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ABSTRACT

In the near future, the Global Precipitation Measurement (GPM) mission will provide precipitation observations with un-

precedented accuracy and spatial/temporal coverage of the globe. For hydrological applications, the satellite observations need

to be downscaled to the required finer-resolution precipitation fields. This paper explores a dynamic downscaling method using

ensemble data assimilation techniques and cloud-resolving models. A prototype ensemble data assimilation system using the

Weather Research and Forecasting Model (WRF) has been developed. A high-resolution regional WRF with multiple nesting

grids is used to provide the first-guess and ensemble forecasts. An ensemble assimilation algorithm based on the maximum

likelihood ensemble filter (MLEF) is used to perform the analysis. The forward observation operators from NOAA–NCEP’s

gridpoint statistical interpolation (GSI) are incorporated for using NOAA–NCEP operational datastream, including conven-

tional data and clear-sky satellite observations. Precipitation observation operators are developed with a combination of the

cloud-resolving physics from NASA Goddard cumulus ensemble (GCE) model and the radiance transfer schemes from NASA

Satellite Data Simulation Unit (SDSU). The prototype of the system is used as a test bed to optimally combine observations and

model information to produce a dynamically downscaled precipitation analysis. A case study on Tropical Storm Erin (2007) is

presented to investigate the ability of the prototype of the WRF Ensemble Data Assimilation System (WRF-EDAS) to ingest

information from in situ and satellite observations including precipitation-affected radiance. The results show that the analyses

and forecasts produced by the WRF-EDAS system are comparable to or better than those obtained with the WRF-GSI analysis

scheme using the same set of observations. An experiment was also performed to examine how the analyses and short-term

forecasts of microphysical variables and dynamical fields are influenced by the assimilation of precipitation-affected radiances.

The results highlight critical issues to be addressed in the next stage of development such as model-predicted hydrometeor

control variables and associated background error covariance, bias estimation, and correction in radiance space, as well as the

observation error statistics. While further work is needed to optimize the performance of WRF-EDAS, this study establishes

the viability of developing a cloud-scale ensemble data assimilation system that has the potential to provide a useful vehicle for

downscaling satellite precipitation information to finer scales suitable for hydrological applications.

Corresponding author address: Sara Q. Zhang, NASA Goddard Space Flight Center, Code 610.1, Greenbelt, MD 20771.

E-mail: sara.q.zhang@nasa.gov

* Current affiliation: Precision Wind, Inc., Boulder, Colorado.

118 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 12

DOI: 10.1175/2010JHM1271.1

� 2011 American Meteorological Society



1. Introduction

Hydrological forecasts for floods and landslides often

require precipitation information at finer space and time

scales than those available from spaceborne microwave

observations. Statistical approaches have been used com-

monly to merge and downscale precipitation observa-

tions (Huffman et al. 2007). There is an emerging interest

in using data assimilation techniques to extract infor-

mation from multiple data sources, combining with high-

resolution modeling to downscale satellite observations

with dynamic consistency.

However, assimilation of satellite precipitation-affected

observations into numerical weather prediction (NWP)

models posts special challenges, due to the difficulties in

incorporating cloud physics and the precipitation pro-

cess into observation operators in the data assimilation

procedures and in estimating the forecast error co-

variance in cloudy and precipitation regions. Because

of these difficulties, it has been a common practice in

operational weather centers to assimilate clear-sky (or

cloud-cleared) radiances. Cloud clearing, however, re-

sults in discarding important information about clouds

and precipitation contained in the cloudy visible, in-

frared (IR), and microwave radiances (e.g., Andersson

et al. 2005; Errico et al. 2007). An example, shown in

Fig. 1, illustrates that the standard cloud-clearing pro-

cedure at the National Centers for Environmental Pre-

diction (NCEP) rejects a significant amount of radiance

data in the area of a tropical storm affected by clouds and

precipitation, thus eliminating crucial information about

the storm. [The Advanced Microwave Sounding Unit

(AMSU-B) radiances are plotted for Tropical Storm Erin

for the period 1500–1800 UTC 18 August 2007.]

Since the launch of the Tropical Rainfall Measuring

Mission (TRMM), the first satellite observatory specially

designed to observe precipitation, significant efforts have

been made to overcome the difficulties in assimilating

precipitation data. Several research and operational ef-

forts have been undertaken and produced successful re-

sults, thus ensuring that assimilation of cloudy radiances

and precipitation sensitive satellite retrievals brings a

value to both research and operations. For example,

the National Aeronautics and Space Administration

(NASA) Goddard Space Flight Center (GSFC) has pro-

duced TRMM global precipitation reanalyses using a

weak-constraint variational approach for assimilating rain

retrievals from microwave sensors, with evident positive

data impact to have improved the accuracy of global

precipitation estimates (Hou and Zhang 2007). NCEP has

introduced rain retrievals into the operational global data

assimilation system (e.g., Treadon et al. 2002). Other

major meteorological centers, such as the Met Office, the

Japan Meteorological Administration (JMA), and the

European Centre for Medium-Range Weather Forecasts

(ECMWF) have also been assimilating precipitation ob-

servations, precipitation-affected microwave radiances,

and/or radar reflectivities (Macpherson 2001; Tsuyuki

et al. 2002; Bauer et al. 2006a,b).

The above-mentioned and similar assimilation sys-

tems, even though advanced and resulting in significant

improvements in precipitation analyses and forecasts,

mostly focus on a global model resolution with param-

eterized physics schemes. In assimilating precipitation-

affected radiances, precipitation and clouds can only be

resolved at the global model grid resolution at 25 km or

coarser, while a satellite instrument often observes in-

homogeneous precipitation and clouds in its field of

view (FOV). The relatively coarse temporal resolution

in global models makes it necessary to assume that pre-

cipitation falls to the surface within one model time step,

which results in additional parameterizations and as-

sumptions to be made to meet the requirements of the

rain-affected radiance calculation. Another difficult

problem is that variational methods require inclusion

of the nonlinear and discontinuous cloud and precipi-

tation processes in the tangent linear model and its ad-

joint. When the complexity of moist physics increases,

more substantial development work and simplifications

have to be made to satisfy the linearization and minimi-

zation process (Lopez 2007). In operational variational

data assimilation systems, some pragmatic approaches

are taken to mitigate the difficulties. For example, Bauer

et al. (2006a,b) introduced a one-dimensional variational

(1D-Var) 1 four-dimensional variational (4D-Var) al-

gorithm for the assimilation of precipitation-affected mi-

crowave radiances. The two-step approach, where satellite

radiances are assimilated by the nonlinear 1D-Var step to

produce increments of total column water vapor, and then

these increments are assimilated by the linear (so-

called incremental) 4D-Var step, has proven better in

handling nonlinearities than the incremental 4D-Var

approach alone. In Vukicevic et al. (2004, 2006), a dif-

ferent approach was taken to use a full blown 4D-Var

with nonlinear updates of model-state variables during

minimization and to assimilate the Geostationary Oper-

ational Environmental Satellite (GOES) imager bright-

ness temperatures into a cloud-resolving model.

Advancements have been happening in the last de-

cade in computer power, numerical modeling, physical

retrieving techniques, and data assimilation methods,

which have contributed to the improved utilization of

precipitation-affected radiance observations, particularly

for scientific applications that require high resolutions

at cloud-resolving scales. For example, NASA Goddard

cumulus ensemble (GCE) model runs in a 3D configuration
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at the spatial resolution of 1 km or less, explicitly re-

solve clouds and associated precipitating processes.

This has resulted in more detailed and improved sim-

ulations of cloud microphysical processes in compari-

son with single-column parameterized models that are

commonly used at global model scales (Tao 2003). Cloud-

resolving models (CRMs) have also played important

roles in physical retrievals for precipitation and latent

heating. For instance, in the physical retrieval systems of

TRMM Microwave Imager (TMI) and the Advanced

Microwave Scanning Radiometer for Earth Observing

System (EOS) (AMSR-E), high-resolution hydrometeor

distributions simulated by cloud-resolving models have

been utilized to establish a database of profiles and corre-

sponding simulated brightness temperatures for Bayesian

inversion (Kummerow et al. 2001; Wilheit et al. 2003;

Olson et al. 2006). Although there are many uncertain-

ties on the accuracies and realistic depictions of hydro-

meteor variables in CRMs [e.g., Redelsperger et al. (2000)

showed the large discrepancy of hydrometeor modeling

among established cloud-resolving models with explicit

microphysics], many ongoing studies and researches have

been dedicated to evaluate and improve the microphys-

ical schemes using a wide range of observations from field

campaign data to high-resolution satellite observations

(Zhou et al. 2007; Eito and Aonashi 2009; Matsui et al.

2009). These advances in cloud-resolving modeling are

of importance for assimilation of precipitation-affected

satellite radiances and radar reflectivity observations at

cloud-resolving scales. Using models at cloud-resolving

resolution in data assimilation provides a means to over-

come the existing incompatibility between what coarse-

resolution model physical parameterizations could resolve

and what spaceborne instruments observe in reality; and

it is essential for a data assimilation system to be applied

to downscaling satellite precipitation observations for sci-

entific applications in hydrological forecasts and regional

climate studies.

Novel ensemble-based data assimilation methods hold

the potential to overcome some of the difficulties of the

variational methods in including cloud and precipita-

tion data. The ensemble methods do not require tangent

FIG. 1. Distribution of AMSU-B radiance data from the NCEP operational datastream:

(a) all observations and (b) accepted observations after cloud clearing. Data are collected

during the period 1500–1800 UTC 18 Aug 2007.
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linear models and adjoints of microphysics and radi-

ance transfers. Instead, full nonlinear microphysics and

radiance transfer schemes can be directly incorporated

into assimilation procedures without explicit lineariza-

tion or simplification. Tong and Xue (2005) applied an

ensemble Kalman filter to the assimilation of Doppler

radar data as an alternative to a variational approach.

To investigate the ensemble representation of precipi-

tation observation operators, an ensemble smoother was

developed and assimilated rain retrievals from multiple

microwave instruments into the Goddard GEOS-5 gen-

eral circulation model (Zhang et al. 2008). At meso-

scales, a recent study by Zupanski et al. (2010) applied an

ensemble filter to assimilate synthetic cloudy IR radi-

ances from the next-generation series of GOES-R Ad-

vanced Baseline Imager (ABI) instruments. The study

also demonstrated that the forecast error covariance,

updated by ensemble forecasts, is reflecting the occurring

storm environment, which allows for maximizing in-

formation extracted from observations in the storm areas.

The potential of these methods to further improve the

analysis and the forecast of clouds and precipitation is

also evident from Liu et al. (2008), Meng and Zhang

(2008), Whitaker et al. (2008), and Aksoy et al. (2009).

These pioneering efforts indicated that ensemble data

assimilation methods offer a new path to an effective

assimilation of precipitation-sensitive radiances at cloud-

resolving scales. However, further exploring and evaluat-

ing of these methods is necessary, especially in evaluating

their potential benefits for the future precipitation

measurement missions, such as the Global Precipitation

Measurement (GPM) mission.

The research presented in this manuscript was largely

motivated by the scientific goals of the GPM mission. The

GPM is an upcoming satellite mission, lead by NASA and

the Japan Aerospace Exploration Agency (JAXA). It is

composed of one core satellite and several constellation

satellites, with dual-frequency precipitation radar (DPR)

and a suite of microwave radiometers. GPM will sys-

tematically observe global precipitation systems with

more frequent temporal and wider spatial data coverage

than ever before. The observations obtained by GPM will

provide valuable information about horizontal and ver-

tical structures of precipitation, its macro- and micro-

physical nature, and its associated latent heating. A

better understanding of the precipitation processes and

their interconnections with dynamics and the water–

energy cycle can push forward the current capabilities

in weather, climate, and hydrological predictions. One

of the most challenging scientific objectives of this mis-

sion is to optimally extract information from the available

satellite observations and convert it into quantifiable

improvements in forecast and analysis at multiple scales,

ranging from global to cloud-resolving. NASA/GSFC

and Colorado State University (CSU) joined forces to

develop a prototype ensemble data assimilation system

with a cloud-resolving model for assimilation and down-

scaling of precipitation information from GPM observa-

tions. The concept of the prototype system follows the

special requirements for a high spatial and temporal

resolution dynamically downscaled precipitation analy-

sis: it utilizes a variety of observations from an opera-

tional datastream, a radiance transfer model to simulate

precipitation-affected radiance, a high-resolution regional

forecasting model with cloud-resolving microphysics, and

an ensemble assimilation methodology. In this manu-

script, we present the design of a prototype of the Weather

Research and Forecasting (WRF)-based Ensemble Data

Assimilation System (WRF-EDAS) and discuss results

from a case study of assimilation experiments using NCEP

operational datastream and AMSR-E radiance observa-

tions in cloudy and precipitating regions.

The manuscript is organized as follows. The system

design is explained in section 2, the experiments of the

case study are presented and discussed in section 3, and

conclusions and future research directions are outlined

in section 4.

2. System design

WRF-EDAS, a prototype ensemble data assimilation

system using a cloud-resolving WRF model is developed

jointly by NASA GSFC and CSU. The system is designed

to assimilate precipitation-affected radiances from GPM

observations as they become available. WRF-EDAS con-

sists of the following components: (i) the Advanced Re-

search WRF model (ARW-WRF; Skamarock et al. 2005),

with NASA Goddard cloud microphysics and radiation

schemes (GCE; Tao 2003); (ii) precipitation-affected

radiance transfer models from NASA Goddard Satellite

Data Simulation Unit (SDSU; Matsui et al. 2008); (iii)

conventional and clear-sky radiance forward operators

from the National Oceanic and Atmospheric Administra-

tion (NOAA)/NCEP’s gridpoint statistical interpolation

(GSI; Wu et al. 2002); and (iv) the maximum likelihood

ensemble filter (MLEF; Zupanski 2005). The system con-

figuration involving the above components is shown in a

schematic chart in Fig. 2.

a. The forecast model and the control variables

The WRF model is configured to run in a regional

domain with options to add nested inner domains with

finer resolutions. The regional forecast runs use lateral

boundary conditions from global forecast systems such

as the NCEP Global Forecast System (GFS). The large-

scale forcing is applied at the outer domain boundaries.
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In a nested domain run, the inner-domain boundary

conditions are provided through the interaction with the

outer domain. The cloud-resolving microphysics from

GCE model (Tao 2003) is chosen particularly for high-

resolution forecasts, for instance, in the inner domains of

model grid size at 3 km or less. The cloud dynamics and

the evolution of hydrometeor distributions in the at-

mosphere are explicitly resolved.

The control variables for the data assimilation are

chosen from the WRF model prognostic variables con-

sisting of u- and y-wind components, temperature, per-

turbation pressure, mixing ratios for water vapor, and the

hydrometeor mixing ratios of cloud water, rain, ice, snow,

and graupel. The configuration of control variables is

designed to be flexible to include all or part of the

prognostic variables listed above. Since the hydrome-

teors are directly related to the cloud and precipitation,

these variables are included in the control vectors to

explore the data impact on the analysis and forecasts,

especially in the assimilation of precipitation observa-

tions. Since very little is known about the forecast error

characteristics of the prognostic hydrometeor variables, we

hope that ensemble forecasts and available observations

will offer us an opportunity to examine the error distri-

bution and evolution in the context of ensemble data as-

similation with the chosen cloud-resolving model. The

inclusion of the five hydrometeor types in the control var-

iables also allows us to investigate their sensitivities cor-

responding to different microwave instrument channels

under different surface conditions, so that statistics can

be collected to guide the further development.

b. The observations and forward operators

To use the NOAA/NCEP operational datastream, the

observation operators from NCEP GSI system are in-

corporated in WRF-EDAS. The forward operators for

conventional data and clear-sky satellite radiances are

adopted along with the operational observation error

specifications, quality control, and bias correction pro-

cedures for these data types. During the data assimi-

lation cycling, the large-scale forcing for forecasts is

provided only at the domain boundaries. Use of these

operational data is essential to provide information on

the dynamical forcing in domain interiors. At the current

prototype development stage, these data types include

in situ conventional data and clear-sky satellite radiances

FIG. 2. Flowchart of WRF-EDAS.
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from selected channels of AMSU-A, AMSU-B, and the

High Resolution Infrared Radiation Sounder (HIRS).

Observations from AMSR-E and TMI are the first set

of precipitation-affected radiances to be used in the

prototype system. The observation operators for the

precipitation data are constructed from the CRM out-

puts and the radiative transfer models of NASA SDSU.

The passive microwave simulator takes the background

information from model forecasts including atmospheric

variables and hydrometeors. A delta–Eddington two-

stream radiative transfer with slant view (Olson and

Kummerow 1996) calculates the brightness temperatures

at the given model resolution. The simulated brightness

temperatures are then convolved within the FOV of the

specified sensor through a Gaussian beam pattern. For

instance, to compare with an observation in a FOV of

14 km by 8 km (AMSR-E 36.5 GHz), 112 simulated

brightness temperatures at a model resolution of 1-km

grid size are convolved to produce the first guess of

brightness temperature.

One big concern in precipitation-affected radiance

assimilation is biases in simulated brightness tempera-

tures, likely caused by biases in the model-predicted hy-

drometeors and some surface conditions particularly

overland. A bias correction will be essential to ensure

the quality of analysis. Previous studies on the CRM

simulations using independent observations from field

campaign data and satellite/radar observations provide

valuable information about the biases. For example,

Matsui et al. (2009) used collocated observations from

TMI and precipitation radar (PR) to statistically evaluate

the biases in the CRM-simulated frozen condensates and

the formulation of the deep convection clouds. The de-

velopment of a bias correction scheme is planned to fo-

cus on the CRM-predicted hydrometeor distributions

and will use information from available observations to

derive a parameterized bias correction algorithm, and the

correction parameters will be estimated and updated

along the assimilation cycling.

c. The ensemble data assimilation algorithm

The MLEF, with its iterative, nondifferentiable mini-

mization (Zupanski et al. 2008), is an important compo-

nent of WRF-EDAS. It provides a means to assimilate

precipitation sensitive observations through the use of

nonlinear and discontinuous observation operators with-

out a need for an explicit tangent linear model and adjoint

for precipitation observations. For instance, the inno-

vations of precipitation-affected brightness temperatures

are calculated using full model physics and radiative

transfer. The ensemble innovation covariance is used

to project information between control variable space

and observation space. The algorithm details of MLEF

are given in the appendix. Being an ensemble-based

method, the MLEF uses ensemble-based, flow-dependent

forecast error covariances and updates them in each data

assimilation cycle. The flow-dependent forecast error

covariance involves cross correlations between the cloud

microphysical variables and model dynamical variables

and, if described realistically, would ensure a dynamically

balanced precipitation analysis. As a consequence, the

impact of precipitation assimilation would have a bet-

ter chance to extend into the forecast, since it was ‘‘re-

membered’’ by the model dynamics.

The error covariance based on ensemble forecasts can

be noisy because of a relatively small ensemble size.

Localization or other filtering schemes can be applied

to control or filter the noise. The error covariance lo-

calization algorithm employed in the MLEF is the

weight-interpolation method of Yang et al. (2009). The

weight-interpolation method incorporates an interpo-

lation in ensemble space, rather than in physical space.

Since the computationally expensive matrix–matrix cal-

culations before interpolation are done on a coarse grid,

the method of Yang et al. (2009) is also computationally

more efficient than the original localization method of

Hunt et al. (2007) and Miyoshi and Yamane (2007). In

application with the MLEF, the only difference from the

method described in Yang et al. (2009) is that the control

variable in the ensemble space is interpolated, rather than

the weight coefficients. This is due to the algorithmic

design of the MLEF as an iterative minimization.

The MLEF employs a nonlinear and nondifferentia-

ble minimization algorithm described in Zupanski et al.

(2008—algorithm 1). The algorithm is roughly based on a

nonlinear conjugate gradient algorithm (e.g., Luenberger

1984); however, it is defined using a generalized gradient

and Hessian to avoid potential problems with nondif-

ferentiable functions. Different from previous MLEF

applications, the line-search procedure in iterative mini-

mization is performed locally, rather than globally, im-

plying a minimization of local cost functions. This allows

better fit to observations and eventually improves the

filter performance.

3. Experiments of Tropical Storm Erin (2007)

The prototype system of the WRF-EDAS is built with

a high-resolution WRF model, a set of observation op-

erators for in situ and remote-sensed observations, and

an analysis scheme to handle nonlinearity and back-

ground error covariance localization. To test and evaluate

the system, we carried out data assimilation experiments

for a case of Tropical Storm Erin, which was formed in

the Gulf of Mexico in August 2007. This tropical storm

was especially difficult to predict because it went through
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an overland reintensification over Oklahoma from 0000

through 1500 UTC 19 August 2007, producing hurricane

strength winds and heavy precipitation (e.g., Knabb 2008;

Arndt et al. 2009). We focus on this period of the storm

reintensification in data assimilation experiments of this

study in two sets of experiments: 1) one to evaluate the

performance of WRF-EDAS in assimilation of the NCEP

operational datastream (including conventional and cloud-

cleared satellite radiance data) using results from NCEP

WRF-GSI system as a benchmark, and 2) one to in-

vestigate the viability of direct radiance assimilation

of precipitation-affected AMSR-E observations within

the WRF-EDAS.

In this experimental system setting, the WRF model

employs a parent domain and a nest, with horizontal grid

spacing of 9 and 3 km, respectively. The parent domain

includes 241 3 160 3 31 grid points, and the nest includes

385 3 268 3 31 grid points. The regional boundary con-

ditions were constructed from the NCEP GFS analyses

and were not perturbed by the ensembles. The control

variables consist of u- and y-wind components, temper-

ature, perturbation pressure, mixing ratio for water va-

por, and five different hydrometeors (mixing ratios for

cloud water, rain, ice, snow, and graupel). The data as-

similation is performed every 3 h, for both grids, us-

ing available NCEP conventional data, clear-sky satellite

radiances from selected channels, and precipitation-

affected radiances from AMSR-E. The ensemble size

of 32 members is used, and a covariance localization

scheme is applied to improve the representation of the

degrees of freedom (DOF) in the system.

a. Assimilation of conventional and clear-sky
radiance observations

We performed data assimilation experiments for the

period from 1500 UTC 18 August 2007 through 0600 UTC

19 August 2007, assimilating conventional and satellite

observations from the NCEP observational datastream

every 3 h. Conventional observations, available in the

model domain, include Surface Synoptic Observations

(SYNOP), ship-collected water surface data, radiosonde,

pilot, wind profiler, velocity–azimuth display (VAD)

winds, satellite cloud-drift winds, aircraft, and the GPS-

integrated precipitable water data. Satellite observations,

available in the model domain, include clear-sky AMSU-A,

AMSU-B, HIRS, Microwave Humidity Sounder (MHS),

and Atmospheric Infrared Sounder (AIRS) radiances. The

same observations are assimilated in both WRF-EDAS

and WRF-GSI. We also use the same observation errors

in both systems, except for the fact the observation errors

were multiplied by the scaling factor 1.25 in WRF-EDAS.

The scaling factor accounts for differences between the

two systems, such as differences between the forecast

error covariances, and it was determined to approximately

satisfy the expected chi-square innovation statistics, as-

suming Gaussian error distribution (e.g., Menard et al.

2000; Zupanski 2005). In this set of experiments, the WRF

model was run using only the 9-km-resolution parent

domain in both WRF-EDAS and WRF-GSI.

Figures 3a and 3b show the first-guess (3 h) forecasts

of sea level pressure valid at 0600 UTC 19 August 2007:

the GSI results are given in Fig. 3a and the WRF-EDAS

in Fig. 3b. The NOAA surface weather map is shown in

Fig. 3c for the reference of observed storm location,

valid at the same time. The time of 0600 UTC is the mo-

ment when the cyclone reached the minimum surface

level pressure of 995 hPa at the storm center (according

to the Erin best-track report of Knabb 2008). As shown

in the figure, WRF-EDAS produced a deeper cyclone

(1003 hPa), with more closed isolines, than that from GSI

(1009 hPa). The cyclone was still not deep enough in both

experiments to reach the observed minimum of 995 hPa.

In Fig. 4, we present the first-guess forecast of surface

wind for the two experiments, valid at the same time as

in Fig. 3 (0600 UTC). It is evident that WRF-EDAS pro-

duced a stronger and more organized cyclone compared to

that from GSI, with the maximum wind intensity of

16 m s21 (versus 12.5 m s21 in the GSI). Though this is still

an underestimation compared to the observed wind in-

tensity of 25.72 m s21 (Knabb 2008), the relatively im-

proved representation of the storm intensity and structure

demonstrated the capability of WRF-EDAS to extract in-

formation from a common set of observations effectively.

The short-term 3-h forecasts from the two data as-

similation systems over seven consecutive data assim-

ilation cycles, covering the period from 1500 UTC

18 August through 0900 UTC 19 August 2007, are sum-

marized in Figs. 5 and 6. The root-mean-square (RMS)

errors of the 3-h forecasts (forecast verified against in situ

data) are shown in Fig. 5. The forecast errors of WRF-

EDAS are smaller than that of GSI for u- and y-wind

components and temperature at most levels. The errors

are comparable for the humidity, with slight degradation

in the WRF-EDAS at lower levels. The comparison of

the forecast departures indicate that the prototype WRF-

EDAS is stable and maintains a reasonably accurate

dynamic forcing in the domain at a similar level as that

of the established system GSI, when the same high-

resolution model and the same set of observations are

used. To verify the surface rain from the WRF-EDAS

3-h forecasts in comparison with that of GSI, observa-

tions from NCEP stage IV national mosaic are used.

Figure 6 shows the GSI forecast (Fig. 6a), the WRF-EDAS

forecast (Fig. 6b), and the NCEP stage IV observations

(Fig. 6c) of total surface precipitation, accumulated over

the same data assimilation cycles as in Fig. 5. As the
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observations indicate, the maximum-accumulated precip-

itation of 300 mm occurred in south-central Oklahoma.

This maximum is missing in the GSI-based forecast (it

is too weak and shifted too far toward central Texas).

The precipitation pattern is in better agreement with

the observations in the WRF-EDAS forecast with the

precipitation maximum of the same magnitude as ob-

served. Note, however, that the precipitation maximum

is shifted slightly toward the southeast.

The results obtained from these experiments pro-

vided reasonable confidence to the performance of the

WRF-EDAS using WRF-GSI as a benchmark, thus en-

suring a good background for data assimilation experi-

ments when precipitation-affected radiances are added.

b. Assimilation of precipitation-affected AMSR-E
radiances

In the domain of Erin reintensification over Oklahoma,

one swath of AMSR-E observations is available at

0900 UTC 19 August 2007. AMSR-E is a 12-channel,

6-frequency passive microwave radiometer system. It

measures horizontally and vertically polarized brightness

temperatures at 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz.

A preassimilation-check procedure is carried out to all

channels of brightness temperatures from AMSR-E level

2A swath data for the period covered by the experiments.

Using 9- and 3-km-resolution WRF forecasts and the

radiative transfer model, brightness temperatures for

FIG. 3. Sea level pressure valid at 0600 UTC 19 Aug 2007. First-guess (3 h) forecasts are shown for (a) GSI and (b) WRF-EDAS. (c) The

National Weather Service surface map for location reference. Results from the 9-km WRF grid are shown, presenting only the area of

interest (centered on Oklahoma).

FEBRUARY 2011 Z U P A N S K I E T A L . 125



different channels are simulated and compared with

the observations. The observation error standard de-

viation is empirically prescribed taking into account the

instrument errors and forward model errors. In this

experiment, the brightness temperature observation er-

ror standard deviations are empirically set to 18 K for 37

and 89 GHz, as well as 20 K for all other channels. An ad

hoc quality control is applied to screen out the extreme

outliers; for example, the observations at 89 GHz ex-

ceeding the prescribed threshold 300 K, or observations

where the departure amplitudes are as big as the signal

itself. The observations in the swath are not thinned, and

a nearest-point scheme is used to determine the model

grid point at the center of the FOV that matches the

observation location. Though biases are observed from

the collection of departures; for instance, a 10-K bias in

the 89-GHz channel based on 300 departures collected

in the raining area, the number of observations used in

the check procedure is not sufficient to formulate a re-

liable bias correction. An online bias correction is yet

to be developed and implemented. However, because

the experiment is set overland, bias from using differ-

ent microwave land surface emissivity schemes is ex-

amined. For instance, simulated brightness temperatures

at 24 GHz using the Goddard land emissivity scheme has

a 20-K bias compared with observations under no-rain

condition. The higher-frequency channel of 89 GHz is

much less affected. The bias under the same condition is

much smaller when the National Environmental Satel-

lite, Data, and Information Service (NESDIS) land emis-

sivity scheme is used, whereas other comparison studies

indicate that biases from different land emissivity schemes

vary from regions and seasons. Based on the limited data

statistics we have had so far, the NESDIS emissivity

scheme is chosen in the microwave radiance transfer

for this experiment. In this case study, where the land

emissivity is relatively homogenous, a bias of 5 K is re-

moved from the departures of 19- and 24-GHz channels

at the analysis time.

The ensemble WRF forecasts are configured with the

parent domain (9-km horizontal resolution) and the nest

(3-km resolution) where the storm is present and is

covered by the AMSR-E data swath. In the nest domain,

the microphysics is used to explicitly resolve the cloud

and precipitation processes. The perturbations to the

parent domain model state are applied as that to single-

domain forecasts, and this also provides the initial per-

turbations to each ensemble member of the nest domain.

Figure 7 illustrates how the assimilation of precipitation-

affected radiance observations influences the analysis in

observation space (brightness temperatures). The analysis

of brightness temperature is obtained by applying the ra-

diance transfer operator to the analysis of model-state

variables (wind, temperature, pressure, humidity, and

five hydrometeors). We show the 89-GHz V channel as

an example of channels with strong signals, but the re-

sults from other rain-sensitive channels such as 23.8 and

36.5 GHz are qualitatively similar. We keep all channels

for the generality of the observation datastream devel-

opment and for applications in different regions (overland

or overwater). In this case study, the lowest-frequency

channels of AMSR-E have very little sensitivity to hy-

drometeors in the assimilation procedure. The precipi-

tation signals in the midrange-frequency channels are

relatively weak overland mainly because of the high and

variable emissivity from the background. However, these

channels do exhibit some sensitivity to the distribution

FIG. 4. Surface wind (at 10 m above ground), valid at 0600 UTC

19 Aug 2007, obtained as 3-h forecasts from (a) GSI and the

(b) WRF-EDAS. Results from the larger model domain with 9-km

grid spacing are shown, presenting only the area of interest.
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of hydrometeors in the atmosphere below the freezing

level, particularly in this case study where heavy rainfall is

observed. As seen in Fig. 7a, there is a strong signal in the

observations indicating cold brightness temperatures in

the storm area, associated with clouds and precipitation.

The first-guess departure field, shown in Fig. 7b, indi-

cates there is significant discrepancy in terms of bright-

ness temperature depression in the storm area. There is

also a dipole pattern (red–blue colors) suggesting a mis-

matched first-guess precipitation pattern with respect to

the observations. These errors are considerably reduced in

the analysis in Fig. 7c: the maximum errors are now re-

duced by 30%, and the dipole pattern is less pronounced.

When the direct radiance assimilation reduced errors

in the observation space of the brightness temperature,

what is the impact to the hydrometeor distributions? In

Fig. 8, we show cross sections of brightness temperature

and increments of two hydrometeors (rain and snow)

taken through the storm along the longitude of 298.48E.

By examining the upper panel (Fig. 8a) one can notice

that the analysis is closer to the observations than the

first guess, matching the two minima better. Looking at

the lower panel (Fig. 8b) we can see how the hydrometeor

fields of rain and snow have responded to fit the obser-

vations better. There is an increase (warm colors) in rain,

at the lower levels, and in snow, at the upper levels, to-

ward a better fit of the brightness temperature minima.

The negative (blue colors) increments represent reduced

precipitation. There is also a location shift in the pre-

cipitation pattern (corresponding to a correction to the

pattern mismatch in Fig. 7).

Figure 9 shows the results from the nested domain

(with 3-km grid spacing). The higher resolution and mi-

crophysics allow for a more detailed model simulation of

the precipitation system and finer structures in simulated

brightness temperatures. As seen in the upper panels, the

precipitation intensity is increased, represented by the

lower brightness temperatures (deeper blue color) in

the analysis (right) with respect to the first guess (left), in

the area of the storm. Comparing the two scatter dia-

grams, it is evident that the discrepancy between ob-

served and model-simulated brightness temperatures is

FIG. 5. Vertical profiles of the first-guess errors from the WRF-EDAS and GSI data assimilation systems: RMS

errors for the (a) u-wind component, (b) y-wind component, (c) temperature, and (d) humidity. The errors are

calculated with respect to the NCEP conventional observations over seven data assimilation cycles (covering the

period from 1500 UTC 18 Aug 2007 to 0900 UTC 19 Aug 2007).
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reduced by assimilating AMSR-E data, especially in the

precipitation sensitive range of brightness temperatures.

In addition to the analysis increments on cloud mi-

crophysical variables, assimilating AMSR-E brightness

temperatures has an impact to other control variables as

well. In ensemble data assimilation, such potential in-

fluence could be provided by the cross covariance in

ensemble-estimated background error covariance, for

instance, observations made to the variables of hydro-

meteors can potentially generate analysis increments on

the variables of wind that are not observed at the time.

An illustrative example is given in Fig. 10. Two ‘‘data

denial’’ experiments for this particular analysis time

(0900 UTC 19 August 2007) are shown here. The first-

guess wind field is identical in both experiments shown

FIG. 6. Total (convective 1 stratiform) precipitation (mm), ac-

cumulated over the period from 1500 UTC 18 Aug 2007 to

0900 UTC 19 Aug 2007 (from seven consecutive data assimilation

cycles) from (a) GSI and (b) WRF-EDAS. (c) The observed values

(from the NCEP stage IV national mosaic). The grid spacing of the

observations is 4 km.

FIG. 7. AMSR-E brightness temperature of 89-GHz V (K) valid

at 0900 UTC 19 Aug 2007 for the WRF-EDAS outer domain: (a)

observed brightness temperature, (b) the observation minus forecast

differences, and (c) the observation minus analysis differences.
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in Fig. 10a. The experiment ‘‘NCEP data only’’ uses

operational observations on dynamic fields but does not

use precipitation radiance data. In the opposite, experi-

ment ‘‘AMSR-E data only’’ uses precipitation radiance

only, not using any direct observations on dynamic fields.

Comparing wind convergence and cyclonic circulation in

the analysis increments at 700 hPa shown in Fig. 10b

(AMSR-E data only) and Fig. 10c (NCEP data only),

both sets of observations produce corrections to increase

the storm strength around the storm center, even though

the AMSR-E radiances are not directly observing wind

field. This is a direct consequence of forecast error cross

covariance between dynamical and cloud microphysical

variables. These results demonstrate that the analysis in-

crement, and consequently the cross covariance between

wind and cloud microphysical variables, are flow-dependent

and reflecting the up-to-date dynamical environment of

the storm. Nevertheless, a stricter quantitative analysis,

performed over a longer time period, is still needed for

more general conclusions.

In this case study, the AMSR-E data is assimilated

only at one analysis time simultaneously along with other

observations (NCEP conventional and clear-sky satellite

data). Constraint is implicitly applied by the cross corre-

lations between different components in the control

variable as described by the flow-dependent forecast

error covariance. Whether the analysis solution is op-

timal and how it impacts precipitation forecasts depend

on many factors in the assimilation procedure, such as

realistic and well-tuned error statistics, unbiased model

forecasts, and observations; and the ultimate valida-

tions need to be done with independent observations

and statistical verifications in atmospheric states such

as precipitation, moisture, temperature, and dynamical

variables in longer periods and broader ranges of condi-

tions. Nevertheless, within the limit of a case study, we

will examine how the assimilation of precipitation radi-

ance influences the short-term (3 h) forecasts, and hope

the study will at least provide a starting point to explore

the potential benefits and possible problems. Two sets

of high-resolution forecasts (3-km grid) are issued from

the analyses at 0900 UTC (with and without AMSR-E

data). The accumulated surface rain forecasts are shown

in Fig. 11. The difference between panels (a) and (b)

shows that the assimilation of AMSR-E data induced

excessive surface rain accumulation, comparing with the

verification data given in panel (c). This indicates that the

analysis corrections on the initial rainwater distribution at

lower model levels may be too large in fitting with the

very strong scattering observed by high-frequency chan-

nels, even though ice condensates above the freezing

level are included in the control variables. It also high-

lights the importance of the bias correction as well as a

rigorous quality control in using precipitation-affected

radiances. In this assimilation experiment, the systematic

errors are not yet estimated or corrected. The observation

error specification is preliminarily based on a limited

amount of observations. Some large radiance departures at

higher-frequency channels on the order of 100 K are not

excluded by the ad hoc data rejection scheme. Therefore,

analysis increments are likely affected and biased by these

big departures. Another factor is that the microphysics

scheme is activated at this 3-km resolution in the inner

domain, and the model physics responds to the analysis

perturbations with stronger convection and higher rain ef-

ficiency, which produces sustained heavy rain.

The relationship between model-predicted surface rain

accumulation and the analysis correction to the initial

model-state variables is certainly not simple. The pre-

cipitation forecast skills depend on not only the quality

of the analysis, but also how the model physics respond

to analysis perturbations onto the distribution of rain-

water, snow, ice, etc. and produce rainfall that reaches

FIG. 8. Vertical cross section through the storm at longitude

298.48E, valid at 0900 UTC 19 Aug 2007 for the WRF-EDAS outer

domain: (top) the AMSR-E brightness temperature of 89-GHz V

(K) for the observations (black), first guess (blue), and the analysis

(orange) as a function of latitude, and (bottom) the analysis in-

crements (i.e., differences between the analysis and the first guess)

for mixing ratios of rain (shaded) and snow (contours; g kg21) as

functions of latitude and vertical levels.
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the surface. The Erin reintensification case study pre-

sented here has demonstrated that the assimilation of

precipitation-affected radiances can profoundly influence

the precipitation and other dynamical fields. It also

highlights the important issues to be investigated that

will lead to the further development of WRF-EDAS.

4. Conclusions and future work

A prototype WRF ensemble data assimilation system

(WRF-EDAS) is developed as a test bed to explore a

dynamic downscaling method using ensemble data as-

similation techniques and cloud-resolving models. Ex-

perimental results are presented from a case study

assimilating the NCEP operational datastream and

precipitation-affected AMSR-E radiances. The prototype

WRF-EDAS is designed for hydrological applications

that require downscaled precipitation from the upcoming

GPM satellite precipitation observations. The system is

constructed with the components of a high-resolution

ARW-WRF with NASA cloud microphysics and nest-

ing capability, observation operators for conventional

data and clear-sky satellite radiances derived from the

NCEP GSI, observation operators for precipitation-

affected satellite radiances derived from the NASA

SDSU, and the ensemble data assimilation algorithm

based on the maximum likelihood ensemble filter.

A case study on Tropical Storm Erin (2007) is pre-

sented to investigate the ability of the prototype of WRF-

EDAS to ingest information from in situ and satellite

observations including precipitation-affected radiance.

The first set of experiments assimilates in situ data and

clear-sky radiances from NCEP operational datastream,

and the NCEP WRF-GSI analysis system is used as a

benchmark. The short-term forecast, initiated using

WRF-EDAS, predicted the tropical storm reintensifi-

cation reasonably well in terms of both minimum surface

pressure at the storm center and the maximum surface

FIG. 9. AMSR-E brightness temperature of 89-GHz V (K) valid at 0900 UTC 19 Aug 2007 for the inner domain of

the WRF (with 3-km grid spacing): the (top left) first guess and (top right) analysis, and (bottom) the scatter diagrams

of (left) the observed vs first guess and (right) the observed vs analysis.
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wind intensity. The precipitation pattern of accumu-

lated precipitation over several data assimilation cycles was

in good agreement with the observed NCEP stage IV

national mosaic precipitation data. Comparisons of the

short-term forecast errors of WRF-EDAS and WRF-

GSI, calculated as RMS errors with respect to the con-

ventional observations, show that the forecasts produced

by the WRF-EDAS system are comparable to or better

than those obtained with the WRF-GSI analysis scheme

using the same set of observations. The second set of

experiments assimilates precipitation-affected radiances

from AMSR-E available during the period of storm re-

intensification in the domain. The assimilation of AMSR-E

radiances increases the precipitation intensity and corrects

the precipitation spatial patterns in the storm region. The

data denial experiment illustrates that the information

FIG. 10. Wind field at 700 hPa (m s21) valid at 0900 UTC 19 Aug

2007 for (a) the first-guess forecast, (b) WRF-EDAS analysis in-

crements (analysis minus first-guess differences) using AMSR-E

radiances only, and (c) analysis increments using NCEP data only

(conventional data 1 clear-sky radiances). The colors indicate

wind vector magnitude, and the arrows show both wind magnitude

and direction.

FIG. 11. Total (convective 1 stratiform) precipitation (mm)

obtained as 3-h forecasts after data assimilation valid at 1200 UTC

19 Aug 2007 for (a) the forecast from the WRF-EDAS using NCEP

data only, (b) the forecast from the WRF-EDAS using NCEP data

and AMSR-E radiances, and (c) the observed precipitation (from

the stage IV national mosaic). The forecast results are from the

3-km-resolution inner domain, and the verification data are at 4-km

resolution.
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in the precipitation-affected radiances is extended into

wind fields through the use of the flow-dependent forecast

error cross covariance between wind and cloud micro-

physical variables. The influence of AMSR-E radiances

to short-term precipitation forecasts is investigated by

the twin forecasts issued from initial conditions with or

without AMSR-E data assimilated. The quantitative ver-

ification of the forecasted accumulated precipitation

amounts indicates that the analysis increments from

AMSR-E data induce excessive surface rainfall in the

forecast verified against the NCEP stage IV precipitation

data. These results highlight the critical issues of bias cor-

rection and rigorous quality control for precipitation-

affected radiances, and call for a better understanding of

the microphysics behaviors in the data assimilation system.

The preliminary results from the case study provide

a starting point to explore what aspects of the ensemble

data assimilation system and the cloud-resolving model

may influence the quality of analyses and forecasts and

information on important issues to address in the future

development of the system. Further development work

will focus on the estimating of systematic and random

errors in the simulation of brightness temperatures,

assessing the background error covariance of hydrometeor

variables from ensemble forecasts, evaluating model re-

sponse of different hydrometeors to radiance assimilation,

and validating assimilation results systematically using

ground validation datasets and spaceborne observations.

While further work is needed to optimize the perfor-

mance of the WRF-EDAS, this study establishes the

viability of developing a cloud-scale ensemble data as-

similation system that has the potential to provide a useful

vehicle for downscaling satellite precipitation information

to finer scales suitable for hydrological applications.
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APPENDIX

MLEF Overview

In the MLEF, the optimal analysis is obtained by max-

imizing the posterior conditional probability density

function (PDF). In practice, this is achieved by an itera-

tive minimization of a cost function

J (x) 5
1

2
(x� x f )TP�1

f (x� x f )

1
1

2
[y�H(x)]TR�1[y�H(x)], (A1)

where R is the observation error covariance, Pf is the

forecast error covariance, y is the observation vector, x is

the state vector, and H is a nonlinear observation op-

erator. The superscript f refers to the first-guess forecast.

The matrix Pf is defined in a subspace spanned by en-

semble forecast increments as

P1/2
f 5 [ p f

1 p f
2 � � � p f

N
E
], where

p f
i 5M(xa 1 pa

i )�M(xa), (A2)

M denotes the nonlinear forecast model, the superscript

a refers to the analysis, and NE is the number of en-

sembles. The vectors pi
a and pi

f represent the columns of

the square-root analysis and forecast error covariances,

respectively. If the state vector dimension is denoted

NS, then the square-root forecast error covariance is an

NS 3 NE matrix.

A unique feature of the MLEF is an implicit Hes-

sian preconditioning, achieved by the control variable

transformation

x� x f 5 Gz, where

G 5 P1/2
f I

N
E

1 [Z(x f )]TZ(x f )
n o�1/2

, (A3)

INE
is an NE 3 NE identity matrix, z is the control variable

in ensemble space, and the matrix Z(xf) is the observation

perturbation matrix defined at the first guess xf as

Z(x f ) 5 [z1
(x f ) z

2
(x f ) � � z

NE
(x f )], where

z
i
(x f ) 5 R�1/2[H(x f 1 p f

i )�H(x f )]. (A4)

We can also define the observation information matrix

calculated at the first guess as matrix

C(x f ) 5 Z(x f )TZ(x f ). (A5)

Note that the observation information matrix (5) com-

bines the information from the forecast uncertainty (e.g.,

Pf) and observation uncertainty (e.g., R). The eigenvalue

decomposition (EVD) of the matrix C reveals that the

eigenvalues define the DOF for the signal, a useful flow-

dependent diagnostic counting the number of indepen-

dent pieces of information in the data assimilation.
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The matrix inversion in (3) is achieved by performing

an EVD,

I
N

E
1 C(x f ) 5 VLVT, (A6)

where V is the matrix of eigenvectors, and L is a di-

agonal matrix of eigenvalues. Finally, the inverse square

root is calculated such that

G 5 P1/2
f VL�1/2VT. (A7)

Note that the EVD is performed on an NE 3 NE matrix

with NE ; O(102), thus the computational requirements

are not very demanding. Since the eigenvalues li are all

positive and cannot be smaller than one [e.g., (6)], the

inverse in (3) is well defined. Finally, the square-root

analysis error covariance calculated at the optimal point

(analysis xa) using the formulation (3) is given by

P1/2
a 5 P1/2

f I
N

E
1 [Z(xa)]TZ(xa)

n o�1/2

, (A8)

where the matrix Z(xa) is the observation perturbation

matrix calculated at the optimal point xa. The column

vectors of the square-root analysis error covariance (8)

are then used as perturbations to the analysis for the

next assimilation cycle, as indicated by (2).
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