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ABSTRACT

It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture

and sea surface temperature are necessary to improve simulations of summertime pulse-type convective

precipitation in high-resolution models. This paper presents model verification results of a case study period

from June to August 2008 over the southeastern United States using the Weather Research and Forecasting

numerical weather prediction model. Experimental simulations initialized with high-resolution land surface

fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS)

and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer

(MODIS) are compared to a set of control simulations initialized with interpolated fields from the National

Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land

surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the

4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme

rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and

higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model

sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–

MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Cen-

ter’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional

gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation

(MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h

accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very

little union in time and space between the forecast and observed precipitation systems, results from the MODE

object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The

MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h21 matched object

areas (‘‘hits’’) while simultaneously decreasing the unmatched object areas (‘‘misses’’ plus ‘‘false alarms’’) during

most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h

precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher

accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate

that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation

systems in convection-allowing models.

Corresponding author address: Jonathan L. Case, National Space Science and Technology Center, Rm. 3062, 320 Sparkman Dr.,

Huntsville, AL 35805.

E-mail: jonathan.case-1@nasa.gov

VOLUME 26 W E A T H E R A N D F O R E C A S T I N G DECEMBER 2011

DOI: 10.1175/2011WAF2222455.1

� 2011 American Meteorological Society 785



1. Introduction

One of the most challenging weather forecast prob-

lems in the southeastern United States is daily sum-

mertime pulse-type convection. Atmospheric flow and

organized, synoptic-scale forcing are generally weak in

this region during the summer. Thus, convection typi-

cally initiates in response to local low-level convergent

boundaries such as sea–lake breezes, outflow bound-

aries, and other temperature and moisture discontinu-

ities often related to horizontal gradients in surface

heating rates. Numerical simulations of pulse-type con-

vection usually have low skill, even in local predictions

at high resolution, due to the inherent chaotic nature of

these precipitation systems. Forecast errors can arise

from assumptions within physics parameterizations,

model resolution limitations, and uncertainties in initial

atmospheric state and land surface properties. For this

study, it is hypothesized that high-resolution, accurate

representations of surface properties such as soil mois-

ture, soil temperature, and sea surface temperature

(SST) are necessary to better simulate the interactions

between the surface and atmosphere and, ultimately, to

improve predictions of local circulations and summer-

time pulse-type convection.

The impacts of soil moisture heterogeneity and land

surface (and ocean) properties on surface fluxes, bound-

ary layer properties, and warm-season quantitative pre-

cipitation forecasts continue to be an important topic.

On the large scale, Koster et al. (2000) showed that SSTs

contribute to precipitation predictability in the tropics

while soil moisture states contribute to precipitation

predictability in transition zones between dry and humid

climate regions. Koster and Suarez (2003) demonstrated

that the land surface initialization has a statistically sig-

nificant impact on summer precipitation in continental

regions that experience large soil moisture anomalies

and strong sensitivities of evaporation to soil moisture

and precipitation to evaporation. Koster et al. (2004) ran

retrospective atmospheric general circulation model

simulations initialized with realistic land surface model

(LSM) fields to show the importance of a proper land

surface initialization on the forecast skill of summer

precipitation over the North American Great Plains.

Soil moisture heterogeneity can lead to the develop-

ment of mesoscale circulations that are nearly as strong

as sea-breeze circulations (Ookouchi et al. 1984; Avissar

and Pielke 1989). These mesoscale circulations and as-

sociated heat fluxes are affected by large-scale winds,

the distribution of the soil wetness, and the wavelength

of the land surface discontinuities (Chen and Avissar

1994b), and can significantly affect the development and

intensity of clouds and precipitation (Chen and Avissar

1994a). Chen and Dudhia (2001) highlighted the im-

portance of improving the model soil moisture initiali-

zation at fine scales due to the sensitivity of soil thermal

properties, hydraulic conductivity, and the surface en-

ergy budget on variations in soil moisture. A positive

feedback mechanism between soil moisture and pre-

cipitation was presented in Eltahir (1998), in which the

author described how wet soil moisture conditions lead

to an increase in net solar and terrestrial radiation and

atmospheric water vapor that is concentrated in a shal-

lower boundary layer, resulting in greater moist static

energy per unit mass favoring convective rainfall pro-

cesses. These positive feedbacks between soil moisture

and convective precipitation likely occur during the

summer months over much of the eastern United States

(Findell and Eltahir 2003). Trier et al. (2004) examined

a case of convective initiation along a dryline in which

the numerical simulations were quite sensitive to the

initial soil moisture details, which led to localized dif-

ferences in the sensible and latent heat fluxes and the

corresponding low-level thermodynamic structure.

The International H2O Project 2002 field campaign

(IHOP_2002) took place over the U.S. southern Great

Plains during the late spring and early summer of 2002

with some of its primary goals to improve convective

initiation predictions and quantitative precipitation fore-

casts in numerical weather prediction models (Weckwerth

et al. 2004; Weckwerth and Parsons 2006). The land

surface component of IHOP_2002 included a sophisti-

cated observational network to measure land surface

variables in order to examine the effects of surface prop-

erties on boundary layer evolution, to evaluate LSMs,

and to assess the role of LSMs in improving numerical

convective forecasts (LeMone et al. 2007). LeMone

et al. (2008) evaluated characteristics of the Noah LSM

for a fair-weather case during IHOP_2002 while Holt

et al. (2006) modeled a convective initiation case study,

initializing the land surface with an offline version of the

Noah LSM. Holt et al. (2006) found that synoptically

driven convection along a dryline tended to be delayed

in its onset relative to observations in all their sensitivity

runs; however, the inclusion of a sophisticated transpi-

ration model resulted in more skillful air temperature

and moisture forecasts. Also, Trier et al. (2008) docu-

mented that the choice of LSM and initial soil moisture

distribution both had major impacts on the evolving

thermodynamic variables in the PBL and subsequent

precipitation forecasts in a convection-allowing model

configuration.

Numerical models have been shown to be sensitive to

the input land and ocean surface initialization data in the

southeastern United States as well. Baker et al. (2001)

found through idealized simulations over central Florida
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that soil moisture initialization impacted the timing and

location of precipitation, with areas of wet soils prefer-

entially focusing heavy precipitation. Case et al. (2008)

presented improvements to simulated sea breezes and

surface verification statistics over Florida by initializ-

ing the Weather Research and Forecasting numerical

weather prediction model (WRF) with land surface

variables from an offline spinup run of the National

Aeronautics and Space Administration’s (NASA) Land

Information System (LIS). LaCasse et al. (2008) docu-

mented the sensitivity of WRF simulations over oceanic

regions around Florida to high-resolution SSTs derived

from the Moderate Resolution Imaging Spectroradi-

ometer (MODIS) aboard NASA’s polar-orbiting Aqua

and Terra satellites. By using the higher-resolution

MODIS SSTs, the static stability near Florida’s east coast

decreased under easterly flow regimes, and that favored

zones of low-level convergence occurred near Florida’s

east coast under easterly flow and over the Florida

Current under westerly flow.

Many of these studies have highlighted the challenges

involved in quantifying the impacts of the land surface

conditions on PBL evolution and convection. To this

end, community-wide efforts to converge on metrics of

land–atmosphere interactions (e.g., ‘‘coupling strength’’)

include those at global (Global Land-Atmosphere

Coupling Experiment, GLACE; Koster et al. 2006) and

local (local land–atmosphere coupling model, LoCo;

Santanello et al. 2009) scales. A missing component of

these community-wide studies has been a rigorous eval-

uation of the actual impacts of high-resolution land

representation in a forecast environment and on sensi-

ble weather.

With these issues in mind, this paper focuses on the

impacts of a subset of high-resolution surface initializa-

tion datasets on numerical model simulations of typical

pulse-type, summertime convection over a southeastern

U.S. domain, with an emphasis on precipitation verifi-

cation. One of the added challenges to this study is that

during the summer, the southeastern United States does

not typically experience well-organized synoptic-scale

forcing (e.g., fronts and drylines) such as those previ-

ously studied over the U.S. Great Plains during cam-

paigns like IHOP_2002. In particular, the impacts of soil

moisture on precipitation should be most clearly iden-

tifiable for locally coupled and weak synoptic forcing

conditions such as in this experiment.

This modeling study makes use of both the NASA LIS

for land surface initialization and 2-km resolution MODIS

SSTs for ocean initialization to examine the sensitivity

to and possible improvements realized from these data-

sets. Both traditional and object-based precipitation

verification results are highlighted. The remainder of

this paper is organized as follows. Section 2 provides

a description of the surface initialization datasets for the

model simulations. Section 3 describes the simulation

methodology for the sensitivity experiment. Results are

presented in section 4, and conclusions are given in

section 5.

2. Surface initialization datasets

High-resolution surface datasets are generated for

both the land and ocean surface in order to provide de-

tailed information that is physically consistent with the

WRF resolution of this study. A brief description of each

dataset is given below.

a. NASA Land Information System

The NASA LIS is a high-performance land surface

modeling and data assimilation system that integrates

satellite-derived datasets, ground-based observations,

and model reanalyses to force a variety of LSMs (Kumar

et al. 2006, 2007). By using scalable, high-performance

computing and data management technologies, LIS can

run LSMs offline globally with a grid spacing as fine as

1 km to characterize land surface states and fluxes.

To provide physically consistent land surface initiali-

zation data in a simulated real-time environment, the

Noah LSM (Ek et al. 2003) is run offline (i.e., uncou-

pled) within LIS at the same horizontal grid spacing as

the WRF grid. The goal here is to demonstrate a realistic

scenario in which a generalized LIS initialization dataset

could be provided to a variety of users [e.g., National

Weather Service (NWS) Forecast Offices and other

government, university, and private sector weather en-

tities] running their own local modeling applications on

domains with comparable grid resolutions.

For consistency, the Noah LSM in the offline LIS uses

the same soil and vegetation database as in the WRF.

The soil properties are represented by the State Soil

Geographic (STATSGO; Miller and White 1998) da-

tabase. For the land–water mask and land cover type,

the U.S. Geological Survey 1-km global database de-

rived from the Advanced Very High Resolution Ra-

diometer (AVHRR) satellite data from 1992 to 1993 is

upscaled to the WRF grid resolution.

Additional required parameters include quarterly

climatologies of albedo (Briegleb et al. 1986) and max-

imum snow surface albedo (Robinson and Kukla 1985),

monthly climatologies of greenness vegetation fraction

data derived from AVHRR with a native resolution of

;14 km (Gutman and Ignatov 1998), and a deep soil

temperature climatology (serving as a lower boundary

condition for the soil layers) at 3 m below ground, de-

rived from 6 yr of Global Data Analysis System (GDAS)
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3-hourly averaged 2-m air temperatures using the

method described in Chen and Dudhia (2001).

The offline LIS run is cold started on 1 January 2004

with a uniform first-guess soil temperature and volu-

metric soil moisture of 290 K and 25%, respectively, in

all soil layers. The Noah LSM is integrated for a time

period of 4 yr, 5 months, from 1 January 2004 to 1 June

2008, using a time step of 30 min. Such a long integration

time is used to ensure that the model states can reach

finescale equilibrium with the forcing meteorology

(Cosgrove et al. 2003a; Rodell et al. 2005). Atmospheric

input to the LIS–Noah run is provided by GDAS anal-

yses (Derber et al. 1991), which consist of 3-hourly data

at a horizontal resolution of 0.4698 (;52 km). Pre-

cipitation forcings from the stage IV high-resolution

analyses replace the GDAS precipitation, providing

a detailed antecedent precipitation field. The stage IV

product consists of hourly ;5-km precipitation analyses

produced operationally by the U.S. River Forecast

Centers, based on rain gauges and radar precipitation

estimates from the Weather Surveillance Radar-1988

Doppler network (Lin and Mitchell 2005; Lin et al.

2005). The forcing fields are downscaled to the running

resolution within LIS using bilinear or conservative (for

precipitation) interpolation approaches. In the case of

downward shortwave radiation, an additional zenith-

angle-based temporal disaggregation is applied (Cosgrove

et al. 2003b). The forcing fields of downward-directed

longwave radiation, pressure, 2-m air temperature, and

2-m relative humidity are further topographically cor-

rected via lapse-rate and hypsometric adjustments using

the elevation data differences between the LIS and the

native GDAS forcing grid (Cosgrove et al. 2003b).

b. MODIS sea surface temperatures

MODIS SST gridded composites, produced by the

NASA Short-term Prediction Research and Transition

(SPoRT; Goodman et al. 2004) Center, are created at

2-km resolution by combining data from multiple passes

of the polar-orbiting Earth Observing System satellites

(Haines et al. 2007). The compositing technique assumes

that the day-to-day variation of SST is relatively small;

the degree to which this assumption is valid will likely

vary spatially and seasonally. Data from both the Terra

and Aqua platforms are combined to create separate

day–night composites for a total of four composites per

day valid at 0400, 0700, 1600, and 1900 UTC. Care is

taken to remove most cloud contamination in the Haines

et al. (2007) compositing technique. A binary cloud

mask is first applied prior to computing the SST at

a given pixel. Next, the warmest two of the most recent

three SST values in the collection for each pixel are

averaged, thereby discarding the coldest reading and

removing possible cloud-contaminated pixels that may

have eluded detection by the cloud mask.

3. Experiment design

A modeling sensitivity experiment is conducted with

version 3.0.1.1 of the Advanced Research core of the

WRF (ARW; Skamarock et al. 2008) in which the land

and ocean/lake surface data from the National Centers

for Environmental Prediction’s (NCEP) North Ameri-

can Mesoscale Model (NAM) are replaced with high-

resolution data from the LIS offline simulation and

MODIS SST composites, respectively. Details on the

specific model configurations, initialization datasets, and

verification methodologies are described below.

a. Model configuration and period of study

This investigation consists of a set of control and ex-

perimental ARW simulations initialized once per day at

0300 UTC from June to August 2008. This initialization

time is chosen to mimic the local model configurations

used by the NOAA/NWS offices in Miami, Florida, and

Mobile, Alabama. The combination of limited compu-

tational resources, a need for timely model output, and

the use of local atmospheric analyses for initializing the

atmosphere at these offices (i.e., the Local Analysis and

Prediction System) justify the choice of an ‘‘off hour’’

initialization time. A total of 81 paired control and ex-

perimental forecasts are generated, with a few days

unavailable due to missing MODIS SST composites.

The model is integrated for 27 h to 0600 UTC of the

following day, similar to the operational runs made at

the NOAA/NWS offices in Miami and Mobile. The

simulation domain consists of a single grid of 309 3 311

staggered points in the zonal and meridional directions,

respectively, at 4-km horizontal grid spacing, centered

over the southeastern United States. The grid contains

39 sigma-pressure vertical levels extending from the

surface to a domain top of 50 mb. The vertical spacing is

stretched from a minimum of 0.004 sigma near the sur-

face (corresponding to ;40 m) to a maximum of 0.034

sigma at upper levels.

The model physics schemes are chosen to emulate the

real-time configuration of the 4-km ARW at the Na-

tional Severe Storms Laboratory, which focuses espe-

cially on convection and severe weather forecasting

problems (Kain et al. 2010). For both the control and

LIS1MODIS-initialized simulations (hereafter LISMOD),

the ARW physics options consist of the Rapid Radia-

tive Transfer Model (Mlawer et al. 1997) and the Dudhia

scheme (Dudhia 1989) for long- and shortwave radia-

tion, respectively. The WRF single-moment six-class

microphysics scheme (WSM6; Hong and Lim 2006;
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Skamarock et al. 2008) is used without any convective

parameterization physics; thus, all convection is deter-

mined explicitly by the WSM6 microphysics and model

dynamics. The planetary boundary layer and turbulence

processes are parameterized by the Mellor–Yamada–

Janjić scheme (Janjić 1990, 1996, 2002). Horizontal dif-

fusion is handled by the two-dimensional Smagorinsky

first-order closure scheme (Smagorinsky et al. 1965). All

runs use the Noah LSM as configured in version 3.0.1.1

of the ARW, being nearly identical to the version run

operationally at NCEP (Chen and Dudhia 2001;

Skamarock et al. 2008; Ek et al. 2003). Surface-layer cal-

culations of friction velocities and exchange coefficients

needed for the determination of sensible and latent

fluxes in the LSM are provided by the NCEP Eta simi-

larity theory scheme (Janjić 1996, 2002). The positive-

definite advection options for moisture and scalars are

enabled to remove the possible unphysical effects and

high precipitation bias that can result from the ‘‘clipping’’

of negative mixing ratios in the third-order Runge–Kutta

transport scheme (Skamarock and Weisman 2009;

Skamarock et al. 2008).

For the control runs, all initial conditions for the at-

mosphere, land, and the NCEP Real-Time Global

(RTG) SSTs come from the native-resolution (12 km,

grib 218) NCEP NAM model 3-h forecast initialized at

0000 UTC. Three-hourly boundary conditions for both

the control and LISMOD runs are provided by the

NAM model’s 3- to 30-h forecasts. The SSTs remain

fixed throughout the 27-h ARW simulations. Inter-

polation of initial and boundary condition data is done

with the WRF Preprocessing System (WPS) utilities.

b. Experimental simulations

The experimental runs are identical to the control

configuration except that the land surface initial conditions

are replaced by output from the offline LIS spinup run

and the RTG SSTs of the NAM are replaced by the 2-km

MODIS SST composites. The LIS data are output in

GRIB1 format daily at 0300 UTC for the period of

record (June–August 2008) to initialize the WRF land

surface fields in the LISMOD simulations. The GRIB1

formatted LIS data are used by the WPS with only a

few minor modifications required. First, the WPS file

‘‘METGRID.TBL’’ is modified to handle the LIS land–

sea mask for interpolation of data onto the WRF grid.

The new LIS land–sea mask defined in METGRID.TBL

is then applied to each of the land surface variables to

be interpolated onto the WRF grid. In addition, the in-

terpolation method used in WPS for the LIS fields is

a nearest-neighbor approach, as this method preserves

the most detail and minimizes differences caused by in-

terpolation. A summary of all the LIS fields incorporated

into the WRF initial conditions is given in Table 1.

The MODIS SST composite from 0400 UTC the

previous day is incorporated into the daily WRF initial

conditions at 0300 UTC to minimize diurnal variations

in SST relative to the model initialization time. The only

exception occurs for model initializations from 3 to

14 June 2008, when SST data are missing for the 0400 UTC

MODIS composites. For these initializations, the 0700 UTC

MODIS composites from the previous day provide the

SST initial conditions. For all simulations, the SSTs are

held fixed throughout the duration of the forecast. This

approach may not be the most realistic, since SST does

have a low-amplitude diurnal cycle under clear sky–calm

wind conditions (Zeng and Beljaars 2005); however, we

attempt to show the value of the more accurate, higher

spatial resolution SST data on the forecast fields.

c. Verification methodology and tools

For verifying precipitation and other fields in both the

control and LISMOD runs, the Meteorological Evalu-

ation Tools (MET) package is employed (Brown et al.

2009). Created by the WRF Developmental Testbed

Center at the National Center for Atmospheric Research,

the MET package is a highly configurable, state-of-the-

art suite of model verification tools. Both traditional

statistics and the object-oriented verification methodol-

ogy available in MET are applied. Known as the Method

for Object-based Diagnostic Evaluation (MODE; Brown

et al. 2007; Davis et al. 2009), this utility classifies ‘‘objects’’

in gridded fields, calculates a wide variety of object attri-

butes, and merges–pairs forecast objects with observed

objects to determine the similarities and differences

between the various objects. This utility is used to obtain

more meaningful precipitation verification statistics of

pulse-type convection over the southeastern United

States, compared to traditional gridpoint by gridpoint

verification techniques.

TABLE 1. A list of the LIS land surface fields and corresponding

names in the WPS METGRID.TBL file, as used to initialize the

LISMOD experimental WRF runs.

Land surface field Name in WPS METGRID.TBL

Canopy water* CANWAT

0–10-cm soil moisture SM000010

10–40-cm soil moisture SM010040

40–100-cm soil moisture SM040100

100–200-cm soil moisture SM100200

0–10-cm soil temp SM000010

10–40-cm soil temp SM010040

40–100-cm soil temp SM040100

100–200-cm soil temp SM100200

Skin temp SKINTEMP

Snow water equivalent SNOW

* Canopy water is initialized to 0 in the default WRF source code.
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4. Results

This section provides results that illustrate some of the

differences between the LIS land surface and MODIS

SST initialization versus the interpolated NAM data in

the control runs. Sample forecast impacts are presented,

as well as verification output from MET/MODE.

a. LIS offline run results from Tropical Storm Fay

A high-impact event that affected the domain during

the period of record is Tropical Storm Fay in late Au-

gust. In the 8-day period from 18 to 26 August, the storm

produced prodigious amounts of rainfall across eastern

and northern Florida, southwestern Georgia, and Ala-

bama, with some local maxima exceeding 700 mm.

Needless to say, the volumetric soil moisture increased

dramatically during this 8-day period over the affected

areas. The root zone layer in the Noah LSM (40–100 cm)

should have a substantial impact on the subsequent

evapotranspiration into the atmosphere. Figure 1 depicts

the moistening of the 40–100-cm soil layer from 18 to

26 August, comparing changes in the control–NAM initial-

ization (panel a) to the LIS initialization (panel b). Both

model initialization differences show a similar broad

pattern of moistening from Florida and southern Georgia

into east-central Mississippi that follows the general

pattern of rainfall depicted in Fig. 1c. The LIS differences

have much more detail as expected; however, LIS (Fig.

1b) has substantially higher amounts of moistening across

much of the eastern Florida peninsula, which visually

FIG. 1. Change in volumetric soil moisture (%) in the Noah 40–100-cm layer for the 0300 UTC WRF initializations

from 18–26 Aug 2008, valid for the (a) control and (b) LISMOD runs; (c) total stage IV rainfall (mm), accumulated

from 0000 UTC 18 Aug to 0000 UTC 26 Aug 2008; and (d) time–depth cross section of LIS–Noah volumetric soil

moisture at 318N, 848W [denoted by the X in (b) over southwestern GA].

790 W E A T H E R A N D F O R E C A S T I N G VOLUME 26



corresponds much better to the pattern of the rainfall

maximum in Fig. 1c compared to the control (Fig. 1a).

A LIS–Noah time–depth cross section at a selected

point in southwestern Georgia (Fig. 1d) helps to illustrate

the dramatic soil moistening associated with Tropical

Storm Fay. At this location, the soil type is categorized as

‘‘loamy sand,’’ which has a wilting point (porosity) of 3%

(42%). In about a day, the volumetric soil moisture in the

upper 1 m increases from a minimum of less than 6% to

a maximum value near 40%, transitioning from near the

wilting point to porosity. Such a sudden shift from ex-

cessively dry to moist can have substantial impacts on the

surface energy budget and subsequent short-term fore-

casting issues. It is therefore important to be able to

capture accurately the rapid changes to the soil moisture

field in such situations in order to improve subsequent

short-term numerical simulations.

b. Differences in surface initialization datasets

The combination of LIS spinup data and MODIS

SSTs provides a more detailed representation of the

land and water surface compared to the control run us-

ing interpolated 12-km NAM data. The depiction of

0–10-cm soil moisture at 0300 UTC 9 June 2008 in Fig. 2

helps to illustrate this point. While the regional patterns

of soil moisture are fairly similar, the LISMOD initial-

ization data provide information that is more consis-

tent with the resolution of the WRF in Fig. 2b. Locally

more moist conditions are resolved in LIS within the

FIG. 2. Comparison between WRF-initialized 0–10-cm volumetric soil moisture for the (a) control (NAM), (b) LIS

spinup, and (c) difference field (LIS 2 control) valid at 0300 UTC 9 Jun 2008. The region depicted is the horizontal

extent of the 4-km model domain.
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narrow river valleys of eastern Georgia and South Car-

olina, where soil textures containing a higher silt content

retain more moisture compared to the surrounding

sandy soils. The difference field also indicates system-

atically drier initial conditions in this soil layer from

southern Mississippi to northwestern South Carolina

(Fig. 2c). Over Florida, drier soil moisture is inter-

spersed with local pockets of wetter soil moisture. These

soil moisture variations are likely attributed to differ-

ences between the 12-km NAM Data Assimilation

System (NDAS), which front ends the NAM, and the

GDAS, which forces the LIS offline run in combination

with the stage IV precipitation analyses. Also, the ability

of the 4-km LIS to better capture local areas of ante-

cedent convective-type precipitation compared to the

12-km NDAS explains the local variations in soil mois-

ture over Florida. It should be noted that the NDAS also

uses the stage IV precipitation product to initialize its

soil fields, similar to the offline LIS run.

A validation of the LIS versus control (NAM) soil

moisture is conducted at available observation sites

from the U.S. Department of Agriculture’s Soil Climate

Analysis Network (SCAN; Schaefer et al. 2007). Twenty-

eight available SCAN observation sites fall within the

WRF modeling domain, but most sites are clustered in

northern Alabama and western Mississippi (Fig. 3).

SCAN measures soil temperature and volumetric soil

moisture at depths of 2, 4, 8, 20, and 40 in. [;(5, 10, 20,

50, and 100) cm] at most locations.

There is an inherent ambiguity that occurs with directly

comparing a soil moisture or temperature in a grid box to an

observation at a point, primarily due to spatial heteroge-

neities in soil type and vegetation coverage (Robock et al.

2003; Marshall et al. 2003; Godfrey and Stensrud 2008).

Therefore, the soil temperature and moisture in the model

initial conditions are evaluated using a spatial averaging

technique similar to that presented in Robock et al. (2003)

and Godfrey and Stensrud (2008). In addition, a depth-

weighted average of the root zone is computed in a manner

following Reichle et al. (2007), and soil moisture anomaly

correlations are calculated similar to Kumar et al. (2009).

The modeled near-surface soil moisture and tempera-

ture in the 0–10-cm layer are directly compared to SCAN

observations at 5 cm, representing the midpoint of this

layer. For the modeled soil moisture and temperature in

the root zone, a depth-weighted average of the 10–40- and

40–100-cm layers is computed as follows:

FcstRZ 5
30(Fcst10-40cm) 1 60(Fcst40-100cm)

90
. (1)

The depth-weighted observed soil moisture and tem-

perature in the root zone is determined by

ObsRZ 5
5(Obs10cm) 1 10(Obs20cm) 1 25(Obs50cm) 1 50(Obs100cm)

90
. (2)

At each model initialization hour (0300 UTC), the

spatial average of the modeled control and LISMOD

soil moisture and temperature interpolated to the

SCAN locations is computed along with the spatial av-

erage of the observed soil moisture and temperature.

The results indicate that both the control–NAM and

LIS soil moisture initializations more closely emulate

the observations and trends at 5 cm than in the root

zone. Figure 4a shows that day-to-day variations in

modeled 5-cm soil moistures trend similarly to the ob-

servations, with the LIS tending to be closer to the ob-

servations, especially in June and July. However, both of

the modeled soil moisture time series experience

a sluggish response to precipitation events relative to the

observations, consistent with the findings in Marshall

et al. (2003) and Godfrey and Stensrud (2008). The

anomalies in the control–NAM and LIS are very similar

during the period of record (Fig. 4b). In the root zone,

FIG. 3. Locations of SCAN observations used to validate the

NCEP NAM (control) and LIS volumetric soil moisture and soil

temperature at the model initialization times.
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both the NAM and LIS have considerably less soil

moisture than the SCAN observations throughout the

entire summer, with the LIS being drier than the NAM

by about 2%–3% (Fig. 4c). This dry bias in the root zone

is also consistent with the results in Godfrey and Stensrud

(2008). The anomalies in the root zone trend nearly

identically between the NAM and LIS, in which both

model initializations have too much amplitude about the

summer mean compared to the root zone SCAN ob-

servations (Fig. 4d). The anomaly correlations of the

spatial averaged soil moisture are nearly identical at

both 5 cm (0.875 for NAM; 0.871 for LIS) and in the root

zone (0.549 for NAM; 0.561 for LIS).

The differences between the NAM and LIS are even

smaller when examining the spatial averages of the soil

temperature. Again, both the modeled soil tempera-

tures are more similar to the observations at 5 cm than

in the root zone (Fig. 5). Both the NAM and LIS have

root zone temperatures consistently cooler than the

SCAN observations by about 2–3 K (Fig. 5b). In-

terestingly, the 5-cm soil temperatures exhibit a slightly

greater range than the observed 5-cm soil temperatures,

despite the fact that the 5-cm modeled soil moisture was

generally too moist during June and July. Further in-

vestigation is needed to determine the source of this

inconsistency, which could be related to an improper

representation of the soil characteristics, soil heat flux,

and/or incoming energy from the atmospheric forcing

dataset. The similar patterns of behavior between the

NAM and LIS presented in these figures suggest that the

biases being realized (particularly in the root zone) may

be a manifestation of the Noah land surface model

physics and/or misclassification of the land surface

properties, since the Noah model and same fixed pa-

rameters are used in both the NAM and the LIS for this

experiment.

Despite the ambiguities between the modeled and

point observations of soil variables, the validation sta-

tistics at the individual SCAN stations are also exam-

ined, since a goal of this study is to determine the

impacts of introducing spatial variability in the surface

initialization that is more consistent with the model grid

resolution. Table 2 summarizes the bias, RMS error, and

anomaly correlation statistics at the individual SCAN

stations. The results are generally consistent with the

spatially averaged statistics in that the LIS is slightly

drier than the NAM soil moisture, as indicated by a de-

crease in the bias of 1%–2%. The LIS 5-cm soil moisture

has a higher anomaly correlation of 0.722 compared to

the NAM model’s 0.657. The root zone anomaly corre-

lations are nearly identical to one another. The soil tem-

perature evaluated at the individual stations indicates

FIG. 4. Time series of spatially-averaged observed, control, and LISMOD volumetric soil moisture and daily

anomalies (%) at SCAN observation locations for each model initialization time for (a) 5-cm level soil moisture, (b)

5-cm level soil moisture anomaly, (c) weighted root zone soil moisture, and (d) weighted root zone soil moisture

anomaly. Gaps in the time series indicate days with missing MODIS SSTs and, thus, no model forecasts.
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roughly a 0.2-K increase in the RMS error in the LIS

initial conditions. Anomaly correlations are quite simi-

lar, with the NAM slightly higher than the LIS at both

the 5-cm level and the root zone layer.

From a verification perspective, the mixed results

make it difficult to determine which soil initial field is

consistently more accurate, especially considering the

sparseness and variable density of the SCAN observations.

The results do suggest that LIS is perhaps providing

a better set of initial conditions for the upper soil layer

(5 cm) as a result of the Noah LSM spinup with stage IV

precipitation analyses on a higher-resolution grid com-

pared to the NAM 12-km resolution. The main points we

can conclude are that the LIS produced a slightly drier

overall soil layer compared to the NAM (at least at the

SCAN locations), and that the 4-km LIS provided greater

horizontal detail, which is probably more representative at

5 cm given the modest improvement in the LIS soil

moisture anomaly correlation.

Meanwhile over the adjacent waters, the MODIS SST

product provides much more thermal structure over the

Gulf of Mexico and Atlantic waters compared to the

interpolated RTG SSTs from the NAM (Fig. 6). For the

model run initialized at 0300 UTC 9 June, SSTs were

obtained from the 0700 UTC 8 June SPoRT–MODIS

composite. Substantial differences (up to 28C) are found

in the vicinity of the shallow near-coastal waters near the

Florida coast. For this composite, the MODIS tends to

be cooler than the RTG. However, many days in late July

and August have patterns of both warming and cooling

relative to the RTG SSTs (not shown).

The most noteworthy aspect of the MODIS composite

is its ability to capture the finescale horizontal gradients

in SSTs compared to the once-daily RTG product. The

smoothness of the RTG data in Fig. 6a precludes the

model from capturing the relatively cool shelf waters off

of Florida’s east coast. However, the LISMOD SSTs in

Fig. 6b are able to depict the cool shelf waters and the

magnitude of the Gulf Stream east of Florida. The SST

differences illustrate the locally sharper horizontal gra-

dients captured by the SPoRT–MODIS product in Fig.

6c. Previous studies have documented improved error

statistics of the SPoRT–MODIS product compared to

RTG SSTs (Haines et al. 2007) and the positive benefit

realized in numerical simulations (LaCasse et al. 2008).

c. Sample forecast sensitivities from 9 June

The surface initialization differences depicted in Figs.

2 and 6 lead to distinct impacts on the model-predicted

thermodynamic properties (Fig. 7). The corridor of drier

LIS soil moisture from southern Mississippi to north-

western South Carolina results in an increase of sensible

heat flux by over 50 W m22 in many locations at the 13-h

forecast valid at 1600 UTC 9 June (Fig. 7a). The parti-

tioning of higher sensible heat flux relative to the latent

heat flux produces a decrease in the simulated 2-m

dewpoint temperature by as much as 28C across this

corridor (Fig. 7b). The increased surface heating also

produces locally higher PBL heights (Fig. 7c), especially

over southwestern Mississippi and central Georgia. The

FIG. 5. Time series of spatially-averaged soil temperatures (K) at

SCAN observation locations for each model initialization time at

the (a) 5-cm level and (b) weighted root zone. Gaps in the time

series indicate days with missing MODIS SSTs and, thus, no model

forecasts.

TABLE 2. A summary of the soil moisture and temperature

validation statistics conducted at individual SCAN stations at the

model initialization hours.

Quantity Bias RMS error

Anomaly

correlation

Soil Q (5 cm) NAM 2.4% 10.1% 0.657

Soil Q (5 cm) LIS 0.8% 9.2% 0.722

Soil Q (root zone) NAM 29.9% 13.3% 0.550

Soil Q (root zone) LIS 211.7% 14.2% 0.557

Soil T (5 cm) NAM 20.01 K 2.34 K 0.722

Soil T (5 cm) LIS 20.22 K 2.53 K 0.702

Soil T (root zone) NAM 22.01 K 2.72 K 0.783

Soil T (root zone) LIS 22.05 K 2.91 K 0.774
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combination of a decrease in the moisture transport into

a deepening boundary layer subsequently results in

smaller values of convective available potential energy

(CAPE) particularly over portions of southern Mississippi,

northeastern Louisiana, central Georgia, and north-

western South Carolina. Parts of west-central Georgia

experience CAPE reductions of 500 J kg21 or more.

These results are consistent with the dry soil corollary of

the feedback mechanism described in Eltahir (1998).

The impacts from the LIS soil initialization are far

more complicated over the Florida peninsula. The de-

tailed variations in the LIS soil moisture relative to the

control–NAM produce local pockets of alternating

higher–lower sensible heat flux (Fig. 7a), likely related

to antecedent rainfall from the stage IV precipitation

forcing in the LIS spinup. The propensity is for higher

sensible heat fluxes and lower 2-m dewpoint tempera-

tures across the Florida peninsula, ultimately resulting

in a greater coverage of lower CAPE (Fig. 7d). Inter-

estingly, over the Gulf of Mexico, the CAPE tends in

increase despite a slight cooling of the SSTs from the

MODIS composite in the 9 June model initialization.

This scenario is likely a manifestation of the decrease in

the PBL height (Fig. 7c), helping to concentrate the

moisture transport from the ocean surface into a shal-

lower boundary layer. These substantial modifications

to the heat fluxes and CAPE certainly have the potential

to impact convective rainfall in the model.

FIG. 6. Comparison between WRF static SSTs for the (a) control (NAM, or RTG product), (b) LISMOD (SPoRT/

MODIS data), and (c) difference field (LISMOD 2 control), valid for the model run initialized at 0300 UTC 9

Jun 2008.
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A sample 1-h forecast precipitation comparison end-

ing 2100 UTC 9 June 2008 is presented in Fig. 8. The flow

pattern was very weak on this day, with few discernable

boundaries or an organized flow pattern over the south-

eastern United States. Figure 8 shows how the forecast

1-h precipitation patterns and modes are quite similar

overall in the control and LISMOD runs. However, the

difference field depicts numerous small-scale fluctua-

tions between the forecasts (Fig. 8c). Compared to the

stage IV product in Fig. 8d, both simulations over-

predict the precipitation across northern Mississippi

and Alabama while underpredicting rainfall over the

southern portions of these states. Both the control and

LISMOD runs appear to be most skillful in predicting

the convection over the western part of the Florida

peninsula.

At first glance, the precipitation forecast sensitivities

appear to be somewhat subtle, despite relatively sub-

stantial changes in the details of the land and water

initial conditions. A qualitative examination of many

different days during the period of record (not shown)

indicated that the broad patterns of forecast pre-

cipitation in the control and LISMOD runs are generally

similar, especially at longer accumulation intervals. The

different model solutions tend to look more similar to

one another rather than the validating stage IV pre-

cipitation analysis, as is often the case in high-resolution

convection-allowing model runs under weak synoptic

flow. Most of the differences in forecast precipitation

arise from small-scale fluctuations in individual con-

vective elements that evolve differently due to the var-

iations in the land–water surface interactions with the

FIG. 7. Difference plots (LISMOD 2 control) of the 13-h forecasts valid at 1600 UTC 9 Jun 2008 for the following

fields: (a) sensible heat flux (W m22), (b) 2-m dewpoint temperature (8C), (c) PBL height (m), and (d) CAPE

(J kg21).
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PBL. If the control forecast is significantly in error with

the timing and placement of precipitation, then the

LISMOD is also generally in error. Therefore, it appears

that the high-resolution input from LIS and MODIS

SSTs leads to numerous small-scale variations in the

convective precipitation pattern, while the broad-scale

patterns of simulated precipitation are still largely driven

by the atmospheric initial and boundary conditions, in

addition to the model dynamics and physics.

d. Selected traditional verification statistics

Point verification statistics at approximately 500 pri-

mary and mesonet stations over the southeastern United

States are calculated using the MET package. The bias

and error standard deviation as a function of forecast

hour (Figs. 9a and 9b, respectively) for 2-m temperature

and dewpoint temperature reveal relatively minor dif-

ferences in most forecast hours. The bias plots (Fig. 9a)

indicate that the LISMOD develops a slightly higher

warm bias by a few tenths of a degree Celsius between

forecast hours 9 and 18, while a nominal dry dewpoint

bias #0.58C occurs between forecast hours 9 and 27. The

error standard deviation in Fig. 9b shows only small

differences between the control and LISMOD, with the

LISMOD having marginally larger errors. Statistically

significant results at the 95th percentile are denoted by

nonoverlapping plots of the lower and upper confidence

intervals on each series in Fig. 9.

The 3-h NAM forecasts providing the initial condi-

tions to both model runs experience a warm bias of

FIG. 8. Comparison of accumulated precipitation (mm) for the 1-h period ending 2100 UTC 9 Jun 2008 for the

(a) control run, (b) LISMOD run, (c) difference between LISMOD and control, and (d) stage IV precipitation.

Traditional gridpoint verification at a 10-mm threshold yields a Heidke skill score of 0.034 for the control run and

0.046 for the LISMOD run over this time interval.
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nearly 28C at 0 h (Fig. 9a). The temperature bias steadily

decreases during the night into the daylight hours until

21 h (0000 UTC), after which, the temperature bias

switches back to positive. A distinct diurnal signal is seen

in the error standard deviation (representing the ran-

dom errors) of the 2-m temperature and to a lesser ex-

tent the 2-m dewpoint temperature. Maximum random

errors occur distinctly during the daytime between

forecast hours 15 and 21 (1800–0000 UTC; see Fig. 9b)

and are likely attributed to the model’s inability to

forecast accurately the afternoon convection timing and

location. False alarm convective outflow boundaries

combined with forecast misses of actual outflow bound-

aries likely lead to the large random component of the

errors during the afternoon and early evening hours, in

both the temperature and dewpoint. These results are

consistent with the findings in a previous model verifica-

tion study over the Florida peninsula (Case et al. 2002).

Using traditional gridpoint by gridpoint techniques,

the 1-h accumulated precipitation errors are computed

during the forecast hours of typical peak convective

activity (12–24 h, corresponding to 1500–0300 UTC).

The results indicate that both the control and LISMOD

simulations overpredict the area coverage of 1-h accu-

mulated precipitation at all three thresholds examined

(bias . 1 for 5, 10, and 25 mm h21; Fig. 10a). However,

the LISMOD tends to reduce the bias between forecast

hours 12–18, especially at the higher intensities. The

Heidke skill score in Fig. 10b depicts a low level of skill

(under 0.10) for all precipitation thresholds, diminishing

with forecast hour. The LISMOD has a marginally

higher level of skill, mainly between forecast hours 12

and 18. Standard threat scores also reveal low skill for

the 1-h accumulated precipitation, with the LISMOD

being marginally higher at most forecast hours (Fig.

10c). The 24-h accumulated precipitation statistics for

the 3–27-h forecasts show a similar story, with the LISMOD

threat scores only marginally better than the control

at each of the three thresholds (5, 10, and 25 mm; see

Fig. 10d). The largest improvements in 24-h threat score

occur in the 25-mm threshold. All threat score changes

in Figs. 10c and 10d are statistically significant where

plots of the lower and upper confidence intervals do not

overlap. Overall, however, the traditional statistics dif-

ferences are quite minor and do not reveal large perfor-

mance differences in model accuracy, except for a reduction

in the high-intensity precipitation bias resulting in slightly

improved threat scores.

Because the model precipitation fields have so little

overlap with the observed precipitation at most times,

this measures-oriented approach to verification provides

little utility for interpreting differences in the results.

Many forecasters find value in high-resolution model

precipitation forecasts based on the realism to observed

features and their depictions of the convective modes,

despite the spatial and temporal biases and uncertainties

FIG. 9. Comparison of 2-m temperature and dewpoint temperature model errors (8C) for 81

control and LISMOD forecasts from June–August 2008 at approximately 500 surface obser-

vation locations. Shown are the (a) mean error (bias) and (b) error standard deviation (StDev).

798 W E A T H E R A N D F O R E C A S T I N G VOLUME 26



that exist. Davis et al. (2006) describe the limitations of

using traditional metrics in precipitation verification, as

illustrated in Fig. 1 of their paper, and present an object-

based approach to precipitation verification applicable

to higher-resolution model configurations.

To provide a better interpretation of the precipitation

forecast differences in our high-resolution model fore-

casts, the MODE object-based technique in the MET

verification package is invoked. Using the MODE tool

enables a more lenient comparison between the simu-

lated and observed precipitation results, similar to how

a forecaster may interpret the quality of the forecast

model. The MODE tool is tuned to identify detailed

features at various accumulation thresholds, but does

not require that the precipitation features exactly overlap

to be considered a ‘‘hit.’’

e. MODE object-based verification

The remainder of the analysis focuses on the non-

traditional object-based verification available from MET’s

MODE tool. A snapshot of forecast–observed object

pairs from the control and LISMOD simulations from

9 June is presented first, followed by overall composite

FIG. 10. Traditional verification metrics of accumulated precipitation for all 81 forecasts in the study

period (June–August 2008). Shown are the (a) bias of the 1-h accumulated precipitation during the peak

convective hours of 1500–0300 UTC (forecast hours 12–24), (b) Heidke skill score (HSS) of the 1-h

accumulated precipitation during forecast hours 12–24, (c) threat score (TS) of the 1-h accumulated

precipitation during forecast hours 12–24, and (d) TS of the 24-h accumulated precipitation for forecast

hours 3–27, according to the legends provided.

TABLE 3. MODE fuzzy engine weights applied to object attributes

to compute ‘‘total interest’’ field.

Object attribute Weight (%)

Centroid distance 20

Minimum boundary distance 40

Orientation angle difference 10

Ratio of object areas 10

Intersection area ratio 20

DECEMBER 2011 C A S E E T A L . 799



results from running MODE over all 81 control and

LISMOD forecasts from summer 2008.

The object matching in MODE is centered on an

‘‘interest function,’’ which combines several attributes

about the feature of interest—in this case 1-h accu-

mulated precipitation from the WRF (forecast) and

stage IV precipitation analyses (observed). The attri-

butes consist of object characteristics such as centroid

distance, minimum boundary distance, orientation angle

difference, etc. MODE resolves objects in a gridded

field through convolution thresholding. This technique

involves applying a filter function to the raw data using

a tunable radius of influence. The filtered field is then

thresholded using another tunable parameter (typically

the precipitation threshold) to create a mask field. Fi-

nally, the raw data are restored to objects where the

mask meets–exceeds the specified threshold. More in-

formation on the technical details of MODE can be

gleaned from Brown et al. (2007) and Davis et al. (2009).

Forecast and observed objects are matched based on

additional input criteria and a minimum value of the

interest function, which scales between 0 and 1. The

fuzzy engine weights used to formulate the interest

function are given in Table 3, and are simply the default

values in the MET software. These weights seem rea-

sonable for the problem at hand since they emphasize

the distances between objects as the most important

factors determining object similarity. Forecast–observed

objects are considered matches if the interest function is

$0.6 and the distance between the object centroids is no

greater than 80 km. A single forecast object could be

matched with more than one observed object and vice

versa. The interest function is not calculated for object

pairs whose centroids are greater than 80 km apart. The

rationale for an 80-km restriction is to avoid having a

precipitation object on the west coast of Florida be

matched with one on the east coast of the state, which

should not be considered a hit.

1) OUTPUT FROM 9 JUNE 2008

Output from MODE for precipitation objects of

10 mm or greater for the 1-h period ending 2100 UTC

FIG. 11. Comparison of 18-h forecast and stage IV (observed) $10-mm accumulated pre-

cipitation objects for the 1-h period ending 2100 UTC 9 Jun 2008 for the (a) control and (b)

LISMOD runs. Solid blue shading indicates a false alarm in the forecast field or a forecast miss

in the observed field. All other solid colors represent matched forecast or observed objects.

Outlined blue areas denote the corresponding observed (forecast) objects in the field of

forecast (observed) objects.
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9 June is given in Fig. 11. A comparison between the

control forecast and observed objects (Fig. 11a, left)

shows one matched forecast precipitation object across

southwest Florida with several false alarm objects across

the western Florida peninsula. The LISMOD run (Fig. 11b)

has two matched 10-mm objects in southwestern Florida,

a larger false alarm object over the west-central Florida

peninsula, and two very small false alarm objects in the

interior part of the peninsula.

It should be noted that if we had increased the object

centroid distance criterion (80 km), modified the fuzzy

weights in Table 3, and/or relaxed the interest function

threshold, then more forecast and observed objects

would have been matched. Such a stringent requirement

is used to minimize object matching for rainfall areas

that a forecaster would not consider a hit. Despite the

somewhat stringent constraints placed on MODE, this

configuration appears optimal based on the level of

detail and accuracy desired for this experiment.

Once the object matching is done, the total area of

matched and unmatched objects is provided at each

forecast hour in the MODE output. A summary of the

matched–unmatched objects areas for the 10 mm h21

precipitation intensity (with forecast and observed object

areas combined together) indicates that the LISMOD

outperformed the control run on this day at many of the

forecast hours (Table 4). Six of the nine forecast periods

experiencing 10 mm h21 precipitation have reductions

in the unmatched area in LISMOD, while seven of nine

have increases in the total matched area. Meanwhile, the

control has only three forecast periods with improve-

ments in the unmatched area over LISMOD and no

improvements in the matched area.

2) MODE VERIFICATION FOR SUMMER 2008

By applying the same object matching criteria to all

forecasts for summer 2008, we can determine whether

the LISMOD consistently outperformed the control in

1-h precipitation forecasting accuracy during the peak

convective hours. The analysis focuses on 10 mm h21

precipitation objects during the peak convective fore-

cast hours (12–24 h). The frequency of forecast and

observed objects per day is summarized in Fig. 12, in-

dicating that both the control and LISMOD tend to

produce more 10 mm h21 precipitation objects than

observed at all peak convective forecast hours. The

observed daily frequency averages from 2 to 7 objects

per forecast hour while the control–LISMOD daily

frequency generally averages from 4 to 12 objects per

forecast hour. The matched and unmatched area for

precipitation objects during the peak convective hours

are summed for each control and LISMOD forecast run.

Improvements correspond to increases in the matched

area and decreases in the unmatched area, as summarized

in Fig. 13. The LISMOD individual forecasts experience

varying degrees of improvement and degradation from

run to run relative to the control runs (CON in Figs. 13a–c).

The LISMOD runs tend to have the largest increases

in matched area (e.g., mid-August) and more numerous

decreases in unmatched areas. However, there con-

tinues to be much more unmatched area than matched

area—on the order of a 2:1 ratio or more. While some

improvements have been made, the forecast improve-

ments still needed are substantial in comparison to what

the model can provide in this configuration.

A summary of the mean matched–unmatched pre-

cipitation object areas per forecast run is provided in

Table 5 for each of the three accumulated precipitation

FIG. 12. Frequency of forecast (control and LISMOD) and ob-

served 10 mm h21 MODE precipitation objects, representing the

average number of objects per forecast hour per day over all

forecast days in the period of record.

TABLE 4. Comparison between the total matched and un-

matched areas (in number of grid points) of the 10 mm h21 pre-

cipitation objects in the control and LISMOD runs initialized at

0300 UTC 9 Jun 2008. The valid times span from 1800 UTC 9 Jun to

0300 UTC 10 Jun. The better matched and unmatched numbers are

set in bold.

Control LISMOD

Forecast

hour

Matched

area

Unmatched

area

Matched

area

Unmatched

area

15 0 0 0 0

16 0 78 100 138

17 258 440 270 332

18 62 1 098 380 704

19 190 696 498 456
20 162 332 176 642

21 0 832 0 464

22 110 246 272 144
23 110 164 194 154

24 0 156 0 178
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thresholds examined (5, 10, and 25 mm h21). The LISMOD

produces on average more matched and fewer un-

matched object areas compared to the control for all

three thresholds between forecast hours 12 and 24. The

lone exception is the matched area for 25 mm h21, in

which the matched area averages the same in both the

control and LISMOD. Using a standard t test, all of the

improvements in unmatched area are determined to be

statistically significant at the 99th percentile, while only

the 4.3% improvement in 10 mm h21 matched area is

marginally significant at the 90th percentile. All other

changes to the matched area at other thresholds are

nonsignificant.

The improvements to the forecast precipitation are

also prevalent as a function of forecast hour, at least at

the 10 mm h21 threshold (Fig. 14). During the peak

convective times, the LISMOD consistently produced

a slight increase in the matched area and a slight

FIG. 13. Comparison of control (CON) and LIS 1 MODIS (LISMOD) 10 mm h21 accu-

mulated precipitation objects for the (a) matched area, (b) unmatched area, and (c) difference

in matched and unmatched areas, summed during the peak convective hours (1500–0300 UTC)

for each individual forecast from June to August 2008.
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decrease in the unmatched area as a function of fore-

cast hour (Fig. 14a). The percentage change in

matched–unmatched area indicates the greatest im-

provement earlier in the day between forecast hours 12

and 19 (Fig. 14b). The 5 mm h21 threshold also shows

a notable improvement in the LISMOD, mainly from

a reduction in unmatched area; however, the 25 mm h21

threshold does not show much of a clear distinction

between the control and LISMOD as a function of

forecast hour (not shown).

Figure 15 provides a summary of the overall distri-

bution of interest function values between forecast and

observed object pairs at all forecast hours between 1500

and 0300 UTC for all 81 forecast days. (Sample sizes for

each threshold are given in Table 6.) Higher interest

function values indicate that the forecast objects tend to

be more similar in attributes to the corresponding ob-

served objects. Among the three precipitation thresh-

olds presented in Fig. 15, the LISMOD has a larger

interest value at higher percentiles in the distribution,

particularly for the more intense precipitation thresh-

olds. The LISMOD has a consistently higher interest

value nearly everywhere in the distribution for the

25 mm h21 threshold, and from the 50th to the 90th

percentiles for 10 mm h21 threshold. The 5 mm h21

interest values show little overall difference between

control and LISMOD. This result indicates that the

LISMOD forecasts produced 1-h accumulated precip-

itation areas that more closely resemble the observed

rainfall areas for more intense thresholds.

The reduced precipitation bias and false alarm objects

combined with an increase in object hits suggest that

higher-resolution land surface (particularly soil mois-

ture) and SSTs in the LISMOD lead to some improve-

ments in the surface heating rates, PBL evolution, and

subsequent mesoscale circulations. If the changes from

generally drier regional soil moisture in LISMOD

were purely systematic, then one would expect to see

only a decrease in the bias and false alarm objects,

and not any improvements to the matched objects.

Despite the slight improvements to the verification

results, the model skill is still low, indicating the model’s

inability to predict accurately diurnal convection over

the southeastern United States under weakly forced

conditions.

5. Summary and conclusions

This paper presents results from a numerical modeling

sensitivity experiment in which the interpolated land and

ocean surface fields from the NCEP NAM in a control

WRF simulation are replaced with high-resolution data-

sets provided by unique NASA assets in an experimental

simulation: the LIS and SPoRT–MODIS SSTs. The LIS

is run in an offline mode for several years at the same grid

resolution as the WRF in order to provide WRF with

TABLE 5. Mean matched and unmatched object areas for the

control and LISMOD per forecast run, and the percent change in

LISMOD relative to the control. All 1-h forecasts during the peak

convective hours are combined for each forecast run (12–24 h,

corresponding to the 1500–0300 UTC validation window). Statis-

tically significant differences at the 99th percentile are indicated in

bold; while significant differences at the 90th percentile are given

by italics.

Quantity Control LISMOD

Difference

Change (%)

(LISMOD 2

control)

5-mm matched 11 911 12 045 134 1.1

5-mm unmatched 17 750 17 175 2575 23.2

10-mm matched 2456 2562 106 4.3

10-mm unmatched 6798 6538 2260 23.8
25-mm matched 60 60 0 0

25-mm unmatched 549 505 244 28.0

FIG. 14. Comparison between the total matched and unmatched

object areas from all 81 forecast cycles for 1-h accumulated pre-

cipitation $10 mm during the forecast hours centered on the di-

urnal peak convective activity (12–24 h, valid 1500–0300 UTC). (a)

Total matched and unmatched object areas for the control and

LISMOD according to the legend provided, and (b) LISMOD

percentage change from the control matched–unmatched object

area.
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compatible land surface initial conditions in an equi-

librium state. The MODIS SSTs provide more detailed

analyses of the SSTs over the oceans and large lakes

compared to the RTG product used in the control

model runs.

Results indicate that the LISMOD initial conditions

contain much more detail, consistent with the WRF

resolution, when compared to the control initial condi-

tions. The large-scale patterns of soil moisture are fair-

ly similar, but the LISMOD initial conditions do have

some systematic regional differences, probably due to

the LIS better resolving the finescale precipitation

features of the stage IV data compared to the 12-km

NDAS. The MODIS SSTs are better able to capture the

spatial variability in SSTs, especially in the waters

surrounding the Florida peninsula. The LIS soil moisture

and MODIS SSTs are shown to have substantial impacts

on the sensible heat flux, 2-m dewpoints, PBL height,

and CAPE. On 9 June, the CAPE is reduced over areas

of drier soil moisture due to the decrease in low-level

moisture diffused through a deeper PBL. The forecast

precipitation fields are fairly similar, especially in the

overall larger-scale patterns; however, numerous small-

scale differences occur due to the variations in soil

moisture distribution in the initial conditions.

Traditional verification methods of 2-m temperature

and dewpoint do not reveal substantial differences be-

tween the two forecast configurations. Only slight dif-

ferences in the 2-m temperature and dewpoint errors are

evident. The traditional gridpoint precipitation verifi-

cation does show a small reduction in the overprediction

of rainfall areas in LISMOD; however, the skill is almost

equally low in both experiments. Output from MODE’s

object-based verification within the MET package reveals

that the LISMOD consistently generated precipitation

objects that better matched observed precipitation ob-

jects, especially at higher precipitation intensities. For

the 1-h accumulated precipitation thresholds examined,

the LISMOD runs produce an increase in matched pre-

cipitation areas and a simultaneous decrease in un-

matched areas in most instances (i.e., increase in hits and

decrease in combined false alarms and forecast misses).

This result suggests that the LISMOD did not just sim-

ply decrease precipitation production due to a drier soil

solution. Instead, the increased resolution of the surface

initial conditions most likely impacted the local surface

heating rates in a positive sense, resulting in a slight

improvement to the PBL evolution and simulated me-

soscale circulations. However, the overall low verifica-

tion scores indicate that much uncertainty still exists in

simulating the processes responsible for airmass-type

convective precipitation in convection-allowing models.

Since this experiment was conducted, the NASA

SPoRT Center developed an enhanced SST algorithm

that improves upon the MODIS-only composites by

incorporating microwave SST information from the

Advanced Microwave Scanning Radiometer–Earth

Observing System sensor aboard NASA’s Aqua satellite

(Jedlovec et al. 2009). Schiferl et al. (2010) documented

the improvements to the SST verification as well as some

forecast improvements realized by this new algorithm

around south Florida. Improvements could also be re-

alized in the land surface initialization by replacing the

coarse-resolution, and somewhat dated, climatology

fields of monthly vegetation and albedo with real com-

posite data from the NASA MODIS instrument. Crawford

et al. (2001), Kurkowski et al. (2003), and James et al.

(2009) each demonstrated the potential utility of such

datasets derived from AVHRR data in a real-time mod-

eling system through improvements realized in forecast

low-level temperature, moisture, and near-storm envi-

ronmental parameters. Trier et al. (2011) recently docu-

mented improvements to the timing of convective

initiation by modifying the default WRF-ARW formu-

lation for surface exchange to be a function of vegeta-

tion type. A more accurate representation of ocean and

land surface fields, and better representations of the

physical processes, would all lead to improved simula-

tions of the surface energy budget and transport of heat

FIG. 15. Distribution of the total interest function for all 81

control and LISMOD forecast–observed 1-h accumulated pre-

cipitation object pairs during the peak convective hours of 1500–

0300 UTC. Shown are the control and LISMOD values within their

respective interest function distributions at the 10th, 25th, 50th,

75th, and 90th percentiles for 5-, 10-, and 25-mm accumulated

precipitation thresholds, according to the legend. The interest

function sample sizes are provided in Table 6.

TABLE 6. The number of 1-h accumulated precipitation object

pairs at various thresholds composing the interest function distri-

butions plotted in Fig. 15.

Precipitation threshold (mm)

WRF expt 5 10 25

Control 8934 2479 74

LISMOD 9077 2445 69
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and moisture into the atmosphere, thus potentially lead-

ing to better convective precipitation forecasts.
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