
Estimating Climatological Bias Errors for the Global Precipitation Climatology
Project (GPCP)

ROBERT F. ADLER

Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

GUOJUN GU

Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, and

Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

GEORGE J. HUFFMAN

Science Systems and Applications, Inc., and Laboratory for Atmospheres, NASA Goddard Space

Flight Center, Greenbelt, Maryland

(Manuscript received 10 March 2011, in final form 26 August 2011)

ABSTRACT

A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from

different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project

(GPCP) monthly product is used as a base precipitation estimate, with other input products included when

they are within 650% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The

standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The

results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated

bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the

tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of pre-

cipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should

have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates

(s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with

10%–15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean

clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error

estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes

that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows

one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately,

and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean

combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling

when integrating over different areas with a different number of input products. For the globe the calculated

relative error estimate from this study is about 9%, which is also probably a slight overestimate. These tropical

and global estimated bias errors provide one estimate of the current state of knowledge of the planet’s mean

precipitation.

1. Introduction

Over the last few decades a number of multiyear

or climatological precipitation datasets and analyses

(hereinafter ‘‘climatologies’’) have been produced that

cover all, or a substantial portion, of the globe. These in-

clude climatologies based on conventional surface ob-

servations (e.g., Jaeger 1976; Legates and Willmott 1990),

combinations of satellite and gauge observations at

monthly time resolution (e.g., Adler et al. 2003a; Huffman

et al. 2009; Xie and Arkin 1995), and monthly, satellite-

only estimates [often ocean only; e.g., Hilburn and Wentz

(2008); Klepp et al. (2005)].
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Data from the Special Sensor Microwave Imager (SSM/

I) on board the U.S. Defense Meteorological Satellite

Program series of satellites have been a critical input to

many of these datasets since 1987. An intercomparison

of relatively early SSM/I-based-algorithm ocean results

at the monthly mean level showed a very large range of

estimates of mean oceanic rainfall in the tropics (Adler

et al. 2001). The availability of a few years of both passive

and active microwave rain estimates from the Tropical

Rainfall Measuring Mission (TRMM) at the beginning of

the twenty-first century and advances in algorithm de-

velopment led to a narrowing of the range of TRMM

estimates (;20% in range of mean values) in the tropics

relative to the pre-TRMM estimates (Adler et al. 2003b).

The latest version (version 6) of the TRMM products has

even smaller ranges of tropical mean values because of

improved physics and techniques being used in the re-

trievals. There still remains a significant variation in

mean precipitation values among various satellite esti-

mates over the ocean, however. Over land, there is a

similar variation, although in areas of good rain gauge

coverage the gauge information is usually accepted as

the standard or becomes a strong component of any mul-

tiproduct analysis. Satellite information is still valuable

over land for discerning patterns and magnitudes in

some key land areas where gauges are sparsely distrib-

uted or are of questionable quality.

So, with all of these estimates available, what is the

correct mean precipitation at a location, or over a large

or small area, either in a climatological sense, or for

a particular month? A better question, however, may be

‘‘What is the error bar of a particular estimate?’’ The

error associated with a particular estimate can be thought

of as having two parts. One part of the total error is the

random error, which could consist of random measure-

ment errors and random errors due to sampling limita-

tions and other processes. Because these errors are

‘‘random,’’ significant spatial or temporal averaging should

reduce the mean random error to near zero. The second

part of the total error is the systematic, or bias, error. No

amount of averaging eliminates this type of error. This

component can be contributed to by systematic algo-

rithm or other measurement errors or by sampling

biases (e.g., sampling only part of the diurnal cycle).

Therefore, for long-term means or climatologies, where

the random error should be near zero, ‘‘What is the

magnitude of the estimated systematic (or bias) error?’’

is a valid and important question. For example, the

monthly precipitation product from the Global Precip-

itation Climatology Project (GPCP) is a community-

based analysis of global precipitation under the auspices

of the World Climate Research Program (WCRP) from

1979 to the present (Adler et al. 2003a; Huffman et al.

2009). A significant amount of effort by a relatively large

group of people has resulted in the technique and the

resulting dataset spanning 1979–present, which has been

used in over a thousand scientific journal articles. Al-

though this monthly GPCP dataset is accompanied by

gridded estimates of random error [combined algorithm

and sampling; see Huffman (1997)], there is no estimate

of systematic or bias error accompanying the product or

the climatologies produced from the monthly analyses.

In the GPCP analysis procedure the developers seek to

minimize bias by, for example, adjusting the satellite in-

formation by the gauge analysis over land and adjusting

infrared (IR) estimates over ocean by the relatively less

frequent, but higher-quality, passive microwave estimates.

The design goal is to remove apparent biases before

combination is done.

One method by which error estimates, including bias

error, may be calculated for individual satellite algo-

rithms (e.g., passive microwave retrievals over ocean) is

by estimating errors in the input information, for ex-

ample in the assumed microphysics (Wilheit et al. 2007)

or in parameters such as instrument error, errors in an-

cillary information, and errors in vertical hydrometeor

structure. These estimated input errors are then in-

cluded in the retrieval calculations, interacting with the

physical variables and other errors in an attempt to

calculate their impact on the final retrieval error. Esti-

mating all of these input errors and how they interrelate

to each other and with the physics of the retrieval is very

complicated, however, and this approach has not yet

resulted in a usable overall bias estimate, although this

approach should eventually be useful.

Some information concerning bias error can, of

course, be drawn from validation data (e.g., Adler et al.

2003a,b; Bolvin et al. 2009). Because gauge information

is used to constrain the bias of the GPCP estimates over

land, however, mean values of gauge-based validation

fields tend to mirror the GPCP estimates in areas of good

gauge information, although gauge validation of the

satellite-only intermediate product does give information

on the bias errors of the satellite estimates used. Over

ocean, validation is problematic, with atolls concentrated

in one location (tropical western Pacific Ocean) and with

possible island effects making them probably unrepresen-

tative of open-ocean mean rainfall. Buoy rain gauges

(Bowman 2005) and atoll-based radars (Wolff et al.

2005) also have difficulty producing mean rain estimates

with accuracies much smaller than those of the satellite

estimates themselves. Outside of tropical oceans, there is

a complete dearth of oceanic, accurate mean precipi-

tation validation data.

The routine estimation of bias error for individual al-

gorithms and for merged precipitation products has,
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therefore, not been successful to this point. Such error

estimates are, however, important—for example, in wa-

ter budget calculations where the observed precipitation

data are being combined with observations or calcula-

tions of other components of the water cycle and a bal-

ance is mandatory. If a water imbalance occurs, which

component or components should be adjusted and what

is the limit of adjustment (i.e., what is the estimate of

bias error?)? A simpler application of bias error esti-

mates is the validation of global model rainfall calcula-

tions. For example, is a global-model-generated mean

January ocean precipitation, which is 20% higher than

GPCP, still within the estimated bias error of the ob-

served GPCP product and therefore plausibly correct, or

is the model mean value clearly outside the estimated

bias error and therefore probably incorrect?

With these types of incentives in mind, we have de-

veloped an approach to estimate systematic or bias errors

for satellite-based precipitation annual and monthly cli-

matologies with an eye on applying it specifically to the

GPCP product. The approach eschews an analysis of the

detailed errors related to the physics of individual re-

trievals but instead drops back to examine the variations

among different estimates using different satellites, merged

products, and specific algorithms. The size of the estimate

of the bias error will be directly related to the magnitude

of the dispersion or spread of the different datasets. One

justification for this type of approach is that each algo-

rithm or merged-product developer does his or her best at

taking into account the physics and statistics of the pro-

cess to make their best estimate, but not all arrive at the

same answer. Thus, by examining a set of such estimates

(and the spread among them), we are actually indirectly

measuring the effect of different physical assumptions in

the retrievals, impacts of different sampling strategies or

limitations, and the effect of various merger schemes. It

is hoped that a dispersion statistic from among these

products reflects the spread of estimates that result from

the state of knowledge of the process.

The approach used here is similar to that of Smith

et al. (2006), in terms of using multiple satellite pre-

cipitation estimates, but will include a scheme to screen

the input estimates and allow for the calculation of area

means of the estimated bias error. Our approach will be

applied to the GPCP record so that we can examine maps

of errors and then use the results to estimate both global

and regional errors on the climatological scale. One goal

is to achieve a technique that can be applied directly to

the monthly GPCP analysis for use by the user commu-

nity. Combined with the existing estimate of random er-

ror for GPCP monthly values (Huffman 1997), this new

bias error would allow for an estimate of total (bias plus

random) error.

2. Data resources

The monthly precipitation product from the GPCP is

a community-based analysis of global precipitation un-

der the auspices of the WCRP from 1979 to the present

(Adler et al. 2003a; Huffman et al. 2009). Archived on

a 2.58 3 2.58 grid, the data are combined from various

information sources: microwave-based estimates from

SSM/I, IR rainfall estimates from geostationary and

polar-orbiting satellites, estimates from Television and

Infrared Observation Satellite (TIROS) Operational

Vertical Sounder (TOVS) and Atmospheric Infrared

Sounder (AIRS) sensor soundings, and surface rain gauges.

Although the data are homogeneous since 1988 in terms

of input datasets, the satellite inputs are limited to IR-

based estimates during the pre-1988 period. These pre-

1988 estimates are trained on the later period to reduce

possible differences. We should certainly be cautious of

this time inhomogeneity in the analysis in terms of sat-

ellite input datasets, even though Smith et al. (2006)

showed that the impact of this time inhomogeneity is not

a major concern. Detailed procedures and input data

information can be found in Adler et al. (2003a). Ver-

sion 2 of the GPCP dataset has been used in this study.

The recent release of version 2.1 (Huffman et al. 2009)

will change the results minimally. When the next version

is released, the numerical results will be updated.

In addition to the GPCP analysis, other precipitation

estimates are used to estimate the bias error. Over ocean

these include the Climate Prediction Center Merged

Analysis of Precipitation (CMAP; Xie and Arkin 1997),

Hamburg Ocean–Atmosphere Parameters and Fluxes

from Satellite Data (HOAPS; Klepp et al. 2005), SSM/I

F-13 through the Goddard profiling algorithm [GPROF;

Kummerow et al. (2001)], SSM/I F-13 through the Re-

mote Sensing Systems product (RSS; Hilburn and Wentz

(2008), TRMM-2A12 (Kummerow et al. 2001), TRMM-

2A25 (Iguchi and Meneghini 1994), and TRMM-2B31

(Haddad et al. 1997). Over land, four products are used

(i.e., GPCP, CMAP, TRMM-2A25, and TRMM-2B31).

The others are not used over land because of increased

error there (SSM/I F-13 computed with GPROF and

TRMM-2A12) or lack of estimates (HOAPS and SSM/I

F-13 computed with the RSS algorithm).

3. Approach

The goal of this work is to produce bias error estimates

on three time scales: 1) annual climatology, 2) month-

of-the-year climatology, and, eventually, 3) individual

months. The basic idea is to use multiple estimates of

the monthly (or climatological) precipitation and to use

the spread or dispersion among the estimates as a measure
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of the bias error. The statistic chosen to represent the

degree of dispersion, and therefore the bias error esti-

mate in this study, is the standard deviation s. Other

statistics could have been chosen, including 2s, or even

range, but s is simple and can usually be converted into

the other statistics, assuming a normal distribution. There-

fore, in the rest of this paper bias error (or absolute bias

error) will be defined as the standard deviation (s) among

the included products and will have the units of pre-

cipitation (e.g., mm day21). In addition, the relative bias

error will be defined as the bias error (s) divided by the

mean precipitation m (i.e., s/m). Often one or both of s

and s/m will be used, because they each have strengths in

assessing the bias errors, especially at different magni-

tudes. When mean precipitation is near zero, the relative

error becomes meaningless and s must be used; when

the mean rainfall over an area is relatively large, the

relative, or percentage, error becomes much easier to

use in comparisons.

The spatial scale for this study is 2.58 3 2.58 latitude–

longitude. The base period for the study is 1998–2007 to

incorporate the TRMM period. The products selected

for inclusion in this exercise are many of the standard

precipitation products used in a number of applications

and studies. In general, they are considered by the com-

munity to be of good quality and validated. This assess-

ment of generally good quality, however, does not

guarantee their accuracy in general or their accuracy at

all locations and/or in all seasons for which the products

present estimates.

To be included in the bias error calculations (calcu-

lations of s), each product is examined in terms of zonal

average (ocean and land separately) for individual months.

An example of zonal-averaged, ocean mean values for

January and July 2003 is shown in Fig. 1. In the tropics

there are eight products having fairly good agreement.

At higher latitudes there is greater dispersion of the

estimates. Some products are thought to be accurate in

one region but perhaps not in another location. To avoid

using products in regions for which they are believed to

be less accurate, we devised a simple check to be applied

to the zonal-averaged data for each month. Because we

think the GPCP estimates are reasonable everywhere

(but certainly not perfect) and because the focus of the

error application is eventually on the GPCP product, we

discard products whose zonal-mean value (ocean and

land separately) is more than 650% from the GPCP

estimate. We apply this test on data for individual

months so that the use of datasets varies as a function of

latitude, season, and even year. We tested using smaller

and larger ranges (from 25% to 100%) for inclusion, but

the results were fairly insensitive to this variation.

Limiting the inputs in this objective way, therefore, gives

a procedure that includes information at latitudes at

which the inclusion is reasonable but that eliminates

estimates from the same product in regions where it is

far from the expected value. The choice of the GPCP

estimate as the base assumes that its value at a particular

month and latitude cannot be more than 50% from the

real value. This relatively large range of values to be in-

cluded in the calculation makes the dispersion calculation

realistic and yet excludes clearly incorrect or suspect es-

timates.

To be specific, all products are first regridded to the

GPCP grid (2.58 3 2.58). Then, they are chosen to be

FIG. 1. Meridional profiles of oceanic precipitation from various

products for (a) January and (b) July 2003.
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included for the bias error estimation based on the fol-

lowing procedure:

1) Compute zonal-mean profiles for the monthly GPCP

precipitation [mGPCP(f, t)] and other products [mi(f, t)],

where f denotes latitude, t is time, and i represents a

specific product.

2) Estimate the relative differences of datasets with

GPCP; that is,

h(f, t) 5

����
mi(f, t) 2 mGPCP(f, t)

mGPCP(f, t)

����.

For each dataset except GPCP, if h(f, t) # 0.5, it is

included for the corresponding latitudinal band and

month.

3) Calculate the mean rainfall map by averaging the

chosen products and GPCP. This is done for the 10-yr

climatology, the 10-yr seasonal cycle, and for each

month. Then, the standard deviation (s) among the

products is calculated at each grid. Note that a prod-

uct (with the exception of GPCP) may be included

along some latitudes but not along other latitudes and

in some months but not in other months.

The resulting values of dispersion among the esti-

mates are then considered to be estimates of bias error

and to be applicable to GPCP mean rainfall estimates.

Results at various spatial and temporal scales are dis-

cussed in the following sections.

4. Results

a. Ten-year climatologies: Means and estimated
bias error fields

1) MAPS AND REGIONAL VARIATIONS

The 10-yr climatologies and parameters from the bias

error calculations are shown in Fig. 2. Figure 2a shows

the 10-yr GPCP mean precipitation, and Fig. 2b gives

the mean precipitation for the composite (or mean)

of the products used at each grid point, with Fig. 2f

showing the number of products going into the composite.

Figure 2c indicates the difference between the two mean

fields. As one would expect, the two fields are very similar,

with the same major features and only slight differences in

magnitude over much of the globe. In mid- to high-latitude

oceans, however, the composite is lower than the GPCP

estimate, indicating that the non-GPCP products going

into the composite are generally lower than those of

GPCP in this area. Over tropical oceans there are small

areas with composite values that are slightly lower than

GPCP values, mainly in the eastern Pacific Ocean and in

the eastern Atlantic Ocean. We are mainly concerned,

however, with the variation among the input products to

the composite. Those variations are given in Figs. 2d and

2e. The simple standard deviation s of the input products

in Fig. 2d shows generally higher values of s with higher

mean precipitation m, as expected. In the tropical eastern

Pacific Ocean, s reaches 1.2 mm day21, giving a s/m up to

20% (Fig. 2e). Over the tropical oceans in areas of sig-

nificant rainfall the percentage variation among the esti-

mates is generally lower than this peak, with maximum

values of 10%–15% in the western Pacific Ocean, even

in areas of significant annual rainfall. In the midlatitude

oceanic maxima (off the east coasts of Japan, the United

States, and South America) and the midlatitude extension

of the South Pacific convergence zone, the variation of the

estimates is also about 15%. At higher latitudes over the

ocean the percentage variation tends to increase from

midlatitudes toward higher latitudes, with values reaching

over 50% at 608 latitude in either hemisphere. Even

higher percentage variations are found farther poleward,

but these are in areas with only a few (two or three)

contributing products. Over land the percentage variation

is about 10% in most areas of significant rain but is higher

(up to ;20%) in eastern Africa along the equator.

Figure 3a shows an example of the distribution of

variation among estimates as a function of mean rain rate

for various parts of the tropical ocean, including the

tropical western and eastern Pacific Ocean areas. Fitted

straight lines summarize each area. As expected, the s/m

values decrease with increasing mean rain rate m, with

a majority of values being between 5% and 20%. The

fitted lines clearly indicate that the eastern Pacific area

has higher variability among the estimates, with mean s/m

of about 15% versus 10%–12% at 5 mm day21. If these

measures of dispersion are equivalent to bias errors (or

are at least proportional), a conclusion is that we are less

certain of our estimates in the eastern part of that ocean.

This quantification of estimated bias errors agrees with

a number of individual studies of these two areas (Berg

et al. 2002, 2006; Shige et al. 2008). The tropical Indian

Ocean also has higher bias errors, whereas the tropical

Atlantic appears to have the lowest estimated errors.

Figure 3b shows the relations for s/m versus m for

midlatitude oceans in the Northern Hemisphere (NH).

The fitted lines indicate a surprising slight increase of

s/m with m, with the maximum value of error at inter-

mediate rain rates. Whereas it might have been expected

that midlatitude ocean bias errors would be larger than

in the tropics, the estimated errors at these latitudes

(308–458N) are similar to those in the tropics at higher

rain rates (.5 mm day21). Although we may think we

know less about the magnitude of higher-latitude ocean

rainfall as compared with that of the tropics, the dis-

persion of the available estimates is about the same.
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Over tropical land (Fig. 3c), the estimated bias errors

for Africa and South America are about the same value

as that over the western Pacific Ocean but are less than

that over the eastern Pacific. At overlapping rain rates

(3–6 mm day21), South America has higher errors, pos-

sibly due to the different structure of rainfall there, with

less deep convection.

2) ZONAL MEANS OF PRECIPITATION AND

ASSOCIATED ERRORS

As discussed in section 4a(1), there are latitudinal

variations in the estimated bias errors. Figure 4 shows

the mean annual, zonal-mean precipitation values over

ocean and the associated estimated errors. Keep in mind

that the error values in Fig. 4 are not the zonal mean of

the errors in the maps (Fig. 2) but are the standard de-

viation s of the zonal-mean precipitation estimates. In

terms of the mean precipitation, the composite is very

close to GPCP values in the tropics and is less than

GPCP values in the midlatitude maxima of the two

hemispheres, again indicating that the four–five prod-

ucts that go into the composite tend to have lower pre-

cipitation than GPCP does. The standard deviation

among the zonal means of the input estimates (s; Fig.

4b) has a value of greater than 0.6 mm day21 at 608

latitude in both hemispheres and has a secondary max-

imum in the tropics that is associated with the zonal

maximum of rainfall. The s/m ratios vary from a low

FIG. 2. The 10-yr climatology of global precipitation: (a) GPCP rain rates (mm day21), (b) mean rain rates

(mm day21) from various products, (c) difference between GPCP mean and composite mean, (d) estimated bias

error s (mm day21), (e) estimated relative bias error s/m, and (f) number of products chosen for bias estimation.
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point of just below 10% in the tropical rain maximum to

;15% at 458 and ;25% at latitudes above 558. These

estimated errors in the zonally averaged precipitation

tend to be smaller than those in specific latitude–longitude

locations because of a canceling effect among the prod-

ucts when zonally averaged. These results seem to con-

firm the notion that we have a better knowledge of mean

precipitation over tropical oceans than we do for higher

ocean latitudes, even when we do zonal averages.

Over land (Fig. 5) in the tropical rainy belt, the s value

is smaller than over ocean, with the estimated percent-

age error being ;5%. This relatively low value reflects

the presence of surface gauge information in two of the

products and possibly the use of gauge information as

validation during satellite algorithm development.

There is a general poleward increase in estimated error,

with values up to 20%, but outside of 408 latitude there

are typically only two products. At southern latitudes

outside 408, there is also diminishing land. That the er-

rors increase toward the pole over land seems reason-

able, considering difficulties in making measurements

with both satellite and gauges in high latitudes, espe-

cially during the cold season.

b. Seasonal variations

The climatological means and estimated bias errors are

calculated for each month. January and July will be de-

scribed here as examples. Figure 6 shows the results for

the January climatology. First of all, the estimated bias

errors for the climatology of an individual month are

typically greater than for the annual climatology. Just as

with spatial averaging (as in the last section), time aver-

aging over the annual cycle with compensating errors

tends to result in lower error values. So, for example, the

January mean s/m in the North Pacific Ocean is gener-

ally larger than 20% (Fig. 6e), whereas the same area for

the annual climatology is mostly below 20% (Fig. 2e).

In the tropics for January the oceanic precipitation

maxima are pushed toward the Southern Hemisphere. In

the eastern Pacific Ocean the narrow rain maximum lies

nearly along the equator, with stronger peak values in the

composite mean than with GPCP. This distinct difference

(Fig. 6c) is probably related to the GPCP product broad-

ening the rain maximum and therefore underestimating

the peak values. This effect can be seen in the reversal of

the sign of the GPCP–composite difference as one moves

a small distance north and south of the maximum. The

estimated bias errors remain higher in the eastern Pacific

maximum relative to the western Pacific Ocean feature.

The January midlatitude NH ocean maxima in both

the Atlantic and Pacific are located on a zone of tight

gradient of estimated error, increasing toward the pole,

with larger error values found for January than for the

FIG. 3. Examples of distributions of s/m vs m for various geo-

graphic locations: (a) tropical eastern Pacific Ocean (158N–58S, 100–

1608W), tropical western Pacific Ocean (158N–58S, 1408E–1608W),

tropical southwestern Pacific Ocean (58–258S, 1408E–1608W), trop-

ical Indian Ocean (108N–108S, 608–1008E), and tropical Atlantic

Ocean (08–158N, 208–458W); (b) Northern Hemispheric storm-track

zones (308–458N, 1408E–1608W and 308–458N, 308–708W); and (c)

the tropical African continent (108N–108S, 08–408E) and tropical

South America (108N–108S, 408–808W). Also shown are corre-

sponding linear fits.
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annual climatology. These s/m values of greater than

30% clearly indicate a weakness in estimating pre-

cipitation over ocean in the cold season at these lati-

tudes. The estimated errors in July (Fig. 7) in these

locations are lower although still high relative to the

annual cycle values. These higher errors in midlatitude

winter are due to shallower liquid precipitating layers

(more difficult for passive-microwave instruments to

detect) and greater depth of falling snow (with attendant

complex scattering signals). Over land the estimated

errors in the tropics are similar for each season and are

only a small amount larger than the errors for the annual

mean. In higher-latitude areas (e.g., Asia above 508N),

however, estimated errors jump from 10% to greater

than 30%. This large error jump is due to having only

two estimates included in this area and a use of wind loss

adjustment in one (GPCP) being much larger in winter

during probable snow conditions.

c. Averaging errors over large areas

After estimating the bias error across a global grid,

one obvious extension is to estimate the error over an

FIG. 4. Meridional profiles of (a) 10-yr-mean GPCP rain rates (mm day21; red solid line), mean rain rates from

various products (mm day21; blue dashed line), and number of products used for bias estimation (blue dash–dotted

line) and (b) estimated bias error s (mm day21; blue dashed line) and relative estimated bias error s/m (red solid line)

over ocean.

FIG. 5. As in Fig. 4, but over land.
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arbitrary area of the grid. One can do this calculation

simply with a knowledge of the input precipitation fields,

taking the areal mean of each input for the selected area

and then calculating the s and s/m of that set. Examples

of such a calculation, the zonal-mean ocean and land

climatological error estimates, were already presented

in section 4a(2). Remember, the mean of the estimated

errors is not equal to the estimated error of the area

means. It is the second parameter that is the desired one,

and it is usually smaller because of compensating dif-

ferences with positive and negative signs. Situations can

arise that make the calculations more complicated,

however. For example, the area over which one wishes

to make the calculations can have a different number

of products at different places in the selected area.

Computing the zonal average over ocean (and land

separately) avoided this issue, because the technique for

selection of the input datasets is based on the zonal

means and variations. If one selects an area that includes

ocean and land areas with different input datasets,

however, or an area that goes across latitudinal bound-

aries (e.g., 408) with different numbers of input datasets,

one cannot simply calculate the areal means of the n

datasets, because n is not a constant over the entire area.

To calculate the estimated bias error of an arbitrary

area, knowing the estimated errors at each grid location,

an empirical approach is developed below that allows us

to calculate tropicwide and global estimated errors in

the next section. It also provides a tool so that an at-

tached grid of estimated bias errors could accompany

FIG. 6. As in Fig. 2, but for January.
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the GPCP monthly precipitation dataset, from which

arbitrary area-averaged errors can be estimated. Again,

the goal is to go from a two-dimensional grid of esti-

mated errors to an estimate of error over an arbitrary

area. In other words, we want to estimate the real bias

error s over an area from the domain mean of the

gridded bias error estimates s, which is, of course, not

the same. The empirical approach is to calculate the

‘‘real’’ s and the area mean of the gridded ss (i.e., s) as

a function of area size and type of domain and to com-

pare the two parameters. These calculations are done

for areas of the grid for which all grid points have the

same number of products. For an area of one grid cell

(2.58), the ratio of the two is, of course, 1. As the area

gets larger, this ratio s/s increases above 1 because of

the canceling effect of bias errors when averaging pre-

cipitation values over areas. Examples of many such

calculations over many different areas are shown in

Fig. 8 for the annual climatology over ocean and land.

The domain size is represented by a ‘‘pseudosize,’’

representing its comparable domain size (counted by the

corresponding grid boxes of size 2.58 latitude 3 2.58

longitude) at the equator. This adjusting size takes into

account the changing latitude–longitude grid size. The

calculations are done for a large number of rectangular

areas (in terms of grid boxes) of various aspect ratios

over ocean and land separately, all within the latitude

bounds of 37.58N–S. There is a fair amount of scatter,

but a very large number of the calculations cover a nar-

row range, especially for larger size areas. The scatter is

FIG. 7. As in Fig. 2, but for July.
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fit through a nonlinear relation using the ITT Visual

Information Solutions, Inc., Interactive Data Language

(IDL) Gaussfit program (see the appendix). The fitted

curves (Ro and Rl) in Fig. 8 rise sharply from 1.0 at the

smallest (one grid) size and then continue to increase at

a shallower slope until reaching an asymptote. The fitted

curves capture the empirical relation related to the area-

averaging process. The asymptote for the ocean is con-

siderably smaller than that for land. This land–ocean

difference is due to the larger horizontal variability in

climatological precipitation (and related variations among

estimates) over land as compared with ocean. This higher

variability in mean precipitation (mainly due to orographic

and other surface effects) in turn affects the variability in

the calculated s (tends to be proportional to mean pre-

cipitation). The more horizontally variable s fields over

land then lead to the higher ratio values over land.

Figures 9 and 10 show the ratio results for the tropical

climatology of each month, with different figures for

ocean and land. The results at this time scale (climato-

logical month) have larger ratios than for the annual

climatology. The asymptote is about 2.3 over ocean and

3.1 over land, with fairly tight scatter resulting from the

exclusion of the extratropics in this case.

To evaluate how this technique performs in different

regions, the monthly climatological errors are estimated

FIG. 8. The ratios between domain-mean bias error s and real bias s as a function of the size of domain for the 10-yr

climatology analysis. Black dots represent the samples between 37.58S and 37.58N, where eight and four rainfall

products are generally available over (a) oceans and (b) land, respectively. Blue dots denote the mean ratio for each

size of domain, and red lines represent their corresponding fitted curves (Ro and Rl; see the appendix). Pseudosize is

the area represented by the equivalent number of 2.58 latitude–longitude grids at the equator. The units in the

diagram are number of grids.

FIG. 9. Similar to Fig. 8, but over oceans between 37.58S and

37.58N for the 10-yr-mean seasonal cycle. Black dots denote the

mean ratio for each size of domain, and the red line represents their

fitted curve (Ro; see the appendix). FIG. 10. As in Fig. 9, but over land and the red line represents Rl.
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for different-sized areas by the use of the formulas of Ro

and Rl (see the appendix) and are compared with esti-

mated bias errors calculated by using the precipitation

information, area averaging the information, and then

calculating the estimated errors (standard deviations)

from the area means of the multiple products. This

evaluation can only be done for areas with the same

number of products, and therefore we use the tropical

band (37.58S–37.58N) and a midlatitude area (408–52.58N

and 408–52.58S). The results for the 37.58S–37.58N band

are essentially a check of the technique on dependent

data, whereas results for the higher-latitude band are

independent, since the relations were only developed

using the tropical (37.58S–37.58N) area. These results are

shown in Figs. 11 and 12 for ocean and land, respectively.

For ocean, Fig. 11 indicates that the technique is fairly

accurate over ranges of s (Fig. 11a), area size (Fig. 11b),

and mean rain rate (Fig. 11c). The results for the mid-

latitude areas are slightly biased, because the sample is

dominated by the tropics. Over land (tropics; see Fig.

12), the results have a greater variance but should still be

useful.

These results indicate that the technique to use the area

mean of the ss can be converted into a s of the pre-

cipitation means over an arbitrary area. This conclusion

allows the use of the grid of ss for a number of ap-

plications. Two of these will be addressed in the next

section.

d. Estimating the bias errors of tropical and
global climatological precipitation

What is our state of knowledge of the magnitude of

total tropical and global precipitation? In other words,

what is the total mean precipitation over these areas

and what is the error bar on that estimate? We will use

the procedure described in this paper to estimate the

bias error for these large-area estimates. The following

equation will be used to make the estimates when

combining estimates over land and ocean. As stated

above, Ro and Rl are parameters denoting the empirical

relations over ocean and land between averaged bias s

and real bias (real s) over a domain, which are esti-

mated by the fitted red curves in Fig. 8 (see the ap-

pendix). They may vary with both size of domain and

domain-mean rain rate. The technique is a method for

going from a map of gridded ss to an estimate of the

area-mean s (i.e., an estimate of bias error over the

selected area).

For a domain covering both land and ocean, the ad-

justed bias error s can then be estimated as

FIG. 11. Validations of estimated bias errors against

real ones over oceans: (a) estimated bias errors s vs

real bias errors s, (b) ratios between s and s as

a function of domain size, and (c) ratios between s and

s as a function of domain-mean rain rate m. Black dots

denote the domains chosen from the 37.58S–37.58N

band, and blue and red crosses represent the domain

chosen from 408 to 52.58N and from 408 to 52.58S, re-

spectively.
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where f denotes latitude and soi and slj are bias at grid

points over ocean and land, respectively. This area

weighting is necessary because of the difference in

R values over ocean (Ro) and land (Rl), as seen in Figs.

8–10.

The results for the tropical case (258N–258S) are shown

in Table 1. The climatological ocean value (Table 1,

bottom row) for GPCP is 3.13 mm day21, very close to

the composite estimate of the multiple products. The

estimated bias error for the tropical ocean area is nearly

8%, however, indicating a relatively wide spread among

the relevant satellite products. The rightmost column in

Table 1 shows bias error estimates from Adler et al.

(2009), with a tropical ocean value of only 3%. This

lower estimate is based on only three TRMM products,

two of which are not independent, and therefore the 3%

value is considered to be a lower bound on the error

estimate (Adler et al. 2009). The 8% value of this study

may be an upper bound, however. Although the three

TRMM products have nearly identical sampling and

also have uniform sampling of the diurnal cycle, many of

the additional products in the collection in this study

have various-time-of-day sampling and other factors (e.g.,

adjustment to atoll gauges) that may widen the spread.

FIG. 12. Similar to Fig. 11, but over land (37.58S–37.58N).

TABLE 1. Tropical (258S–258N) mean rain rates m (mm day21) and bias s (mm day21) during 1998–2007.

m (GPCP) m (composite)

Adjusted domain-mean

estimated bias (s)

Relative estimated bias

[100% 3 (s/m)]

TRMM composite climatology

[100% 3 (s/m)]

Land and ocean 3.17 3.18 0.22 7.02% 3.0%

Land 3.28 3.19 0.15 4.69% 5.5%

Ocean 3.13 3.18 0.25 7.93% 2.9%
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Over land, the calculated bias error estimate is about

4%–5%, close to that of the earlier, TRMM-based esti-

mate. For the combined land 1 ocean tropical error es-

timate, the 7% value is again considered to be somewhat

of an upper bound because of the lack-of-cancellation-of-

error effect being ignored when areas with different

numbers of inputs are combined (in this case ocean

and land). In summary, for the tropics the error esti-

mates calculated for this paper are probably near an

upper bound, and the actual errors are in the neigh-

borhood of 6%–7% for ocean and ocean 1 land and a

little lower for land by itself (5%). The lower value over

land is because some included products contain gauge

information, even though in some tropical areas the quality

of that information may be suspect.

The global calculation takes full advantage of the

techniques developed for this paper. There are many dif-

ferent regions, both ocean and land, with different num-

bers of products accepted into the calculation, and the

technique takes these into account. The results are shown

in Table 2. As stated before, the error estimates may be an

upper bound because we do not consider canceling effects

when combining areas (ocean and land) with different

numbers of input products. For this global calculation the

composite estimates for both ocean and land are lower

than the GPCP mean value. Over ocean this is mainly due

to differences over the midlatitude ocean, where a num-

ber of the passive microwave products are thought to have

a negative bias that results from most being developed

and tested over tropical oceans. As we have already seen

in section 4a(2), the estimated bias errors increase in

percentage terms in going from the tropics to the mid-

and high latitudes. So, when the global estimates are

made, the error magnitudes increase a few percent—for

example, to 9% for the global value. The land and ocean

values also increase to 7% and 10%, respectively. As

stated before, these values are considered to be upper

bounds because of the necessity of piecing together

areas with different numbers of products and taking

the sum of the errors instead of the error of the sums.

This eliminates the canceling effect of high and low

estimates in different regions, which reduces the over-

all bias error estimate. Even if the real s/m error bar

is, say, 7% (lower than our calculation), adjustments of

global precipitation estimates, especially GPCP, by 5%

(e.g., Trenberth et al. 2007) are reasonable within the error

estimates calculated here.

5. Summary and concluding remarks

Estimated bias errors are derived for mean precip-

itation by using a technique that employs multiple esti-

mates from different algorithms, satellite sources, and

merged products. The GPCP is used as a base product,

and potential input products are screened out when they

disagree with monthly GPCP estimates on a zonal-mean

basis (ocean and land separately) by more than 50%.

The results allow us to examine monthly climatologies

and the annual climatology, producing maps of estimated

bias errors, zonal-mean errors, and estimated errors over

large areas such as ocean and land for both the tropics and

for the globe.

For ocean areas, where there is the largest question as

to absolute magnitude of precipitation, the analysis shows

variations in the estimated errors, indicating some areas

where we should be less confident of our mean precipi-

tation estimates. Error estimates over the eastern Pacific

Ocean are as large as 20%, as compared with 10%–15%

in the western Pacific part of the ITCZ. Our calculations

help to quantify this long-known spatial difference with

confidence. Examining latitudinal differences over ocean

clearly shows an increase in bias error estimate at higher

latitudes, reaching up to 50%. Over land the error esti-

mates also indicate potential locations of problems and

the general cold-season problems at high latitudes.

The empirical technique to estimate area-average

errors allows us to make error estimates for the tropics

and for the globe (land and ocean separately, and

combined). The estimated bias errors in this paper are

considered to be upper bounds because of lack of can-

celing the sign of the error when integrating over dif-

ferent areas with different numbers of input products.

Over the tropics, this calculation leads to larger error

estimates than were found by Adler et al. (2009), using

just TRMM data. The estimate for the tropics as a whole

is 7% as compared with 3% from the earlier study. These

upper and lower bounds indicate that the actual answer

may be around 5%. For the globe the calculated error

estimate from this paper is about 9%. Again this is con-

sidered to be an upper bound, and the actual error estimate

TABLE 2. As in Table 1, but global (908S–908N).

m (GPCP) m (composite)

Adjusted domain-mean

estimated bias (s)

Relative estimated bias

[100% 3 (s/m)]

Land and ocean 2.64 2.45 0.25 9.48%

Land 2.12 2.03 0.16 7.54%

Ocean 2.87 2.64 0.29 10.14%
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may be closer to 7%. Combining this with the GPCP

global mean gives a global precipitation estimate of

2.6 mm day21 6 7%.

As the differences between the two recent studies

show, we have not determined a final answer. The pro-

cedures described here give one way of calculating es-

timated errors that are certainly useful in a relative sense

(e.g., spatial variations) and give a usable error estimate

for various water and energy balance studies. For the

future we hope to translate this technique to provide to

users the GPCP monthly gridded values with an accom-

panying estimated error bias. This would complement the

random error estimates already in place that are based on

Huffman (1997). Research will continue into refining

this technique, validating the error estimates over a few

locations, and, it is hoped, providing a solid bias error

estimate.

Acknowledgments. This research is supported under

the NASA Energy and Water-Cycle Study (NEWS)

program.

APPENDIX

Estimation of Fitted Curves

The Gaussfit function in IDL is applied to estimate the

fitting curves shown in Figs. 8–10. The function is a linear

combination of a Gaussian function and a quadratic

function; that is,

Y 5 a0 exp(2z2/2) 1 a1 1 a2X 1 a3X2,

where z 5 (X 1 b1)/b2. In Figs. 8–10, Y represents the fitted

curves for the ratios between domain-mean bias error s

and real bias s over either land (Rl) or ocean (Ro), and X

denotes the size of domain or pseudosize. This fitting

function can obviously provide nonlinear least squares fits.

The actual curve equations are given as follows: In Fig. 8,

Ro 5 215:9452 exp(2z2/2) 1 1:535 61

1 5:678 61 3 1025X 2 5:602 12 3 1029X2,

where

z 5 (X 1 1458:22)/521:198,

and

Rl 5 24:744 58 exp(2z2/2) 1 2:043 91

1 1:342 63 3 1023X 2 6:999 61 3 1027X2,

where

z 5 (X 1 80:6157)/41:2993.

In Fig. 9,

Ro 5 244:4303 exp(2z2/2) 1 2:086 81

1 7:237 95 3 1025X 2 3:395 3 1029X2,

where

z 5 (X 1 1732:79)/594:855.

In Fig. 10,

Rl 5 28:356 81 exp(2z2/2) 1 2:554 09

1 0:001 337 49X 2 7:310 55 3 1027X2,

where

z 5 (X 1 46:9144)/24:3449.
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