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ABSTRACT

The second phase of the Global Land–Atmosphere Coupling Experiment (GLACE-2) is a multi-institutional

numerical modeling experiment focused on quantifying, for boreal summer, the subseasonal (out to two

months) forecast skill for precipitation and air temperature that can be derived from the realistic initialization

of land surface states, notably soil moisture. An overview of the experiment and model behavior at the global

scale is described here, along with a determination and characterization of multimodel ‘‘consensus’’ skill. The

models show modest but significant skill in predicting air temperatures, especially where the rain gauge

network is dense. Given that precipitation is the chief driver of soil moisture, and thereby assuming that rain

gauge density is a reasonable proxy for the adequacy of the observational network contributing to soil

moisture initialization, this result indeed highlights the potential contribution of enhanced observations to

prediction. Land-derived precipitation forecast skill is much weaker than that for air temperature. The skill

for predicting air temperature, and to some extent precipitation, increases with the magnitude of the initial

soil moisture anomaly. GLACE-2 results are examined further to provide insight into the asymmetric impacts

of wet and dry soil moisture initialization on skill.

1. Introduction

The idea that soil moisture can influence the variability

of precipitation and air temperature has been explored

extensively in the literature, using both numerical climate

models (e.g., Shukla and Mintz 1982, Delworth and

Manabe 1989, Dirmeyer 2000, Douville et al. 2001, and

Hong and Kalnay 2000, among many others) and obser-

vational analysis (e.g., Betts and Ball 1995; Findell and

Eltahir 1997). The impact of soil moisture on near-surface

air temperature is straightforward and well documented

in models and observations (e.g., Koster et al. 2009b):
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higher soil moisture can induce higher evaporation and

thus greater evaporative cooling of the surface and the

overlying air. The impact of soil moisture on precipitation

is more complex. If higher soil moisture induces higher

evaporation, the correspondingly lower sensible heat flux

can lead to shallower boundary layers and thus an easier

buildup of the conditions that trigger convective rainfall

(Betts et al. 1994). In addition, the higher evaporation can

serve as a moisture source. However, under certain con-

ditions, higher evaporation rates may have the opposite

effect (Findell and Eltahir 2003; Cook et al. 2006; Van

den Hurk and Van Meijgaard 2010)—they may act to

inhibit precipitation when the growth of the boundary

layer is too small to reach the lifting condensation level.

Note that evaporation impacts need not be strictly local;

an evaporation anomaly that affects the large-scale cir-

culation may affect precipitation rates in remote regions

(Douville 2002).

The numerous modeling studies addressing atmospheric

response to soil moisture variations were formalized re-

cently in the first phase of the Global Land–Atmosphere

Coupling Experiment (GLACE), a coordinated inter-

national numerical experiment involving a dozen in-

dependent modeling systems (Koster et al. 2004b, 2006;

Guo et al. 2006). In essence, the experiment quantified

‘‘land–atmosphere coupling strength’’ in the participat-

ing models (i.e., the degree to which the evolution of

simulated precipitation and air temperature can be guided

by prescribed, model-specific time variations in soil

moisture content). The original GLACE study pro-

duced two key results: (i) models differ significantly in

their estimates of how soil moisture variations affect

precipitation and air temperature, and (ii) they never-

theless tend to agree that these meteorological variables

are particularly affected by soil moisture variations in

specific regions: the transition zones between arid and

humid regions.

One key motivation for studying and quantifying

land–atmosphere coupling strength is the idea that soil

moisture may play a role in meteorological forecasting

(Seneviratne et al. 2010). This coupling strength is in-

deed one of the two critical elements underlying soil

moisture’s ability to influence forecasts. The other crit-

ical element is the forecasting of soil moisture itself—to

take advantage of the coupling strength, a soil moisture

anomaly must be initialized realistically (not always

straightforward given limitations in the availability of

accurate real-time data) and then be ‘‘remembered’’

into the forecast period. The persistence time scales of

soil moisture in nature can extend out to about two

months (Vinnikov and Yeserkepova 1991; Entin et al.

2000; Seneviratne et al. 2006). The hope is that if soil

moisture is modeled correctly and a forecast model

adequately captures the land–atmosphere coupling

present in nature, an initialized soil moisture anomaly in

a forecast system may persist long enough to improve

forecasts at subseasonal time scales.

A handful of studies have examined the impact of

initializing a forecast system with observation-based es-

timates of soil moisture (e.g., Fennessy and Shukla 1999;

Viterbo and Betts 1999; Douville and Chauvin 2000;

Koster et al. 2004a; Douville 2010) with generally opti-

mistic results. These studies, however, are uncoordinated,

model specific, and very difficult to compare given their

different forecast periods and sample sizes and their

different verification metrics. Given the potential impor-

tance of soil moisture in forecasting, the Global Energy

and Water Cycle Experiment (GEWEX) and Climate

Variability (CLIVAR) activities of the World Climate

Research Programme (WCRP) have recently sponsored

the second phase of the Global Land–Atmosphere Cou-

pling Experiment (GLACE-2). In GLACE-2, the same

numerical experiment, one specifically designed to iso-

late soil moisture initialization impacts on subseasonal

forecast skill (measured against real observations, with

a large number of independent start dates for robust

statistics), is performed with 11 independent forecast

systems. The result is a coordinated ‘‘consensus’’ view of

the degree to which realistic land initialization improves

forecast quality in today’s models.

Some first results from GLACE-2 focusing on the

United States have already been published (Koster et al.

2010) as has a companion paper focusing on Europe

(Van den Hurk et al. 2011). The present paper provides

a broad overview of the experiment and a much-expanded

analysis of the results.

2. Experimental design

a. Overview

Participants in GLACE-2 performed two series of fore-

casts covering a wide range of boreal warm-season start

dates. Each series was characterized as follows:

Length of each forecast: 2 months (more precisely,

60 days).

Start dates: 1 April, 15 April, 1 May, 15 May, 1 June,

15 June, 1 July, 15 July, 1 August, and 15 August in

each of the years 1986–95.

Total number of start dates: 100.

Number of ensemble members per forecast: 10.

The two series differ from each other only in the nature

of their land surface initialization. In Series 1, land

conditions are initialized to realistic values based on an

integration of historical meteorological forcing (see below).
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In Series 2, realistic land surface initialization is not

utilized. By comparing the forecast skill quantified for

Series 1 and 2, we isolate the impacts of land initializa-

tion on the skill. Note that much of the wording in this

text reflects our presumption that of all the land vari-

ables initialized, soil moisture affects forecast skill by far

the most; nevertheless, land variables such as subsurface

temperature are also initialized in Series 1 and may have

some impact in certain areas (Mahanama et al. 2008).

A fundamental pragmatism underlying GLACE-2 is

that the modeling groups participate not only to con-

tribute to a multimodel-consensus view of land impacts

on skill but also to reveal the potential of their own

particular (sometimes operational) systems to make use

of soil moisture data. Thus, while certain aspects of the

experimental design are enforced across models, all groups

are given some freedom in tailoring the experiments to

address their own particular needs. An example lies in

model resolution: each group was allowed to choose the

model resolution used for both the land and atmosphere

components of the prediction system. Groups were also

allowed to use their own system-specific sets of vegeta-

tion boundary conditions.

The design of the experiment involved model-specific

technical choices regarding setup and the processing of the

simulations. Many of the technical guidelines are provided

in an online experimental plan (http://gmao.gsfc.nasa.gov/

research/GLACE-2/docs/GLACE2c.pdf). The remainder

of this section describes some of the key aspects of the

experimental design.

b. Land surface variable initialization

In effect, initial land surface states for Series 1 were

established through participation in the Global Soil

Wetness Project Phase 2 (GSWP-2). GSWP is an envi-

ronmental modeling research activity of the Global

Land–Atmosphere System Study (GLASS) and the In-

ternational Satellite Land Surface Climatology Project

(ISLSCP), both of which are contributing projects of

GEWEX. Through GSWP-2, modelers produced global

fields of land surface fluxes, state variables, and related

hydrologic quantities by driving their land surface

models offline with global arrays of observation-based

meteorological forcing (Dirmeyer et al. 2002, 2006).

Much of this forcing is based on reanalysis, but key as-

pects of the forcing were scaled so that their long-term

means agree with independent observational datasets.

In particular, precipitation was adjusted to agree at the

monthly time scale with a gauge-based GPCC dataset.

The forcing used for GSWP-2 spans the period 1986–

95 at a resolution of 18; GLACE-2 participants were

given some freedom in regard to the configuration of the

forcing to their own model grid (see the aforementioned

Web site). Note that the Florida State University (FSU)

and Canadian Centre for Climate Modelling and Anal-

ysis (CCCma) models (see section 3) used analogous

datasets produced by Sheffield et al. (2006) and Berg

et al. (2005), respectively, for the offline forcing exercise;

because all of these datasets rely, for the most part, on

the same observations, we do not expect the use of dif-

ferent datasets to have a material effect on the results.

It is worth noting that the real-time forcing data avail-

able for use in operational forecasting is probably some-

what less accurate than the forcing data used here. Thus,

while the skill levels achieved in Series 1 will illustrate

the potential for skill improvement connected with land

initialization, these skill levels can, in at least one sense,

be interpreted as an ‘‘upper bound’’ for what might be

achieved with current real-time measurement networks.

Upcoming versions of operational systems, however,

will use soil moisture estimates based on the assimilation

of satellite-derived soil moisture data, which may give

them a relative advantage.

The model soil moisture states at the forecast start

times produced through the offline forcing exercise were

used to initialize the 2-month Series 1 forecasts in

GLACE-2. First, though, the initial states were ‘‘scaled’’

to the forecast model’s climatology to account for pos-

sible biases between the model’s climate and the values

derived offline with GSWP-2 forcing: a relatively dry

(wet) state obtained through the offline exercise for

a given region may be a relatively wet (dry) state in the

forecast system because the forecast system may be bi-

ased dry (wet) in the region. By scaling, a relatively dry

state generated offline with GSWP-2 forcing can be

converted to a correspondingly dry state for the coupled

model system. We note, however, the philosophical

counterargument that soil moisture generated offline,

while biased relative to a model’s climatology, is still more

‘‘realistic,’’ and thus some may consider the use of non-

scaled variables preferable for operational prediction.

Most groups scaled a given land state X (e.g., soil

moisture content in a given layer) at a given location and

time through the use of standard normal deviates, or Z

scores, based on the first two statistical moments of X for

the location and initialization day of year considered. In

essence, the Z score for X obtained in the offline forcing

system (using the offline system’s moments) was as-

sumed to apply in the coupled system and was converted

to an absolute value of X using the coupled system’s

moments (see Koster et al. 2004a for details). Suitable

constraints, of course, must be applied to the scaled

fields, ensuring, for example, that soil moistures don’t

fall below the wilting point or become supersaturated.

Other groups used a more rigorous scaling approach,

such as the matching of cumulative distribution functions,
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and FSU–Center for Ocean–Atmospheric Prediction

Studies (COAPS) avoided scaling altogether by using a

land surface assimilation technique in coupled mode.

For the Series 2 forecasts, the initial land states for the

members of a given forecast ensemble are not identical,

and they are not set to realistic values; rather, they are

drawn from a distribution of potential states, the distri-

bution determined from long-term simulations with the

model. Most groups had archived restart files spanning

decades or more for their modeling system; the land

states from these restart files on a given start date (for 10

different years, spaced as far apart as possible) were

used to initialize the different ensemble members. Some

other groups took advantage of existing parallel Atmo-

spheric Model Intercomparison Project (AMIP) simula-

tions, for which multiple restart files for a given start

date and year could be used to provide the same number

of sets of independent land initial conditions that were

each consistent with that year’s sea surface temperature

(SST) distribution. [Note that with this approach, if the

Series 2 initializations extract realism from antecedent

SST-induced springtime forcing, then the models using

this approach will be penalized when skill differences

(Series 1 minus Series 2) are computed; this effect, how-

ever, is expected to be small. The Series 2 SST-induced

skill scores are, in any case, small for boreal summer.] Still

others ‘‘shuffled’’ the initial conditions generated for the

Series 1 forecasts for use in the Series 2 forecasts.

c. Atmospheric initialization

If possible, the atmosphere was initialized realistically

(i.e., with fields representing the actual state of the at-

mosphere on the forecast start date). Appropriate at-

mospheric conditions were extracted from existing

reanalyses. Participants then aggregated, disaggregated,

or interpolated these atmospheric conditions onto their

own model grids and generated 10 different sets of at-

mospheric initial conditions for each ensemble, using

their choice of ensemble generation technique (e.g., sam-

pling every few hours from a one-day simulation initial-

ized with the reanalysis fields, or perturbing the initial

states with singular vectors). For logistical reasons, some

modeling groups [e.g., the groups using the National

Aeronautics and Space Administration (NASA) Global

Modeling and Assimilation Office (GMAO) models and

ECHAM–Jena Scheme for Biosphere–Atmosphere Cou-

pling in Hamburg (JSBACH)] did not utilize reanalysis-

based initialization, using instead, for example, atmospheric

conditions produced in a free-running atmospheric

model simulation with prescribed SSTs. Analyzing the

impact of the different atmospheric initialization ap-

proaches is beyond the scope of this study; we implicitly

assume here that the impact is small at the subseasonal

[beyond numerical weather prediction (NWP)] time

scale, particularly given that the same approach is used

within an individual model for both Series 1 and 2, with

the land impacts isolated by differencing the results

from the two series.

d. The ocean boundary condition

GLACE-2 is designed to isolate the impacts of land

initialization on subseasonal predictability (e.g., how

quickly the impact of land initial conditions on a forecast

reduces with time) and forecast skill. Thus, model-to-

model variations in predictability associated with ocean

processes were avoided; with two exceptions, partici-

pants ran their forecast simulations with the same set of

prescribed SSTs. The prescribed SSTs for each forecast

period, provided to all participants, were constructed by

applying simple persistence measures to the SST anom-

alies present on the forecast start date. These persistence

measures were obtained through analysis of long-term

SST datasets (e.g., Reynolds and Smith 1994) using cross

validation and are appropriate for use given the short

length of the forecast simulations (two months) relative

to the long time scales of ocean variability. One model

(CCCma) used a coupled atmosphere–ocean system with

SSTs initialized on the forecast start date, allowing the

SSTs to evolve with the other model fields. Another

[Center for Ocean–Land–Atmosphere Studies (COLA)]

did use observed SSTs throughout the forecast period in

both series; again, given that land-derived skill is quan-

tified by differencing the Series 1 and 2 results, the impact

of using observed SSTs in this one model is expected to

be minimal.

e. Output diagnostics

The analyses throughout this paper focus on forecast

skill generated at subseasonal time scales but beyond

short- to medium-range weather forecasts (0–10 days,

for which intermodel differences in the approaches used

to initialize the atmosphere muddy the analysis). In this

paper, we examine in particular the models’ ability to

predict rainfall and air temperature averaged over three

15-day forecast periods: days 16–30, 31–45, and 46–60.

Each participating modeling group thus provided to the

GLACE-2 organizers their total precipitation and air

temperature data averaged over the four 15-day periods

of each 60-day forecast simulation. Corresponding av-

erages of evaporation, net radiation at the surface, ver-

tically integrated soil moisture content, and near-surface

relative humidity were also provided. The participants

provided their data on their models’ native grids; these

data were subsequently regridded, using a simple area

weighting procedure, to a common (28 latitude 3 2.508

longitude) grid prior to joint model analysis.
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3. Participants

Ten modeling systems performed the full suite of

GLACE-2 experiments as described above. One addi-

tional system performed the experiment for a large

subset of the forecast start dates. Together the 11 sys-

tems represent the state of the art in atmospheric mod-

eling and prediction. Details on the systems are provided

in Table 1.

Not included here are additional simulations per-

formed by the European Centre for Medium-Range

Weather Forecasts (ECMWF) group using a fully cou-

pled land–atmosphere–ocean forecast system. These

results were very similar to those of the ECMWF system

using prescribed SSTs (which are included here)—the

use of the coupled ocean had no marked impact on land-

related skill.

4. Results

a. Forecast skill metric

To strengthen the potential for land impacts, our

analysis focuses on the warmest forecast periods in the

Northern Hemisphere; namely, those 15-day periods

(excluding the initial 15 days of the forecast) that lie in

June, July, or August. Thus, a forecast initialized on

15 April would provide data only for the 46–60-day pe-

riod, a forecast initialized on 1 June would provide data

for all three considered leads, and a forecast initialized on

1 August would provide data only for the 16–30-day pe-

riod. Through this procedure, the analysis for each lead

for a given model consists of 60 separate and indepen-

dent forecasts (10 years of forecasts, with 6 forecasts

per year).

The daily precipitation observations used for forecast

evaluation were derived from a combined station–

satellite pentad dataset (Xie et al. 2003; see ftp://

ftp.cpc.ncep.noaa.gov/precip/GPCP_PEN). The closest

set of three pentads to a given 15-day forecast period

were used; errors of one or two days in the overlap pe-

riod should have a small impact and, in any case, would

only hinder the computed skill levels. Daily temperature

observations were estimated by averaging the minimum

and maximum daily temperatures (again derived from

station observations) stored in the Hadley Centre ar-

chives (http://hadobs.metoffice.com/hadghcnd/; Caesar

et al. 2006). This dataset includes large data gaps,

particularly in South America and Africa. While a

reanalysis-based dataset could be used to fill in these

gaps, we decided to avoid any validation dataset that

includes a model-based component, since the goal here is

to evaluate the models strictly with observations—the

model physics and diagnostic approaches underlying

a reanalysis affect both precipitation and air tempera-

ture products (e.g., Pitman and Perkins 2009), particu-

larly in areas of sparse observations. Constructing a new

submonthly gridded temperature dataset over South

America and Africa from available observations is be-

yond the scope of this study.

The forecast skill metric used in this paper is the

square of the correlation coefficient (r2) between the

predicted variable and the observed variable. The iso-

lated contribution of realistic land initialization to forecast

skill is computed as the difference of the r2 values ob-

tained for Series 1 and 2 (r2
ser1 2 r2

ser2). We note that

other metrics, such as root-mean-square error (RMSE),

could be examined instead, but such metrics are clouded

by biases in model climate; our goal here is rather to

determine the degree to which the models forecast

correctly the temporal variability and relative magni-

tudes of temperature or precipitation anomalies. Be-

cause the means and standard deviations of both the

observational time series and the forecast results for any

model are known, the r2 metric can be directly trans-

formed into an RMSE metric, or better yet, biased model

outputs can be scaled to reproduce observations-based

moments (Entekhabi et al. 2010).

b. Intermodel variability in skill

We discuss only briefly here the intermodel differ-

ences in quantified skill levels. Figure 1 shows the skill

for precipitation and air temperature obtained for Series

1 (r2
ser1) during days 16–30 of the forecasts at three

representative 28 3 2.58 grid cells in the continental

United States. The bars in each histogram represent

different models (in random order, though the same

order is used in each panel). The skill levels are seen to

vary greatly, and models that appear to do well for one

field at one location may do poorly for another field or

another location. While skill maps (not shown) suggest

that some models do appear, at face value, to perform

generally better than others, a quantitative, statistically

valid comparative evaluation of the models (in the

context of both inherent skill differences and sampling

error) is beyond the scope of this paper, which focuses

instead on the determination and characterization of

an overall multimodel-consensus vision of skill. The

intermodel variability illustrated in Fig. 1 should nev-

ertheless be kept in mind when interpreting the con-

sensus results.

c. Unconditional consensus skill levels

Koster et al. (2010) processed the GLACE-2 results

into consensus estimates of land-derived forecast skill

(r2 for Series 1 2 r2 for Series 2) over the continental
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TABLE 1. Subseasonal-to-seasonal forecast systems participating in GLACE-2.

System name, resolution,

and No. of JJA forecasts

submitted References Notes

Canadian Centre for

Climate Modelling

and Analysis

system (CanCM3);

2.88 3 2.88; 60

forecasts

Scinocca et al. (2008) Land scaling: standard normal deviate scaling. Initialization

of Series 2 land states: for the 10 ensemble members for a

forecast start date in a given year, selection of soil moisture

conditions at that start date from different years of an

offline land simulation covering 1979–2007. Atmospheric

initialization: 6-hourly assimilation of ERA reanalysis. Runs

performed with a coupled atmosphere–ocean model.

COLA GCM

v3.2; 1.48 3 1.48;

60 forecasts

Misra et al. (2007) Land scaling: standard normal deviate scaling. Initialization

of Series 2 land states: for the 10 ensemble members for a

forecast start date in a given year, use of Series 1 land

initializations for that start date from the 10 different years

of simulation. Atmospheric initialization: National Centers for

Environmental Prediction (NCEP) reanalyses at 12-h intervals

prior to forecast start date. Observed SSTs used throughout

forecast period.

ECMWF integrated

forecast system;

1.18 3 1.18;

60 forecasts

Vitart et al. (2008),

Balsamo et al. (2009),

Jung et al. (2010),

ECMWF (2010)

Land scaling: CDF matching. Initialization of Series 2 land

states: for the 10 ensemble members for a forecast start date

in a given year, use of Series 1 land initializations for that

start date from the 10 different years of simulation.

Atmospheric initialization: singular vectors, as in operational

seasonal forecasting suite.

ECHAM5–JSBACH system;

1.98 3 1.98;

60 forecasts

Roeckner et al. (2003),

Raddatz et al. (2007)

Land scaling: standard normal deviate scaling, using GSWP2

multimodel output. Initialization of Series 2 land states:

extraction of soil moisture states from different years (but

at correct time of year) of free-running AMIP runs.

Atmospheric initialization: atmospheric states from free-

running AMIP runs.

FSU–COAPS model;

1.98 3 1.98;

60 forecasts

Shin et al. (2005),

Cocke and LaRow (2000)

Land scaling: not performed because of use of land data

assimilation technique in coupled mode, involving use

of Sheffield et al. (2006) atmospheric forcing. Initialization

of Series 2 land states: for the 10 ensemble members for a

forecast start date in a given year, use of Series 1 land

initializations for that start date from the 10 different

years of simulation. Atmospheric initialization: atmospheric

states from NCEP–Department of Energy (DOE) reanalysis 2.

Geophysical Fluid

Dynamics Laboratory

(GFDL) global atmospheric

model; 28 3 2.58; 30 forecasts

GFDL Global Atmospheric

Model Development

Team (2004),

Delworth et al. (2006)

Land scaling: standard normal deviate scaling. Initialization

of Series 2 land states: use of SST-consistent states from

parallel AMIP runs. Atmospheric initialization: simple

version of NCEP’s iterative breeder mode approach.

NASA GMAO seasonal

forecast system

[pre– Goddard Earth

Observing System

(GEOS-5) version];

28 3 2.58; 60 forecasts

Bacmeister et al. (2000) Land scaling: standard normal deviate scaling. Initialization

of Series 2 land states: use of SST-consistent states from

parallel AMIP runs. Atmospheric initialization: atmospheric

states from parallel free-running AMIP runs. [One ensemble

member in a given forecast used an atmospheric restart

(and land restart, for Series 2) from a different year.]

NASA GMAO GEOS-5

system; 28 3 2.58;

60 forecasts

Rienecker et al. (2011) Land scaling: standard normal deviate scaling. Initialization

of Series 2 land states: for the 10 ensemble members for a

forecast start date in a given year, use of Series 1 land

initializations for that start date from the 10 different years

of simulation. Atmospheric initialization: atmospheric states

from different years of an atmospheric reanalysis.

National Center for

Atmospheric Research

(NCAR) Community

Atmospheric Model

3.0; 2.88 3 2.88; 60 forecasts

Collins et al. (2006) Land scaling: standard normal deviate scaling. Initialization

of Series 2 land states: use of SST-consistent states from

parallel AMIP runs. Atmospheric initialization: extracted

from NCEP II reanalysis states spaced 6 h apart in

neighborhood of forecast start time.
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United States, while Van den Hurk et al. (2011) present

results for Europe. Here, we extend those results, as much

as possible, to the globe. The skill metric is computed

by first standardizing each model’s set of forecasts

(using the model-dependent means and standard de-

viations for the time of year and lead in question) and then

plotting the standardized forecasts for all models against

the corresponding observations on the same scatterplot.

The standardization removes model-dependent biases in

mean and variance from each set of forecasts, thereby

allowing them to be considered together. With ten

models providing 60 forecasts each for the June–August

(JJA) period and one providing 30 forecasts, a total of

630 forecasts are plotted against the 60 observations—a

substantial number, allowing for robust statistics.

Of course, the different models may not be strictly

independent; this is accounted for in the calculation of

significance levels. Significance levels are computed via

a brute-force Monte Carlo approach in which the time

series of the combined (all models included) forecasts

are compared to multiple reshufflings of the time series

of standardized observational anomalies. At a given lo-

cation, for a given variable and lead, the number of

shuffles (out of a suitably large sampling) that produce

a skill level (r2 for Series 1 2 r2 for Series 2) at or above

a certain value provides an estimate for the confidence

with which the null hypothesis (zero land-related skill) is

rejected at that value.

The land contributions to precipitation and air tem-

perature skill levels are plotted in Fig. 2 for the three

FIG. 1. Skill levels for the Series 1 experiment (r 2
ser1) for (top) precipitation and (bottom) air tem-

perature forecasts at days 16–30 at 3 representative grid cells: (left to right) a western North American cell

(408N, 1108W), a central North American cell (408N, 958W), and an eastern North American cell (408N,

808W). Each histogram bar represents a different model, ordered randomly. (Each histogram uses the

same order of models.)

TABLE 1. (Continued)

System name, resolution,

and No. of JJA forecasts

submitted References Notes

NCAR Community

Atmospheric Model

3.5–Community Land

Model 3.5; 1.48 3 1.48;

60 forecasts

Neale et al. (2008),

Oleson et al. (2008)

Land scaling: standard normal deviate scaling. Initialization of

Series 2 land states: for the 10 ensemble members for a forecast

start date in a given year, use of Series 1 land initializations

for that start date from the 10 different years of simulation.

Atmospheric initialization: NCEP reanalyses at 12-h

intervals prior to forecast start date.

NCEP Global Forecast System

(GFS–Noah); 0.98 3 0.98;

60 forecasts

Moorthi et al. (2001),

Ek et al. (2003)

Land scaling: standard normal deviate scaling. Initialization of

Series 2 land states: for the 10 ensemble members for a forecast

start date in a given year, use of Series 1 land initializations

for that start date from the 10 different years of simulation.

Atmospheric initialization: standard NCEP ‘‘ensemble

transfer’’ method.
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different averaging periods: the 15-day lead (days 16–30),

30-day lead (days 31–45), and 45-day lead (days 46–60).

Areas for which validation data are unavailable are

whitened out; dots in the figure indicate where the values

are significantly different from zero at the 99% level. The

salient result from this figure is that on the global scale,

precipitation forecast skill is close to zero everywhere,

and air temperature skill is limited to North America,

eastern Australia, and parts of Europe. (Of course, we

cannot say if air temperature forecast skill exists in South

America and Africa, given the lack of verification data.)

Note that the precipitation skill values over North

America differ slightly from those documented in

Koster et al. (2010) because of the use of a different

validation dataset (a global one that does not rely on as

many stations for the United States) and a slightly larger

set of forecast contributions. The patterns over the

continental United States in Fig. 2 also differ somewhat

in structure from those produced in the original GLACE

experiment (Koster et al. 2004b), which showed the

highest potential for land–atmosphere feedback along

a north–south swath down the center of the country with

a local maximum near the Texas coast. This latter

discrepancy may result from several factors. First, the

original GLACE examined the ability of imposed soil

moisture variations to influence the atmosphere,

whereas GLACE-2 examines the full prediction prob-

lem, which also involves the ability of a model to retain

an initial soil moisture anomaly through a forecast

period. Seneviratne et al. (2006) show that the south-

central United States indeed has a reduced soil moisture

memory relative to the north-central United States,

which presumably hinders the generation of skill there.

Sampling error may also be a factor, as may the fact that

the original GLACE experiment was purely synthetic—the

patterns it produced necessarily reflect the biased cli-

matologies of the models. The patterns produced in the

nonsynthetic GLACE-2 experiment are controlled in

large part by the character of land–atmosphere cou-

pling in nature and the ability of the models to re-

produce this character.

d. Skill levels in the context of predictability and
observational network quality

The skill levels shown in Fig. 2 can be evaluated in the

context of two necessary (though not sufficient) conditions

FIG. 2. Consensus (left) precipitation and (right) air temperature forecast skill (r 2 against

observations for Series 1 minus that for Series 2) as a function of lead, considering (top to

bottom) all 15-day forecast periods during JJA. (See text for details.) Dots are shown where the

plotted results are statistically different from 0 at the 99% confidence level; white areas lack

available validation data.
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for skill: (i) an underlying ‘‘predictability’’ in the models

(i.e., an ability of the models to extract a signal, right or

wrong, from a forecast in the presence of chaotic noise),

and (ii) some level of quality in the models’ land ini-

tialization. Here we examine the joint impact of these

two requirements.

Predictability (sometimes called ‘‘potential pre-

dictability’’ in the literature) refers here to the degree to

which the model’s initialization affects the fields fore-

casted by the model and, in particular, how this impact

diminishes with time. Given enough time, the information

content of the initial conditions is overwhelmed by

chaotic atmospheric dynamics, at which point the ensemble

members of a forecast differ from each other as much

they do from any randomly chosen state of the atmo-

sphere. At this point, the initial conditions are unable to

provide skill to the forecast.

We provide for this discussion a model-consensus

estimate of predictability. To compute it, the standard-

ized precipitation (or air temperature) anomaly pro-

duced by each model with its first ensemble member is

averaged across the models to produce a single synthetic

‘‘truth’’ for a given start date and lead. The corre-

sponding individual model ‘‘forecasts’’ to be compared

with this truth are the averages for each model over its

remaining nine ensemble members for that start date

and lead. The 630 synthetic ‘‘truth-forecast’’ pairs are

plotted against each other in a manner equivalent to that

used for the consensus skill calculations in section 4c

above. The square of the correlation coefficient between

the points (r2
ideal) represents the multimodel-consensus

estimate of predictability; to isolate the land contribu-

tion to this predictability from the contributions of SSTs,

atmospheric initialization, and other prescribed bound-

ary conditions, we subtract the r2
ideal produced for Series

2 from that produced by Series 1.

It is important to emphasize here that this estimate

does not represent the intrinsic level of predictability in

nature—it does not provide information on how much

extra skill could be extracted from forecast systems if

model formulations or initialization data were im-

proved. Intrinsic levels of predictability in nature cannot

be measured or even estimated with any confidence; the

only accessible quantitative measure of nature’s pre-

dictability involves its lower bound, as determined from

forecast verification studies. The predictability estimates

presented here are specific to our definition of consensus

skill and are useful for one purpose only: to quantify the

upper limit of skill we can achieve given the character of

our calculation and the current structures of the forecast

models. That is, prior to looking at any forecast verifi-

cation data, these predictability estimates indicate

where consensus skill, given the way we have defined it

and given the suite of forecast models used, is possible.

Note that predictability levels for the individual

GLACE-2 models (not shown) differ substantially, with

some being larger than the consensus values; removal or

addition of additional models to the study could thus

modify the patterns shown.

With this in mind, Fig. 3 shows, for the 16–30-, 31–45-,

and 46–60-day leads, the global distributions of the r2
ideal

differences for precipitation and air temperature. As

expected, land contributions to precipitation predictability

(left panels) decrease with lead. Note, however, that

predictability values even for short leads are small, sug-

gesting a low, though nonzero, potential for consensus

forecast skill given the model frameworks used. The

consensus predictability for air temperature is much

larger, as shown in the right panels, with r2
ideal differences

exceeding 0.25 in many places. Even so, hope for skillful

consensus air temperature forecasts is highly limited in

many parts of the world (e.g., Asia and Europe after day

30). Simply put, Fig. 3 shows that the low skill values seen

in many parts of the world in Fig. 2 result from the char-

acter of predictability within the participating models—it

would be impossible, with this set of models and this

definition of consensus skill, to generate skill levels higher

than those in Fig. 3, even if the observational networks

used for the land initialization were greatly improved.

Of course, imperfections in land initialization do limit

skill in regions having significant predictability. For this

study, we key the realism of the soil moisture initiali-

zation to the quality of the meteorological forcing used

to produce it. We focus in particular on the monthly

precipitation estimates used, making the assumption

that soil water initialization is most strongly controlled

by the temporally averaged rainfall amounts contribut-

ing to it, more so than by other meteorological fields or

by the high-frequency timing of the rainfall, which in

these experiments are derived from reanalysis. We fur-

ther assume that the quality of the monthly precipitation

data (for the 1986–95 period) is best represented by the

areal density of the rain gauges used to estimate it. The

link between rain gauge density and errors in precipita-

tion estimates has been reported in various studies (e.g.,

Zawadzki 1973; Seed and Austin 1990; Gebremichael

et al. 2003; Huang et al. 2008), and the corresponding

impact of rain gauge density on the performance of hy-

drological models was documented by Oki et al. (1999).

The impact of density on forecast skill, however, has not,

until now, been documented. Here, in analogy to the

hydrological study of Oki et al. (1999), we examine the

idea that rain gauge density affects forecast skill through

its impact on the realism of the soil moisture initialization.

Figure 4, a variant of a figure from Zhao and Dirmeyer

(2003) and Decharme and Douville (2006), shows the
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average number of monthly rain gauges per 28 3 2.58 grid

cell contributing to the Global Precipitation Climatology

Project (GPCP) during 1986–95 (D. Bolvin 2010, per-

sonal communication), the dataset underlying the GSWP-2

rainfall time series. Rainfall measurement stations are

dense (and thus soil moisture initialization is likely to be

reasonably accurate) in, for example, central North

America, Europe, eastern South America, and the east

coast of Australia. Measurement stations are sparser, and

thus the soil moisture initialization is more questionable

in most of the remainder of South America and Australia

and in most of Africa and Asia. Note that while satellite

information was used to ‘‘fill in the gaps’’ of the station

record when producing the precipitation datasets that

contributed to GSWP-2, satellite-based rainfall data are

notoriously questionable, particularly over land for the

1986–95 period. Indeed, the fact that satellite data are

included in the precipitation forecast verification dataset

must be kept in mind when considering model perfor-

mance for precipitation in areas of low rain gauge density.

Figure 5 provides, for air temperature forecasts, a

useful joint look at the limitations imposed by underlying

model predictability and by the accuracy of the initiali-

zation, as represented by gauge density. Within each

scatterplot (one panel for each forecast lead), each plotted

dot corresponds to a 28 3 2.58 grid cell that is at least 90%

land. The abscissa assigned to a given dot is determined

from its underlying model-consensus predictability (from

Fig. 3), and the ordinate assigned to the dot is determined

from the local gauge density (from Fig. 4). The size and

color of the dots are keyed to the land-derived forecast

skill uncovered by the GLACE-2 experiment.

The salient result from Fig. 5 is the strong impact of

both underlying model predictability and gauge density

on the ability to extract true skill from the experiments.

As expected, skill appears only where the background

predictability is sufficiently large. For the most part, skill

also appears only for higher values of gauge density—the

plots suggest that a density of about 10 gauges per 28 3

2.58 cell is needed to produce the larger values of skill in

the forecasts. The results for the 30-day lead (days 31–45)

in particular imply a strong impact of gauge density on

skill, though a similar impact is also seen for the 15-day

lead results. [Similar suggestions of gauge density im-

pact are also seen in corresponding scatterplots for

precipitation (not shown), though the signal is weaker.]

We caution that such plots show correlation rather than

causation; they do not prove that higher densities are

FIG. 3. Multimodel-consensus estimate of (left) precipitation and (right) air temperature

predictability associated with soil moisture initialization—in essence a quantification of how

one ensemble member in a given forecast reproduces the synthetic truth produced by the re-

maining ensemble members in that forecast: (top to bottom) all 15-day forecast periods.
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responsible for higher forecast skill. Furthermore, the

quality of temperature verification data is probably poor

in many locations with low rain gauge density, which

further hampers skill scores, though presumably air tem-

perature measurements, characterized by larger spatial

correlations than those for precipitation, are relatively

robust. In any case, Fig. 5 suggests that if precipitation (and

perhaps air temperature, for verification) were monitored

more comprehensively during the 1986–95 period, addi-

tional air temperature forecast skill might indeed have

been computed in GLACE-2 at many of the grid cells for

which the land-derived predictability is high but the gauge

density is low. This result underscores the importance for

the forecasting problem of observational networks, both in

terms of rain gauge networks and, for present-day, satellite-

based observations of precipitation and soil moisture.

Of course, improved observations will not help with

air temperature forecasts everywhere. Many regions

with poor networks are located either in extremely dry

or wet climates; such areas, typically characterized by

low land–atmosphere feedback (and thus low amounts

of land-derived predictability), are not expected in any

case to produce high land-derived skill.

e. Conditional consensus skill levels

In the initial documentation of GLACE-2 results,

Koster et al. (2010) utilized the concept of conditional

skill—the calculation of skill levels for a subset of the

forecast start dates, a subset defined by the state of the

initial soil moisture. The idea parallels that used in

coupled atmosphere–ocean seasonal forecasting; fore-

casters know that certain weather patterns are more

predictable when the El Niño–Southern Oscillation sea

surface temperature indices are strongly positive or

negative rather than close to neutral. Here, we hypoth-

esize that soil moisture impacts on skill will be larger and

thus easier to diagnose when the initial soil moisture

anomalies are particularly large.

Figure 6, in analogy to Fig. 2, shows the land-derived

skill levels obtained for precipitation and air temperature

at the three leads; these skill levels, however, were com-

puted from only 40% of the forecast periods. The subset

was chosen as follows. At each 28 3 2.58 grid cell, a mul-

timodel time series of root zone soil moisture was com-

puted from a 18 3 18 soil moisture analysis using the

outputs of several land models participating in GSWP-2.

Most of the models underlying this analysis are in-

dependent of those used in GLACE-2; see Koster et al.

(2009a) for details on the models used. For the present

study, the soil moisture time series for each GSWP-2

model was standardized at the 18 3 18 resolution to re-

move seasonality in mean and variance before being av-

eraged with the standardized results of the other GSWP-2

models and over a large area (68 3 7.58) centered on the

28 3 2.58 grid cell being examined. For each 15-day period

within JJA, and for each assumed lead, the 60 corre-

sponding ‘‘initial’’ large-scale soil moisture anomalies

(10 years times 6 start dates per year) extracted from

FIG. 4. Average number of rain gauges contributing to the GSWP-2 forcing data during the

period 1986–95 (sum over all months divided by 120). The original GPCP rain gauge density

data have a resolution of 2.58 3 2.58; these data were regridded and shown here at a resolution

of 28 3 2.58 for consistency with the resolution used for the joint model analysis.
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this time series were ranked, and the driest and wettest

fifths (quintiles) of the soil moisture anomalies were es-

tablished. The skill metric shown in Fig. 6 is for this subset

of start dates—the subset of forecasts initialized with

these very dry or very wet anomalies. Note that while the

subset of start dates used for the calculation is different

for each grid cell, spatial correlation in soil moisture

patterns may lead to similar subsets for neighboring cells.

Figure 6 shows a slight increase in precipitation skill in

North America for the extreme quintiles, in agreement

with results already shown in Koster et al. (2010). Pre-

cipitation skill results for the rest of the globe, however,

appear unimpressive, particularly when considering field

significance, which reflects the degree to which skill levels

in a map exceed those that would appear by chance. The

combined area of the small yellow (positive skill)

patches appears to match roughly that of the blue (neg-

ative skill) patches, implying that neither are significant.

Of course, from Fig. 4, the number of places where skill

might be realized in the first place, given the underlying

FIG. 5. (top) Air temperature forecast skill at 16–30 days as a function of background con-

sensus predictability (x axis) and gauge density (y axis). Each dot corresponds to a 28 3 2.58 land

grid cell; the size and color of the dot (see legend) reflect the land-derived air temperature

forecast skill computed for the location by GLACE-2. (middle) Same, but for 31–45-day

forecasts. (bottom) Same, but for 46–60-day forecasts.
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observational network, is limited. For air temperature,

the right panels in Fig. 6 show forecast skill levels that

significantly exceed those in Fig. 2; the contribution of

land initialization to skill is larger when only the driest

and wettest quintiles are considered. Significant positive

skill patches are seen in North America and in patches

scattered across Europe, Asia, and Australia. Again, the

skill shows up where the observational rain gauge net-

work is relatively dense (Fig. 4).

A global average of the land-derived skill levels is

telling. Here, by ‘‘global average,’’ we mean the average

over all grid cells that are at least 90% land and have

a rain gauge density of at least 10 gauges per 28 3 2.58

grid cell, given considerations raised in section 4d above.

The global averages for a number of different temporal

subsettings are shown in Fig. 7. The x axis shows the

fraction of start dates considered; the global averages

from Fig. 6 are thus represented by the fraction 0.4, and

those from Fig. 2 are represented by the fraction 1.

Average skill values are also shown for the analysis of

extreme terciles, quartiles, deciles, and twentieths (0.667,

0.5, 0.2, and 0.1 on the x axis, respectively). The figure

shows that as the initial conditions considered become

more extreme, the globally averaged air temperature

forecast skill increases. A much smaller effect is seen for

precipitation forecasts. For air temperature, all globally

averaged land-derived skill levels are significantly dif-

ferent from 0 at the 99% confidence level or higher.

What does this mean in practical terms? At the start of

a given forecast, a forecaster would know whether or not

the initialized soil moisture anomaly at a given location

is at the dry or wet end of its distribution. If the initial

anomaly is not particularly extreme, the forecaster may

expect little help from the realistic soil moisture ini-

tialization. A more extreme initialized anomaly should

lead to more land-derived skill and hence, to the extent

that this soil moisture impact is not overshadowed by

other complicating factors, a more confident forecast.

f. Asymmetric contributions of wet and dry
initialization

GLACE-2 can begin to address the question of wet–

dry asymmetry in prediction—to what degree can

anomalously wet conditions contribute more to a forecast

FIG. 6. (left) Precipitation and (right) air temperature forecast skill (r 2 against observations

for Series 1 minus that for Series 2) as a function of lead for (top to bottom) a 40% subset of

the 15-day forecast periods during JJA: those periods for which the local initial soil moisture

content is in the top fifth or the bottom fifth of all realized values. (See text for details.) Dots are

shown where the plotted results are statistically different from zero at the 99% confidence level;

white areas lack available validation data.
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than anomalously dry conditions, or vice versa? The

land-derived skill levels shown in Fig. 2 for air temper-

ature prediction at the 30-day lead (days 31–45) in the

continental United States are shown again in the top

panel of Fig. 8. The middle panel of Fig. 8 shows the skill

levels obtained for exactly half of the start dates: those

for which the (standardized) initial soil moisture at the

local grid cell lies in the lower half of all the values

realized—that is, the times for which the local soil is

initialized anomalously dry, in a median sense. [As be-

fore, the multimodel soil moisture products generated

independently by Koster et al. (2009a) are used to par-

tition the start dates.] The bottom panel of Fig. 8 shows

the corresponding skill for the wettest start dates. The

distinction between the middle and lower maps is clear:

dry initial conditions lead to greater skill in the north-

central United States, whereas wet initial conditions

lead to more skill toward the Southwest.

This distinction, while not conclusive, is nevertheless

consistent with basic hydrologic concepts regarding

wet–dry asymmetry. Consider Fig. 9, which shows, in

a highly idealized way, how evaporative fraction (the

ratio of evaporation to net radiation) varies with soil

moisture variations. At the dry end, evaporation is

sensitive to soil moisture—soil moisture availability limits

the evaporation rate. At the wet end, on the other hand,

soil moisture availability no longer acts as a bottleneck

limiting evaporation; evaporation is thus insensitive to

soil moisture variations, being instead sensitive to vari-

ations in ‘‘atmospheric demand,’’ or energy availability.

Consider first a climate for which the average soil

moisture lies at the value A (top panel). Under the as-

sumption that soil moisture influences the atmosphere

through its impact on the surface energy budget, a dry

anomaly at this location has more of a chance to con-

tribute to a forecast than a wet anomaly because the soil

moisture would influence the atmosphere only in the dry

case. In other words, at this location, the structure of the

idealized relationship in Fig. 9 suggests a potential wet–

dry asymmetry in land-derived forecast skill. Consider

next a location for which the average soil moisture lies at

the value B. Soil moisture is, on average, very dry

here—already near its lower limit—and evaporation is

very low. Soil moisture cannot get too much lower

during drier-than-average years, and its impact on

evaporation and the overlying atmosphere is corre-

spondingly limited for these years. During wet years,

however, soil moisture can enter a regime where it can

have a significant impact on evaporation. Thus we get

the opposite wet–dry asymmetry in forecast skill: for this

location, a relatively wet initialization is more likely to

positively contribute to skill. Such asymmetric effects of

soil moisture on temperature have been seen in exper-

iments with a regional climate model in France (Jaeger

FIG. 7. Precipitation and air temperature forecast skill (r 2 against observations for Series 1

minus that for Series 2) averaged over all land grid cells for which validation data are available and

for which the rain gauge density exceeds 10 gauges per 28 3 2.58 grid cell, as a function of lead and

the fraction of forecast periods considered. A fraction of 0.1 refers to the examination of the driest

twentieth and wettest twentieth of forecast start dates, a fraction of 0.2 refers to the examination

of the driest tenth and wettest tenth of forecast start dates, and so on. (See text for details.)
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and Seneviratne 2011), for which prescribed anomalous

soil moisture conditions mostly affect temperatures at

the dry end, leading to longer tails of the temperature

distributions for dry extremes.

The GLACE-2 results would support this in-

terpretation if the high skill areas in the middle and

bottom panels of Fig. 8 tended to be characterized by

‘‘A-type’’ and ‘‘B-type’’ points, respectively, in Fig. 9.

This is certainly possible given the known dryness gra-

dient across the continent. To demonstrate this more

precisely, Fig. 10 shows maps of the correlation co-

efficient between 15-day evaporative fraction (EF; the

ratio of latent heat flux to net radiative energy) and

15-day soil moisture (for the 30-day lead) for the dry and

wet halves of the start dates (calculated locally), along

with the differences (dry minus wet) in these correlations.

The data represent averages over the nine GLACE-2

models that provided usable soil moisture information.

For the region just southwest of the Great Lakes, the

correlation is much higher for the dry case, just as the air

temperature forecast skill is (Fig. 8), supporting the in-

terpretation provided by the top panel in Fig. 9. The re-

sults for the wet case, while not inconsistent with the

interpretation in Fig. 9, are not quite as clear; the south-

west does show higher correlation between soil moisture

and EF for the wetter half of start dates, but these lo-

cations do not precisely coincide with those in the lower

panel of Fig. 8, and Fig. 10 does not fully explain the

small patch of skill for the wet case in the mid-Atlantic

area.

Results for precipitation (not shown) are similar. The

land-derived skill levels are much smaller than those in

Fig. 8 for both the dry and wet subsets, but the maximum

for the dry case does appear to the southwest of the

Great Lakes, roughly consistent with Fig. 10.

FIG. 8. Air temperature forecast skill (r 2 against observations for

Series 1 minus that for Series 2) for the 30-day lead (days 31–45).

(top) All start dates. (middle) Start dates for which the local initial

soil moisture lies in the driest half of all values realized there.

(bottom) Start dates for which the local initial soil moisture lies in

the wettest half of all values realized there.

FIG. 9. Idealized breakdown of the soil moisture–evaporation

relationship into two parts: a drier regime in which evaporative

fraction (the ratio of evaporation to net radiation) is sensitive to

soil moisture, and a wetter regime in which it is insensitive. (bot-

tom) The location B has a mean soil moisture at the dry end, close

to the dry limit; drier-than-average years cannot get too dry,

whereas wetter-than-average years could get quite wet. (top) The

wetter location A straddles the two regimes, with only the drier-

than-average years showing sensitivity of evaporation to soil

moisture.
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5. Conclusions

GLACE-2 provides a common experimental frame-

work to quantify the impact of realistic soil moisture

initialization on precipitation and air temperature fore-

cast skill at subseasonal leads. Eleven modeling systems

participated in the experiment, allowing the determination

of a consensus view of this impact. In agreement with the

North American results of Koster et al. (2010), but here

extended to the globe, we find significant impacts of soil

moisture on air temperature forecast skill in many re-

gions. This skill is limited, however, to areas for which

the underlying observational precipitation network

provides adequate coverage and thus trustworthy ini-

tialization. The results in Fig. 5 indeed underscore the

importance of observational networks for the forecast

problem, suggesting that the real-time provision of

improved observations for initialization—as derived in

modern times from both improved rainfall estimates and

satellite-derived soil moisture estimates—would likely

lead to increased forecast skill in some regions. Skill

levels for precipitation are much weaker, but global av-

eraging does show that skill levels for air temperature,

and to some small degree for precipitation, increase as

the start dates are subsetted toward more extreme initial

conditions—larger soil moisture anomalies have a

stronger impact on skill. Wet and dry initializations

tend to generate skill in different areas, with dry ini-

tialization providing more skill at the transition be-

tween soil-moisture-and energy-availability-controlled

evaporation.

One benefit of the GLACE-2 experiment is the

identification of areas for which enhanced soil moisture

(or antecedent precipitation) measurement may prove

especially fruitful, according to the consensus of model

behavior. The experimental framework is also suitable

for additional sensitivity tests addressing various facets

of the prediction problem, such as the importance of

scaling the land variables (section 2b) prior to forecast

initialization. Perhaps the framework’s greatest value,

however, is the provision of an objective means by

which any forecasting group can evaluate, for its own

model in isolation, the practical benefit of realistic land

initialization—particularly if relevant additional factors

associated with initialization in an operational setting

(real-time data availability, etc.) are incorporated into

the experimental design. Because the GLACE-2 fore-

casts are compared to actual observations, any skill

levels generated by a given forecast system with such an

operational version of GLACE-2 can be interpreted as

‘‘lower bounds’’ for what could be achieved with that

system using improved model parameterizations and

more complete measurement networks.
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FIG. 10. (top) Map of the correlation between soil moisture and

evaporative fraction for the drier half of start dates, as determined

at each grid cell independently. (middle) Same, but for the wetter

half of start dates. (bottom) Differences (dry 2 wet).
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