuation,

which is noisier over land than water. However, it should

be emphasized that caution must be used in extending

these relationships over land, as some regimes (e.g., oro-

graphic precipitation) may be unsampled over the ocean.

The upcoming Global Precipitation Measurement (GPM)

mission, scheduled to launch in 2013, will carry a dual-

frequency radar with the ability to retrieve two parame-

ters of the DSD at each range gate (Kuo et al. 2004),

reducing much of the ambiguity in DSD retrievals over

land and ocean. At that time it will be worthwhile to re-

visit the relationships noted in this work.
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