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ABSTRACT

The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a state-of-the-art

reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux,

snow, and runoff for 1979–present. This study introduces a supplemental and improved set of land surface

hydrological fields (‘‘MERRA-Land’’) generated by rerunning a revised version of the land component of the

MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation

forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised

parameter values in the rainfall interception model, changes that effectively correct for known limitations in

the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly

time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against

observations and compared to the skill of the state-of-the-art ECMWF Re-Analysis-Interim (ERA-I).

MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 U.S. stations) are

comparable and significantly greater than that of MERRA. Throughout the Northern Hemisphere, MERRA

and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with

snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow obser-

vations from 18 U.S. basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With

a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are

thus recommended for those interested in using MERRA output for land surface hydrological studies.

1. Introduction

The Modern-Era Retrospective Analysis for Research

and Applications (MERRA; Rienecker et al. 2011) is a

recent addition to the suite of global, long-term reanalysis
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products that are based on the assimilation of in situ and

remote sensing observations into numerical models of

the global atmosphere and land surface (Kalnay et al.

1996; Kanamitsu et al. 2002; Uppala et al. 2005; Onogi

et al. 2007; Dee et al. 2011; Saha et al. 2010). Besides es-

timates of atmospheric conditions, reanalysis products

also provide estimates of land surface fields, including

surface meteorological forcing data (such as pre-

cipitation, radiation, air temperature, and humidity) as

well as land surface states and fluxes (such as soil mois-

ture, snow, and runoff). Reanalysis estimates can be used

for a large variety of research and applications, for ex-

ample, the generation of enhanced land surface meteo-

rological datasets (Berg et al. 2005; Guo et al. 2006;

Sheffield et al. 2006), the study of the land surface water

budget, including streamflow, droughts, soil moisture,

and snow processes (Dai and Trenberth 2002; Su and

Lettenmaier 2009; Sheffield and Wood 2008; Burke et al.

2010; Brown et al. 2010), the estimation of the land

carbon budget (Zhao et al. 2006; Yi et al. 2011), and,

possibly, the calibration and verification of seasonal

climate forecasting systems (Saha et al. 2006) and the

generation of climate data records (Thorne and Vose

2010; Dee et al. 2010).

The MERRA data products are available from 1979

to present at high spatial and temporal resolution and are

based on the assimilation of a vast number of atmospheric

observations. MERRA land surface estimates, however,

utilize no directly assimilated land surface observations;

they reflect instead the time integration of surface me-

teorological conditions (precipitation, radiation, wind

speed, etc.) by the land model component of MERRA.

Based on the analyzed atmospheric state (including hu-

midity and temperature profiles), MERRA precipitation

over land is generated by the atmospheric general circu-

lation model (AGCM) during the Incremental Analysis

Update segment (Rienecker et al. 2011) and is thus sub-

ject to considerable errors that ultimately propagate into

the land surface hydrological fields. Moreover, errors in

land surface estimates result from errors in the land sur-

face model itself, including imperfect representation of

physical processes and uncertainties in the land model

parameters.

Given knowledge of such errors, it is reasonable to at-

tempt to mitigate their impacts through the careful post-

processing of MERRA output. Such postprocessing, if

done properly, could produce a land surface dataset more

useful and appropriate for hydrological analyses. Here,

we describe a particular postprocessing of the MERRA

land fields that involves the reintegration of the land sur-

face model with more realistic precipitation forcing and

with a parameterization change designed to counteract

certain known problems with MERRA’s diurnal rainfall

and radiation cycles. The resulting fields, along with the

original MERRA land fields, are compared extensively

to observations; advantages of the postprocessed dataset

(hereinafter ‘‘MERRA-Land’’) are highlighted.

We emphasize that these known problems are typical of

global reanalysis data products. On average, global pre-

cipitation from MERRA is no worse than estimates from

other reanalysis products (Bosilovich et al. 2011). There

have been many similar efforts to improve global offline

land surface simulations through corrected analysis or

reanalysis forcing data (e.g., Dirmeyer and Tan 2001; Berg

et al. 2005; Guo et al. 2006; Qian et al. 2006; Sheffield et al.

2006). Our paper focuses on the land surface hydrology

estimates from MERRA and how they can be improved

through simple corrections to land model parameters

and the precipitation forcing.

The paper is organized as follows. Section 2 briefly de-

scribes the MERRA modeling system and data product,

along with the data used for its evaluation. Section 3 starts

with a brief evaluation of MERRA surface precipitation

and radiation estimates and motivates the development of

the MERRA-Land product, which is described in detail

thereafter. Section 4 evaluates MERRA and MERRA-

Land estimates of interception loss fraction, latent heat

flux, soil moisture, runoff, and snow. Additional discus-

sion and conclusions follow in section 5. The appendix

details the skill metric used herein.

2. Data

a. The MERRA system and data product

MERRA is a reanalysis product generated by the Na-

tional Aeronautics and Space Administration (NASA)

Global Modeling and Assimilation Office (GMAO) using

the Goddard Earth Observing System (GEOS) version

5.2.0 (Rienecker et al. 2011; http://gmao.gsfc.nasa.gov/

research/merra/). The system incorporates information

from in situ and remote sensing observations of the at-

mosphere, including many modern satellite observations

such as Atmospheric Infrared Sounder (AIRS) radiances

and scatterometer-based wind retrievals. These obser-

vations are assimilated into the GEOS-5 AGCM using the

National Centers for Environmental Prediction Gridpoint

Statistical Interpolation assimilation package. MERRA,

however, does not include a land surface analysis. MERRA

covers the period from 1979 to the present and continues to

be updated with latency on the order of weeks. MERRA

estimates of surface meteorological and land surface fields

are available at hourly time steps and at ½8 3 2/38 reso-

lution in latitude and longitude, respectively.

The GEOS-5 AGCM includes a set of state-of-the-art

physics packages, along with the innovative GEOS-5
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Catchment land surface model (hereinafter Catchment

model; Koster et al. 2000; Ducharne et al. 2000). The model

is designed to improve the treatment of land surface hy-

drological processes through explicit modeling of subgrid-

scale soil moisture variability and its effect on runoff and

evaporation. The basic computational unit of the model is

the hydrological catchment (or watershed), with bound-

aries defined by topography (see below). Within each ele-

ment, the vertical profile of soil moisture is given by the

equilibrium soil moisture profile and the deviations from

the equilibrium profile (described by variables in a 0–2-cm

surface layer and in a ‘‘root zone’’ layer that extends from

the surface to a depth zR, with 75 cm # zR # 100 cm

depending on local soil conditions). The spatial vari-

ability of soil moisture is diagnosed at each time step from

the bulk water prognostic variables and the statistics of the

catchment topography. The soil and vegetation param-

eters used in the Catchment model are from the NASA

GEOS-5 global modeling system (Rienecker et al. 2011).

The Catchment model also includes a state-of-the-art snow

model (Stieglitz et al. 2001); in each watershed, the evo-

lution of snow water equivalent (SWE), snow depth, and

snow heat content in response to surface meteorological

conditions and snow compaction is modeled using three

layers. The time step for the land model integration is

20 min.

The Catchment model’s computations are performed

at a higher spatial resolution than those of the atmosphere.

The basic land surface element, or ‘‘tile,’’ is a topographi-

cally determined hydrological catchment; catchments

that straddle AGCM grid cells are subdivided by the

grid boundary into smaller tiles. Although standard

MERRA output is available only on the ½8 3 2/38 grid,

higher-resolution tile-based land surface fields are gen-

erated (but not saved) as part of the MERRA data

production. For MERRA, the Catchment model uses

157 051 land tiles with a mean (median) area of 828 km2

(524 km2), resulting in an average resolution of about

25 km.

For this study, we ‘‘replayed’’ the MERRA land surface

component by forcing the Catchment model offline (i.e.,

not coupled to the atmospheric model) after interpolation

of the hourly land surface meteorological fields from the

standard MERRA output to the 20-min Catchment model

time step. The replay configuration produces output that

is only marginally different from the original MERRA

land surface fields, and it serves two important purposes.

First, it allows us to conduct the skill assessment using

the higher-resolution tile output and thereby lessen the

impact of the discrepancy between the horizontally

distributed scale of the model-based estimates and the

point-scale of the validating in situ measurements. Sec-

ond, the MERRA-Land estimates (discussed below) are

based on the offline replay configuration by construc-

tion, and thus comparing them to the MERRA esti-

mates generated offline under replay mode allows a

more careful isolation of the impacts of the precipitation

corrections and model parameter revisions on the accu-

racy of the product.

b. Evaluation data

1) PRECIPITATION OBSERVATIONS

We use the Global Precipitation Climatology Project

(GPCP) precipitation pentad (5-day) product version

2.1 (Huffman et al. 2009; Xie et al. 2003) to evaluate and

correct the MERRA precipitation estimates. The GPCP

data are available as pentad averages from 1979 to 2009

on a 2.58 3 2.58 global grid and are based on the merging

of satellite measurements (infrared and microwave) with

global rain gauge observations from the Global Precip-

itation Climatology Centre. Specifically, the GPCP pentad

product is computed by adjusting the pentad estimates

from the National Oceanic and Atmospheric Administra-

tion (NOAA) Climate Prediction Center (CPC) Merged

Analysis of Precipitation (CMAP; Xie and Arkin 1997;

http://www.esrl.noaa.gov/psd/data/gridded/data.cmap.

html) product to monthly GPCP version 2.1 estimates.

GPCP and CMAP estimates differ primarily in the

input and processing of the satellite observations and in

the approach for combining the satellite and gauge

inputs.

2) SOIL MOISTURE OBSERVATIONS

In situ soil moisture observations from the U.S. De-

partment of Agriculture Soil Climate Analysis Network

(SCAN; Schaefer et al. 2007, http://www.wcc.nrcs.usda.

gov) are used to assess skill. Hourly soil moisture mea-

surements were taken with a device measuring the di-

electric constant of the soil (Stevens Water Hydra Probe

sensors inserted horizontally at depths of 5, 10, 20, 50, and

100 cm wherever possible). There are a total of 125 SCAN

sites in the contiguous United States that provide some

data between 1 January 2002 and 31 July 2009, the period

considered here (Fig. 1). For data from each SCAN site

we applied extensive quality control steps that included

automatic detection of problematic observations and a vi-

sual inspection of the time series. We excluded data that are

obviously unrealistic (such as data outside of the phys-

ical range or data related to discontinuities in the time se-

ries that could not be explained by physical processes). We

also excluded soil moisture measurements that were taken

under frozen conditions (according to SCAN soil temper-

ature measurements), or data affected by inconsistencies

that are most likely due to changes in sensor calibration

or sensor installation. After quality control of the hourly
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data, the SCAN observations were aggregated into pen-

tad averages. Because of the quality control and the data

requirements for the anomaly computation (appen-

dix), only 98 SCAN sites could be used to assess the

skill of surface soil moisture estimates, and only 85 of

the 98 sites could be used to assess the skill of root zone

moisture estimates. Liu et al. (2011) discuss the validity

of using the single-profile (point-scale) SCAN measure-

ments to assess the skill of land model estimates of soil

moisture that represent average values across tiles or

grid cells.

3) STREAMFLOW OBSERVATIONS

Streamflow gauge data for 18 basins in the United

States, ranging in size from 1900 km2 to 1 400 000 km2,

were used to assess runoff estimates [Table 1; see

Koster et al. (2010) and Mahanama et al. (2012) for

details]. The streamflow data were naturalized to ac-

count for anthropogenic impacts, including upstream

regulation, water withdrawals, and evaporation from

reservoir surfaces. Note that some of the basins used

by Mahanama et al. (2012) lack sufficient observations

during our study period and are thus not considered

here.

4) SNOW OBSERVATIONS

World Meteorological Organization (WMO) snow

depth measurements were obtained from the National

Climatic Data Center (Tedesco and Miller 2010). A total

of 583 stations located in the Northern Hemisphere

(mostly in Russia, Europe, and Alaska) for the period

October 2002 through August 2009 were used because

they fulfilled the screening criteria outlined in the ap-

pendix. In addition, we used the snow depth product from

the Canadian Meteorological Centre (CMC) daily snow

analysis (Brasnett 1999; Brown and Brasnett 2010). The

CMC product provides daily snow depth throughout

the Northern Hemisphere at a horizontal resolution of

approximately 24 km for the period of March 1998 to

the present. The CMC snow analysis is based on op-

timal interpolation of in situ daily snow depth obser-

vations and aviation reports with a first-guess field

generated from a simple snow model driven by ana-

lyzed temperatures and forecast precipitation from the

Canadian forecast model (Brasnett 1999). The CMC

product is often considered the ‘‘best available’’ snow

depth product for the Northern Hemisphere and has

been used for evaluating model output (e.g., Su et al.

2010). Finally, Sturm et al. (2010) provide climato-

logical snow density estimates as a function of snow

depth, day of year, and snow class (except for the

‘‘ephemeral’’ snow class; see their Eq. 6). Using the

snow class map shown in Sturm et al. (1995) we ob-

tained SWE estimates by multiplying the CMC snow

depths with the Sturm et al. (2010) snow densities for

subsequent comparison against SWE estimates from

MERRA and MERRA-Land.

5) ERA-INTERIM

Whenever possible, we compare the skill of MERRA

and MERRA-Land to that of the European Centre

for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA)-Interim (ERA-I), the most re-

cent ECMWF reanalysis product (Dee et al. 2011;

http://www.ecmwf.int/research/era). Here, we use the

daily ERA-I data product that is publicly available at

1.58 resolution from 1989 to present (updated with

about two months latency). Soil moisture in ERA-I is

modeled in four layers (0–7, 7–28, 28–100, and 100–

289 cm) and updated in response to screen-level (2 m)

observations of air temperature and humidity. This

soil moisture analysis, however, is designed to im-

prove the turbulent surface flux estimates and sub-

sequent atmospheric forecasts and provides no clear

benefit to soil moisture estimates (Drusch and Viterbo

2007). ERA-I also includes a snow analysis based on

in situ snow depth and satellite snow cover observa-

tions (Drusch et al. 2004). The structure functions

used in the ERA-I snow depth analysis differ from

those used in the CMC product. Because of recently

discovered problems in the ECMWF system, the CMC

structure functions have been adopted in the latest

version of the ECMWF operational system (P. De

Rosnay 2010, personal communication, ECMWF).

Szczypta et al. (2011) provide a detailed assessment

over France of surface meteorological forcing data

from ERA-I (with and without corrections to monthly

GPCP v2.1 precipitation estimates) and find that the

precipitation corrections lead to improved root zone

soil moisture estimates.

FIG. 1. Locations of SCAN soil moisture measurement sites that

were (crosses) used for surface and root zone soil moisture vali-

dation (85 sites), (circles) used only for surface soil moisture vali-

dation (13 sites), and (dots) not used.

15 DECEMBER 2011 R E I C H L E E T A L . 6325



T
A

B
L

E
1

.C
h

a
ra

ct
e

ri
st

ic
s

o
f

th
e

b
a

si
n

s
e

x
a

m
in

e
d

in
th

is
st

u
d

y
a

n
d

sk
il

l
(a

n
o

m
a

ly
R

)
o

f
3

-m
o

n
th

sm
o

o
th

e
d

st
re

a
m

fl
o

w
.R

e
v

is
e

d
C

a
tc

h
m

e
n

t
B

a
se

d
L

a
n

d
S

u
rf

a
ce

M
o

d
e

l
(C

L
S

M
)

sk
il

ls
a

re

fo
r

a
n

in
te

g
ra

ti
o

n
o

f
th

e
C

a
tc

h
m

en
t

m
o

d
e

l
w

it
h

su
rf

ac
e

m
e

te
o

ro
lo

g
ic

al
fo

rc
in

g
fr

o
m

M
E

R
R

A
a

n
d

C
a

tc
h

m
en

t
m

o
d

e
l

p
a

ra
m

e
te

rs
fr

o
m

M
E

R
R

A
-L

a
n

d
(T

a
b

le
2

).

B
a

si
n

R
iv

e
r

n
a

m
e

S
ta

ti
o

n
n

a
m

e

B
a

si
n

a
re

a
L

at
it

u
d

e
L

o
n

g
it

u
d

e

P
e

ri
o

d

A
n

o
m

a
ly

R
v

a
lu

e

k
m

2
8

N
8

W
M

E
R

R
A

R
e

v
is

e
d

C
L

S
M

M
E

R
R

A
-L

a
n

d
E

R
A

-I

1

M
is

so
u

ri
H

e
rm

a
n

n
(i

n
cl

u
d

in
g

b
a

si
n

s
2

,
6

,

9
a

n
d

1
0

d
)

1
3

5
7

6
6

7
3

8
.7

1
9

2
.7

5
1

9
8

9–
9

7
0

.8
3

0
.8

6
0

.8
5

0
.7

9

2

M
is

so
u

ri
F

t
R

an
d

a
ll

D
a

m

(i
n

cl
u

d
in

g
b

a
si

n
s

6
,

9
,

a
n

d
1

0
d

)

6
9

1
5

3
0

4
3

.0
7

9
8

.5
5

1
9

8
9–

2
0

0
9

0
.7

4
0

.7
5

0
.6

6
0

.5
9

3

O
h

io
M

e
tr

o
p

o
li

s
5

2
5

7
6

0
3

7
.1

5
8

8
.7

4
1

9
8

9–
2

0
1

0
0

.7
1

0
.7

2
0

.9
3

0
.7

7

4

U
p

p
e

r

M
is

si
ss

ip
p

i

G
ra

ft
o

n
4

4
3

6
6

0
3

8
.9

0
9

0
.3

0
1

9
8

9–
2

0
1

0
0

.6
4

0
.6

5
0

.8
9

0
.8

1

5

C
o

lo
ra

d
o

L
ee

s
F

e
rr

y

(i
n

cl
u

d
in

g
b

a
si

n
s

1
0

a
a

n
d

1
0

e
)

2
7

8
0

7
0

3
6

.8
7

1
1

1
.5

8
1

9
8

9–
2

0
0

3
0

.5
3

0
.6

0
0

.5
2

0
.4

6

6

M
il

k
F

o
rt

P
e

ck
D

a
m

(i
n

cl
u

d
in

g
b

a
si

n
1

0
d

)

1
4

9
0

7
0

4
8

.0
4

1
0

6
.3

6
1

9
8

9–
2

0
0

9
0

.7
9

0
.8

2
0

.7
7

0
.5

1

7

A
rk

a
n

sa
s

R
al

st
o

n
1

2
1

3
4

1
3

6
.5

0
9

8
.7

3
1

9
8

9–
2

0
0

8
0

.6
5

0
.6

6
0

.7
0

0
.5

4

8

A
rk

a
n

sa
s-

R
e

d
A

rt
h

u
r

C
it

y
9

9
9

6
1

3
3

.8
8

9
5

.5
0

1
9

8
9–

2
0

0
1

0
.4

8
0

.5
5

0
.8

9
0

.6
3

9

M
is

so
u

ri
G

a
rr

is
o

n
R

e
se

rv
o

ir
8

9
3

5
5

4
7

.3
9

1
0

1
.3

9
1

9
8

9–
2

0
0

3
0

.5
6

0
.5

8
0

.5
8

0
.5

4

1
0

a
G

re
e

n
G

re
e

n
d

a
le

3
9

4
5

2
4

0
.9

1
1

0
9

.4
2

1
9

8
9–

2
0

0
3

0
.6

1
0

.6
1

0
.5

7
0

.4
2

1
0

b
P

o
to

m
a

c
P

o
in

t
o

f
R

o
ck

s
2

5
0

0
0

3
9

.2
7

7
7

.5
4

1
9

8
9–

1
9

9
6

0
.8

7
0

.8
8

0
.9

5
0

.8
3

1
0

c
S

a
cr

a
m

e
n

to
B

e
n

d
B

ri
d

g
e

2
3

0
5

1
4

0
.2

9
1

2
2

.1
9

1
9

8
9–

2
0

0
3

0
.9

3
0

.9
4

0
.9

3
0

.9
1

1
0

d
M

u
ss

e
ls

h
el

M
o

se
b

y
2

0
3

2
1

4
6

.9
9

1
0

7
.8

9
1

9
8

9–
2

0
0

3
0

.6
9

0
.7

3
0

.6
5

0
.3

2

1
0

e
G

u
n

n
is

o
n

N
ea

r
G

ra
n

d
Ju

n
ct

io
n

1
9

9
5

8
3

8
.9

8
1

0
8

.4
5

1
9

8
9–

2
0

0
3

0
.5

3
0

.6
0

0
.5

1
0

.2
5

1
0

f
R

io
P

u
e

rc
o

B
e

rn
a

rd
o

1
9

0
3

6
3

4
.4

1
1

0
6

.8
5

1
9

8
9–

2
0

0
3

0
.2

0
0

.2
5

0
.4

5
0

.2
6

1
0

g
Y

ak
im

a
N

ea
r

P
a

rk
e

r
9

4
7

9
4

6
.5

0
1

2
0

.4
4

1
9

8
9–

2
0

0
3

0
.6

3
0

.6
0

0
.6

9
0

.5
9

1
0

h
T

u
o

lu
m

n
e

L
a

G
ra

n
g

e
D

a
m

4
3

3
7

3
7

.6
7

1
2

0
.4

4
1

9
8

9–
2

0
0

3
0

.6
6

0
.6

7
0

.6
7

0
.7

0

1
0

i
S

a
n

Jo
a

q
u

in
M

o
k

e
lu

n
m

e
H

il
l

1
8

6
3

3
8

.3
1

1
2

0
.7

2
1

9
8

9–
2

0
0

3
0

.6
9

0
.7

0
0

.6
8

0
.7

2

A
re

a
-w

e
ig

h
te

d
a

v
e

ra
g

e
o

v
er

sm
a

ll
b

a
si

n
s

(1
0

a
-i

)
n

/a
n

/a
n

/a
n

/a
0

.6
5

0
.6

7
0

.6
8

0
.5

2

6326 J O U R N A L O F C L I M A T E VOLUME 24



3. Motivation for and construction of
MERRA-Land

a. Motivation for a revised product

Precipitation is by far the most important driver of a land

surface hydrological simulation; hence precipitation error

will have an overwhelming impact on the accuracy of

simulated hydrological fields regardless of the accuracy

of the other forcings or the realism of the underlying land

model. Although the spatial distribution of the MERRA

mean annual precipitation is quite good compared to that

of other reanalysis products (Bosilovich et al. 2011, see

their Fig. 3), two correctable deficiencies associated with

MERRA’s precipitation forcing motivate our construc-

tion here of a revised land product: 1) inaccuracies in the

climatological and synoptic variability of the precipitation

forcing, and 2) inaccuracies in the intensity and diurnal

cycle of this forcing.

1) LONG-TERM PRECIPITATION TOTALS

The precipitation estimates generated by MERRA do

not benefit from the assimilation of surface rain gauge data.

While they do benefit from the assimilation of water vapor,

wind fields, and other atmospheric quantities (Rienecker

et al. 2011), the onset, intensity, and cessation of any

rainfall event is chiefly controlled by the model’s precip-

itation parameterizations. (The assimilation in MERRA of

satellite rain rate retrievals over the ocean has a negligi-

ble impact on the system over land.) As a result, MERRA

precipitation fields show some inaccuracies relative to

established, observations-based datasets, particularly over

land, as will be shown next.

Figure 2a shows the mean annual precipitation for the

period 1981–2008 from MERRA, and Fig. 2b shows the

corresponding observations-based estimates from GPCP

(section 2b). MERRA and GPCP both have a global

mean over land of around 2.3 mm day21 for 1981–2008

(see Bosilovich et al. 2011 for a discussion of the global

water budget and trends of MERRA and other reanalysis

products). To first order, the precipitation fields look sim-

ilar, with MERRA locating deserts and rainy areas in the

proper places and assigning, in most regions, approxi-

mately the correct magnitudes to the mean annual pre-

cipitation rates. The MERRA product, however, differs

from the GPCP reference, as revealed by the difference

map in Fig. 2c. MERRA mean annual precipitation rates

are biased low in much of South America and central

Africa and biased high in Southeast Asia, in Indonesia,

and along the tropical South American and African

coasts. Smaller but still significant biases appear across

much of the globe. Note, however, that uncertainty in

the GPCP precipitation estimates themselves, a strong

function of rain gauge density, varies significantly across

the globe (Adler et al. 2003).

Figure 2d shows the difference field (MERRA minus

GPCP) for a single representative month (August 1994).

Relative to those found for the long-term mean, the er-

rors for this month are reduced in parts of South America

FIG. 2. Annual precipitation (mm day21) averaged over the period 1981–2008 for (a) MERRA and (b) GPCP.

Precipitation differences (MERRA minus GPCP in mm day21) averaged over (c) 1981–2008 and (d) August 1994.
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but are more often magnified, with values exceeding

1 mm day21 in many midlatitude regions. Such errors

will have a first-order impact on the simulated land sur-

face hydrological variables. Our assumption in this paper

is that ‘‘correcting’’ the MERRA precipitation forcing so

that it agrees with the GPCP data as much as possible

should lead to improved hydrological simulation.

2) INTENSITY AND DIURNAL CYCLE OF

PRECIPITATION

Errors in the intensity and the diurnal cycle of pre-

cipitation are common in many atmospheric modeling

systems (Dai 2006). Unsurprisingly, MERRA also suf-

fers from such deficiencies. Figure 3 illustrates this with

a representative example. The top panel shows MERRA

time series of solar radiation and precipitation for a 9-day

summer period at a single grid cell near Gainesville, Flor-

ida. The bottom panel shows the corresponding observa-

tions from a flux network (FLUXNET) site located within

the MERRA grid cell. The MERRA time series differ

from the FLUXNET time series in at least three fun-

damental ways, each directly relevant to the simulation

of hydrological fluxes at the land surface. First, despite

being similar in long-term average, MERRA precipitation

rates are less intense; relative to observations, MERRA

rain tends to come down as more of a long-lasting ‘‘drizzle.’’

Second, the precipitation in MERRA tends to be highest

in the middle of the day, whereas the observations show

frequent nighttime rain maxima. Third, in the observations,

a daytime precipitation event tends to reduce incoming

solar radiation substantially (e.g., on 21 June 2003), whereas

in MERRA, the rain reduces the solar radiation by only

about half (16–20 June 2003) or sometimes hardly at all

(23 June 2003).

The discrepancy between the distributed (grid cell)

scale of the MERRA estimates (;50 km) and the point

scale of the in situ observations may be responsible for at

least part of the rain intensity and radiation differences

shown in Fig. 3. Nevertheless, regardless of their source,

the three features of MERRA rain and radiation be-

havior highlighted in the figure are commonplace for

MERRA summer precipitation and work together to

confound the ability of MERRA to provide adequate

amounts of rainwater to the soil. Simply put, the drizzle of

MERRA rainfall during daylight hours—hours for which

plenty of simulated solar radiation energy is available for

evaporation—leads to the immediate evaporation of much

of this rainfall directly from droplets sitting on the surface

of the vegetation canopy (i.e., directly from the land

model’s interception reservoir). As a result, not enough

of the water is allowed to drip down through the canopy

and ultimately infiltrate the soil or generate surface run-

off. Relative to an offline simulation with the same land

model but with more realistic forcing (e.g., along the lines

of that shown for the FLUXNET site), MERRA produces

soil moistures that are too dry (section 4b), with conse-

quent impacts on the simulation of land surface hydro-

logical fluxes.

b. Construction of the MERRA-Land data product

To mitigate the impacts of these problems, MERRA-

Land estimates were generated by replaying (i.e., running

offline with prescribed and improved meteorological

forcing) a revised version of the land component of the

MERRA system.

1) PRECIPITATION CORRECTIONS

For the new MERRA-Land product, all atmospheric

forcing fields (including air temperature and humidity,

radiation, wind speed, and surface pressure) for the land

surface model were taken directly from hourly MERRA

output, with one important exception: the MERRA

precipitation forcings were corrected toward gauge- and

satellite-based observations using the GPCP version 2.1

pentad product (section 2b). Because of their coarse

(pentad) time resolution, the GPCP data themselves can-

not be used to force the Catchment model. We therefore

use the GPCP estimates to construct a corrected version

of the MERRA precipitation. The approach used here is

similar in concept to that applied in the Global Soil

Wetness Project (Dirmeyer et al. 2006) and other global

land modeling studies (Berg et al. 2005; Guo et al. 2006;

Qian et al. 2006; Sheffield et al. 2006). Based on results

from these earlier studies, we recognize that corrections

to surface radiation and surface air temperature have

FIG. 3. (Gray lines) Downward shortwave radiation and (black

bars) precipitation from (top) MERRA for a grid cell near Gain-

esville, Florida (centered at 308N, 828W), and (bottom) in situ

observations taken at the US-SP3 FLUXNET site (29.758N,

82.168W) located within the grid cell.
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a much smaller effect than precipitation corrections.

Such additional forcing corrections could in any case lead

to inconsistencies across the forcing fields in cases where

the observational data may be contradictory. Conse-

quently, we restrict ourselves here to correcting the

precipitation forcing.

The corrected MERRA precipitation forcings were

obtained as follows. First, the hourly MERRA total pre-

cipitation was time averaged and regridded to the scale

of the correcting GPCP dataset (i.e., to pentad and 2.58

resolution). Next, for each pentad of each year and for each

2.58 grid cell, a scaling factor was computed by determining

the ratio of the GPCP estimate to the standard MERRA

data (i.e., on the grid and at the time scale of the correcting

observations). Finally, these scaling factors were regridded

back to the MERRA grid and applied to the MERRA

data—a scaling factor derived for a given grid cell and year/

pentad was applied to the MERRA precipitation rates

(large-scale precipitation, convective precipitation, and

snowfall separately) in each of the 120 hourly time steps

within that pentad. If for a given grid cell the aggregated

MERRA value was zero, the corresponding corrected

MERRA precipitation values were set to zero, even if the

correcting observations indicated nonzero precipitation

(rather than distributing the observed precipitation across

time steps in an ad hoc way) to maintain consistency across

the forcing variables (including surface radiation) to the

fullest extent possible. By construction, the corrected

MERRA precipitation is nearly identical to the GPCP es-

timates at the pentad and 2.58 resolution and is therefore

not shown.

Because the GPCP product is based on precipitation

observations from satellites and/or gauges well beyond

the data used in the MERRA atmospheric assimilation,

we expect that the GPCP-corrected MERRA precipita-

tion forcing is more accurate than the standard MERRA

precipitation product. Note again, however, that the

(hourly, 0.58) corrected precipitation dataset is a scaled

version of the MERRA precipitation forcing, rather than

the original (pentad, 2.58) GPCP dataset. The diurnal cy-

cle, the frequency and relative intensity of rainfall events

at the subpentad scale, and the sub-2.58 spatial variations

are entirely based on MERRA estimates. While Qian

et al. (2006) discuss the possibility of also adjusting the

diurnal cycle of the precipitation, we choose here to im-

pose the subpentad variations of the original MERRA

precipitation to maintain maximum consistency across

the forcing variables (including surface radiation). Finally,

note again that the precipitation corrections are con-

structed separately for each pentad of each year and thus

go beyond a climatological adjustment.

2) CATCHMENT MODEL PARAMETER REVISIONS

The Catchment model version and model parameters

used for MERRA-Land are identical to those used for

MERRA data production except for the changes to the

interception and snow parameters listed in Table 2. These

changes bring the Catchment model used for MERRA-

Land up to date with the forthcoming version used in the

GEOS-5 experimental NWP and seasonal forecasting

systems. Of particular relevance to the MERRA-Land

product are the changes made to the rainfall intercep-

tion parameters FWETL and FWETC, changes that mit-

igate the impact of the discrepancies outlined in Fig. 3.

These two parameters describe the fractional areas

over which large-scale and convective rainfall, respec-

tively, are applied to the canopy interception reservoir.

In MERRA, large-scale rainfall is applied uniformly to

the canopy (FWETL 5 1), whereas the intensity of con-

vective rainfall at a given time step is quintupled and

applied to 1/5th of the area of the canopy (FWETC 5 0.2)—

water is conserved, but the greater local depth allows it

(in principle) to overflow the interception reservoir and

drip down to the surface more easily. In MERRA-Land,

this effect is heightened considerably—the intensity of

either form of rainfall is multiplied by 50 and applied to
1/50 of the canopy area (FWETL 5 FWETC 5 0.02). We

emphasize that this change is not meant to represent

a realistic treatment of subgrid rainfall variability. It is

designed solely to circumvent known deficiencies in the

atmospheric model’s representation of the intensity and

diurnal cycle of rainfall and contemporaneous radiation

TABLE 2. Catchment land surface model parameter changes between MERRA and the revised Catchment model used in MERRA-Land.

SATCAP is computed as a fraction of leaf area index (LAI).

Parameter Description Units MERRA MERRA-Land

SATCAP Capacity of canopy interception reservoir kg m22 1.0LAI 0.2LAI

FWETL Areal fraction of canopy leaves onto which

large-scale precipitation falls

Dimensionless 1.0 0.02

FWETC Areal fraction of canopy leaves onto which

convective precipitation falls

Dimensionless 0.2 0.02

WEMIN Minimum SWE in snow-covered area fraction kg m22 13 26

DZ1MAX Maximum depth of uppermost snow layer m 0.05 0.08
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(Fig. 3). The smaller fractional area of rainfall, while not

realistic, does allow more of the rainfall to drain through

the canopy and reach the soil, leading to wetter soil and

much more sensible interception loss fractions (section

4a). It has no other impact on the simulation—in par-

ticular, the prescribed 1/50th of the canopy area does not

affect the partitioning of throughfall into runoff and in-

filtration at the soil surface. Note that in other offline

applications with the Catchment model, applications in-

volving atmospheric forcing without the noted problems,

we can safely revert to the MERRA values for the two

parameters.

Table 2 lists additional changes to the model param-

eters that bring the Catchment model up-to-date with the

forthcoming GEOS-5 version. The change in the capacity

of the interception reservoir (SATCAP) has an effect

similar to that of the changes to FWETL and FWETC

(albeit much smaller, given the nonlinear dynamics of

the interception model). Moreover, changes were made

to the minimum SWE in the snow-covered area fraction

(WEMIN) and the maximum depth of the uppermost

snow layer (DZ1MAX) to improve the modeled albedo

and the stability of the surface calculation when snow is

present (not shown here). Because in the offline replay

configuration of MERRA-Land the land fluxes do not

feed back on the atmosphere, the snow parameter changes

lead to only minor differences between MERRA-Land

and MERRA.

4. Results

In this section we evaluate land surface states and fluxes

from MERRA and MERRA-Land against a variety of

observations and independent model estimates. Our

evaluation includes interception loss fraction and latent

heat flux (section 4a), soil moisture (section 4b), runoff

(section 4c), and snow (section 4d). Where appropriate,

we also provide skill estimates for ERA-I (section 2b).

We refer the reader to Yi et al. (2011) for a discussion

of MERRA surface air temperature, vapor pressure

deficit, and incident solar radiation. Yi et al. (2011) also

provide additional analysis of MERRA surface soil

moisture. Moreover, Decker et al. (2011) evaluate

MERRA land surface forcings and fluxes against tower

observations.

a. Interception loss fraction and latent heat flux

As discussed in section 2, the character of MERRA

precipitation and radiation forcing is expected to have

a detrimental effect on land surface hydrology. Perhaps

the most striking effect is seen in the interception loss

fraction I, defined as the fraction of incoming rainfall

that is intercepted by the canopy and reevaporated back

to the atmosphere without ever infiltrating the soil or con-

tributing to surface runoff. MERRA’s long-term average

I values, shown in Fig. 4a, are greater than 0.24 almost

everywhere, even in nonforested areas (e.g., the U.S. Great

FIG. 4. 2003–07 average interception loss fraction (dimensionless) from (a) MERRA, (b) revised Catchment model

with MERRA forcing, (c) MERRA-Land, and (d) observation-based estimates from Miralles et al. (2010). Note the

different colorbar in (a).

6330 J O U R N A L O F C L I M A T E VOLUME 24



Plains) and occasionally in very sparsely vegetated areas

(e.g., the Sahara, and western and central Australia). In

tropical rain forests, I values can exceed 0.5. Globally

averaged, MERRA’s interception loss fraction is I 5

0.31. These fractions are far in excess of published esti-

mates, such as those of Miralles et al. (2010), shown in

Fig. 4d. The latter were derived by calibrating a global

model of interception dynamics to a large number of in

situ observations (see references in Miralles et al. 2010).

In their model, the largest I values, ranging from I 5 0.15

to I 5 0.24, are found in the boreal forests of North

America, Scandinavia, and Russia. Somewhat smaller

values of I 5 0.06 to I 5 0.15 are found in tropical rain

forests (including Indonesia and the Amazon and Congo

basins) and midlatitude forested regions (eastern United

States, parts of Europe). Globally averaged, Miralles

et al. (2010) estimate I 5 0.06. For comparison, Sakaguchi

and Zeng (2009) report I 5 0.12 for the Community Land

Model version 3.5.

Figure 4b shows the interception loss fractions for the

revised Catchment model (Table 2, section 4b) when

forced with MERRA surface meteorology. The revised

interception parameters lead to much more realistic

I values, with a global average of I 5 0.07. In the boreal

forest, the revised Catchment model now underestimates

the interception loss fraction (relative to the Miralles

et al. (2010) estimates), with values ranging between I 5

0.09 and I 5 0.21. In nonforested areas and deserts, the

interception loss fraction is now typically below I 5 0.09.

However, errors in the long-term climatology of MERRA

precipitation still lead to I values greater than I 5 0.21 in

the Amazon and Congo basins. When the revised Catch-

ment model is forced with the GPCP-corrected pre-

cipitation (i.e., MERRA-Land, shown in Fig. 4c) the

I values for these two basins are reduced and agree well

with the estimates from Miralles et al. (2010). Globally

averaged, the MERRA-Land interception loss fraction

is I 5 0.07. The largest remaining differences between

I values from MERRA-Land and Miralles et al. (2010)

are in the boreal forests, where MERRA-Land esti-

mates are lower.

The revised treatment of interception loss in MERRA-

Land, combined with the GPCP-based improvements in

precipitation forcing, has impacts on other hydrological

fields. Figure 5 shows an example as follows: MERRA

estimates of latent heat flux (LH) for August 1994 are

shown in Fig. 5a, and those for MERRA-Land are shown

in Fig. 5b. For reference, Fig. 5c shows an estimate based

on 12 different products using a variety of data sources

from remote sensing, flux tower measurements, and land

surface modeling (Jimenez et al. 2011). (MERRA is one

of the 12 estimates in the multiproduct average.) Overall,

the three estimates agree reasonably well, with global

average LH values for this month of 58.0 (MERRA),

55.4 (MERRA-Land), and 56.3 W m22 (multiproduct

average). The three estimates also agree in the broad

global pattern of LH, with high values in the eastern

United States, the tropical rain forests, and Southeast

Asia. Low values in the Southern Hemisphere are due to

winter conditions in August.

One important difference between MERRA and the

multiproduct average LH, however, appears in the Am-

azon basin. MERRA LH exhibits an extremely sharp

north–south gradient, with values quickly dropping from

around 140 W m22 north of 58S to less than 20 W m22

south of 88S. The corresponding gradient in the multi-

product average LH is much less steep, with values drop-

ping from 100 W m22 north of 78S to 60 W m22 south of

158S. Whereas MERRA could be considered an outlier

among the products evaluated by Jimenez et al. (2011),

MERRA-Land is not—its LH estimates lie within the

FIG. 5. Average latent heat flux (W m22) for August 1994 from

(a) MERRA, (b) MERRA-Land, and (c) the Jimenez et al. (2011)

multiproduct average.
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range of estimates contributing to the multiproduct av-

erage (not shown, see their Fig. 6). Note that MERRA

precipitation errors also exhibit a strong gradient along

58S (Fig. 2d). Additional analysis (not shown) indicates

that the GPCP-based precipitation corrections and the

interception parameter revisions contribute about equally

to the LH improvements in MERRA-Land.

b. Soil moisture

The interception model revisions by themselves have

important implications for soil moisture. Again, the revised

parameters were designed to let more of the incoming

rainfall reach the soil and thereby increase long-term soil

moisture levels. This can be seen in Fig. 6a, which shows

the difference between the 1981–2008 average root zone

soil moisture from MERRA and from the revised Catch-

ment model (when forced with MERRA surface mete-

orology). Differences in root zone soil moisture up to

20.05 m3 m23 occur in the boreal forests, the southeast-

ern United States, and the Amazon and Congo basins,

that is, in areas with generally moist climates and with the

largest changes in the interception loss fraction (Fig. 4).

As expected, soil moisture generated by the revised

Catchment model is always wetter than that of MERRA.

Figure 6b shows the combined impact of the GPCP-

based precipitation corrections and the Catchment model

parameter revisions on long-term root zone soil moisture in

MERRA-Land. Unsurprisingly, the overall global pattern

of the root zone soil moisture differences is dominated

by the differences in the precipitation forcing. Where

MERRA precipitation is biased dry against GPCP (Fig.

2c), such as in much of South America and central Africa,

MERRA-Land root zone soil moisture is consider-

ably higher because of the combined effect of higher

precipitation forcing and reduced interception (Fig. 6b).

Where MERRA precipitation is biased wet, the reduced

precipitation forcing in MERRA-Land counteracts the

reduced interception loss, typically resulting in some-

what drier or unchanged root zone soil moisture condi-

tions in MERRA-Land (for example in Southeast Asia,

in Indonesia, along the tropical South American and

African coasts, and in northern Australia).

To address the relative realism of the MERRA and

MERRA-Land soil moisture estimates, we now validate

them against in situ observations taken between 2002 and

2009 in the continental United States (Fig. 1, section 2b).

Our analysis focuses on skill in terms of the anomaly

time series correlation coefficient R (appendix). Figure 7

shows that for MERRA estimates, the average anomaly

skill at pentad time scales is R 5 0.49 for surface soil

moisture (across 98 sites) and R 5 0.47 for root zone

soil moisture (across 85 sites). For MERRA-Land, the

anomaly R values increase to R 5 0.56 for surface and

R 5 0.54 for root zone soil moisture, a net gain of DR ;

0.07 over the MERRA R values. Approximate 95% con-

fidence intervals, also shown in Fig. 7, are DR # 60.01

(appendix). The improvements in the MERRA-Land

estimates are therefore statistically significant.

For comparison, Fig. 7 also shows the skill of ERA-I

soil moisture estimates (section 2b). ERA-I skill is R 5

0.58 for surface and R 5 0.51 for root zone soil moisture.

Like MERRA-Land, ERA-I is significantly more skill-

ful than MERRA, but ERA-I does not perform quite as

FIG. 6. Annual average root zone soil moisture (m3 m23) dif-

ferences (1981–2008): (a) MERRA minus revised Catchment model

forced with MERRA surface meteorology, and (b) MERRA minus

MERRA-Land.

FIG. 7. Skill (pentad anomaly R; dimensionless) of MERRA,

MERRA-Land, and ERA-I estimates (2002–09) vs SCAN in situ

surface and root zone soil moisture measurements. Error bars in-

dicate approximate 95% confidence intervals.
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well as MERRA-Land for root zone soil moisture. The

ERA-I skill for surface soil moisture is higher than that

of MERRA-Land, presumably because the surface layer

depth (0–7 cm) of ERA-I better matches the in situ sensing

depth (5 cm); MERRA and MERRA-Land use a much

shallower (0–2 cm) surface layer. Additional analysis (not

shown) reveals that most of the improvements in soil

moisture skill from MERRA to MERRA-Land can be

attributed to the GPCP-based precipitation corrections.

The soil moisture skill (in terms of anomaly R) is only

weakly sensitive to the changes in the canopy interception

parameters of the land model.

c. Runoff

We used naturalized streamflow measurements taken

between 1989 and 2009 for 18 basins in the United States

(Table 1, section 2b) to evaluate runoff estimates. Figure 8

summarizes the skill (anomaly R) at seasonal time

scales (appendix) for the 9 larger basins and the (area-

weighted) average for the 9 smaller basins with areas

less than 40 000 km2 (Table 1). Skill values for MERRA

runoff in the larger basins range from R 5 0.48 for the

Arkansas-Red at Arthur City to R 5 0.83 for the Mis-

souri at Hermann. Because of the 3-month smoothing

used here (appendix) and because there are typically only

15 yr of overlap between the streamflow observations

and the reanalysis runoff estimates (Table 1), the 95%

confidence intervals for the R values are large (between

DR ; 60.1 and DR ; 60.2 for individual basins).

MERRA and MERRA-Land, in general, have compa-

rable skill, with three exceptions: MERRA-Land skill is

significantly higher than MERRA skill for the Ohio at

Metropolis, the Upper Mississippi at Grafton, and the

Arkansas-Red at Arthur City.

Figure 8 also shows that the skill values for ERA-I are

typically lower than those of MERRA and MERRA-

Land except for the Ohio at Metropolis, the Upper

Mississippi at Grafton, and the Arkansas-Red at Arthur

City where ERA-I skill is between that of MERRA and

MERRA-Land. ERA-I skill is significantly worse than

that of the other estimates for the Milk at Fort Peck Dam

and for the average over the 9 small basins. The lower

skill of ERA-I is most likely due to the coarser (;1.58)

horizontal resolution of the publicly available ERA-I

estimates.

The revisions to the Catchment model parameters have

a small but almost always positive impact. Table 1 shows

that in all basins except one small watershed (Yakima

near Parker) the R values for the revised Catchment model

forced with MERRA surface meteorological data are

larger than those of MERRA. While the improvements

are not statistically significant, the fact that they occur in so

many basins is suggestive of improved hydrological sim-

ulation resulting from the improved canopy throughfall

rates. However, the significant improvements in MERRA-

Land over MERRA noted above are dominated by

the positive impact of the GPCP-based precipitation

corrections.

d. Snow

We first evaluate the skill of MERRA and MERRA-

Land snow depth estimates against in situ measurements

taken between 2002 and 2009 at 583 WMO stations in the

Northern Hemisphere (section 2b). The station-average

skill (pentad anomaly R; see the appendix) of snow depth

estimates is R 5 0.56 for MERRA and R 5 0.59 for

MERRA-Land (Table 3). While modest, the skill in-

crease for MERRA-Land is nevertheless statistically

significant. An approximate 95% confidence interval for

the station-average R value is less than DR # 60.01 (see

appendix for details).

Errors in modeled snow depth estimates can be caused

by errors in the land surface forcing data and by errors in

the modeling of snow density. The snow depth bias error

is 21.0 cm for MERRA and 15.8 cm for MERRA-

Land when averaged over the WMO stations (Table 3).

Similarly, station-average snow depth RMSE is 20.1 cm

for MERRA and 24.3 cm for MERRA-Land (Table 3).

FIG. 8. Seasonal anomaly time series correlation coefficients (dimensionless) for runoff es-

timates from MERRA, MERRA-Land, and ERA-I for the basins and time periods listed in

Table 1.
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The changes in bias and RMSE (and anomaly R) be-

tween MERRA and MERRA-Land are primarily due

to the GPCP-based precipitation corrections and are not

related to the snow parameter changes (not shown). The

snow depth bias may be higher in MERRA-Land be-

cause the precipitation gauge undercatch may have been

overcorrected in the GPCP precipitation in northern high

latitudes (Swenson 2010). A potential bias in the WMO

snow depth observations, however, offers another ex-

planation. Most WMO snow depth observations are

collected in open areas (such as airports) that are subject

to wind-blown snow redistribution. Snow at WMO sta-

tions thus tends to be shallower and melt earlier than in

surrounding terrain (Brown et al. 2003), which would

imply a negative bias in the WMO measurements (rel-

ative to the larger-scale conditions).

Additional insights can be gained by comparing the

MERRA and MERRA-Land snow fields against the

CMC snow analysis (section 2b). The CMC product pro-

vides a spatially complete estimate of daily Northern

Hemisphere snow depths, conditioned on in situ mea-

surements and aviation reports. Figure 9a maps the skill

(pentad anomaly R) of MERRA-Land snow depth versus

the CMC product for the period from September 1998 to

September 2009. The highest skill values are generally

found in southern Siberia and across large portions of

Canada and the United States, whereas lower skills are

typically found in northern Siberia, the Tibetan Plateau,

the Canadian Arctic, and in portions of Alaska. For ref-

erence, Fig. 9c shows the spatial density of in situ snow

depth observations that contribute to the CMC snow

analysis, based on all stations that were used at least once

across the study period. Since only a fraction of these

stations are typically used in any given daily analysis, the

density map can be thought of as an upper limit.

A comparison of Figs. 9a and 9c shows that MERRA-

Land and CMC snow depth estimates tend to disagree

most when the CMC data are based on very few in situ

snow depth observations (e.g., the high northern latitudes

and the Tibetan Plateau). That is, the regions of low or

even negative correlation coincide with areas where actual

snow depths are largely unknown. Figure 9c also resembles

the density of precipitation gauges used for conditioning

the GPCP estimates and that of the radiosonde observa-

tions available for assimilation into MERRA (not shown).

This implies that MERRA-Land (and MERRA)

TABLE 3. Skill summary for snow estimates. Anomaly R values vs WMO measurements at 583 stations are provided with approximate

95% confidence intervals. Skill vs CMC is area-weighted average over Northern Hemisphere grid cells (Fig. 9a,b).

Metric Units Dataset

Snow depth SWE

vs WMO vs CMC vs CMC 1 Sturm et al. (2010)

Anomaly R Dimensionless MERRA 0.56 6 0.01 0.51 0.49

MERRA-Land 0.59 6 0.01 0.50 0.49

ERA-I 0.60 6 0.01 0.39 0.38

Bias cm MERRA 21.0 22.3 21.2

MERRA-Land 5.8 20.2 20.6

ERA-I 5.2 1.7 0.2

RMSE cm MERRA 20.1 9.5 3.7

MERRA-Land 24.3 12.0 4.4

ERA-I 25.7 15.0 5.5

FIG. 9. Skill (pentad anomaly R) of (a) MERRA-Land and (b) ERA-I snow depth vs CMC estimates (September 1998–September

2009). Here, R values that are not statistically different from zero at the 5% significance level are shown in gray. (c) Maximum density of in

situ snow depth measurements available for CMC snow analysis.
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estimates are based on fewer conventional observations

and are thus likely less accurate wherever CMC snow

depths are less accurate.

The geographic skill pattern for MERRA snow depths

(not shown) is similar to that of MERRA-Land estimates

(Fig. 9a). Similar geographic patterns are also evident in

the skill analysis against the WMO in situ snow depth

measurements (not shown), which is not surprising be-

cause the CMC product is conditioned on WMO snow

depth measurements when and where available. Area-

weighted pentad anomaly skill versus CMC snow depth

is R 5 0.51 for MERRA and R 5 0.50 for MERRA-

Land (Table 3). If the skill average is taken only over CMC

grid cells that contain the 583 WMO stations used above,

snow depth skill increases to R 5 0.60 for MERRA and

R 5 0.61 for MERRA-Land, which is consistent with

the skill values assessed directly against the WMO mea-

surements (Table 3).

The ERA-I snow depth analysis is largely based on the

same in situ snow depth observations used for condition-

ing the CMC product, although the analysis update is

different between the two products (section 2b). Given

that these in situ observations were not assimilated into

MERRA, it is no surprise that ERA-I anomaly snow

depth correlations versus CMC (Fig. 9b) are higher than

those of MERRA-Land (or MERRA) versus CMC in

eastern Europe, the western half of Russia, and the eastern

United States, that is, in regions with a dense network of

in situ snow depth stations (Fig. 9c). At the locations of the

583 WMO stations, the average skill (pentad anomaly R vs

CMC) of ERA-I snow depth is R 5 0.63, which is slightly

higher than MERRA-Land and significantly higher than

MERRA skill (see above). However, across the Northern

Hemisphere the average correlation of ERA-I snow depth

versus CMC is only R 5 0.39 (Table 3) and thus consid-

erably lower than that of MERRA-Land (or MERRA)

versus CMC. Lower correlations can be seen in eastern

Siberia, northern Canada, and Alaska (Fig. 9b). Because

there are few stations in these regions, it is not possible

to tell which of the products is closer to reality.

By combining CMC snow depths with state-of-the-art

snow density estimates (Sturm et al. 2010; section 2b) we

extended our evaluation to SWE, a quantity of more rel-

evance to hydrology. The area-weighted skill of SWE

pentad anomalies is R 5 0.49 for MERRA, R 5 0.49 for

MERRA-Land, and R 5 0.38 for ERA-I (Table 3), com-

parable to the anomaly R values for snow depth. The

spatial pattern of the SWE skills (not shown) is very similar

to that of snow depth skills (Figs. 9a,b). Table 3 also lists

the bias and RMSE values for MERRA, MERRA-Land,

and ERA-I snow depth and SWE versus CMC estimates.

By and large, these values are consistent with the snow

depth bias and RMSE values versus WMO.

5. Discussion and conclusions

Reanalysis estimates of surface meteorological forc-

ings and land surface fields such as snow and soil mois-

ture have proven useful for research into the global water

and energy cycles, seasonal climate forecasting, and hy-

drology. In this paper we assess the skill of soil moisture,

snow, and runoff estimates from MERRA against a va-

riety of in situ observations. We also introduce an im-

proved land surface dataset, MERRA-Land, motivated

by limitations in MERRA surface meteorological fields,

specifically errors in the long-term climatology, the di-

urnal cycle, and the intensity of precipitation (Figs. 2 and

3). Such deficiencies are indeed typical of global rean-

alyses and adversely affect the simulation of land surface

hydrology. MERRA-Land is a ‘‘replay’’ of the MERRA

system’s land surface component that benefits from cor-

rections to the precipitation forcing at the pentad scale

(using the GPCP v2.1 pentad product) and from revisions

to the Catchment model’s interception parameters de-

signed to counterbalance known precipitation deficiencies

at the subdiurnal scale. The MERRA-Land data prod-

ucts will be made available to the community.

We focus our skill analysis on time series correlation

coefficients (versus observations) of pentad average anom-

alies (soil moisture, snow) or 3-month average anomalies

(runoff). Note that because we examine anomalies here,

we avoid extracting ‘‘trivial’’ skill from the simulation of

the mean seasonal cycle. Generally, the skill of MERRA

and MERRA-Land estimates of soil moisture and run-

off is comparable to that of ERA-I estimates. Moreover,

snow depth and SWE compare well against in situ ob-

servations and the state-of-the-art CMC snow analysis.

Average (anomaly) skill levels for MERRA and MERRA-

Land surface hydrological variables generally range from

R ; 0.5 to R ; 0.9 (Figs. 7, 8, and 9). The skill of MERRA-

Land estimates is higher than that of MERRA estimates

by DR ; 0.07 for soil moisture (Fig. 7) and DR ; 0.03 for

snow depth (Table 3), differences that are statistically

significant at the 5% level. Moreover, MERRA-Land

runoff skill is significantly better than that of MERRA

for three of the nine large basins examined here (Table 1,

Fig. 8). The skill improvements for these variables are

typically derived from the GPCP-based precipitation cor-

rections; the revisions to the Catchment model parameters

contribute a smaller fraction to the overall improvement.

The revised interception model parameters, however,

considerably improve the average interception loss frac-

tion (Fig. 4) and contribute to more realistic latent heat

fluxes (Fig. 5) in MERRA-Land.

Future reanalysis efforts should include the assimila-

tion of land surface observations. For example, Liu et al.

(2011) find that the assimilation of surface soil moisture
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retrievals provides important information that is largely

independent of that provided by the precipitation ob-

servations. Soil moisture data assimilation has in fact

matured to the point where few technical obstacles remain

for a long-term soil moisture analysis, though we note that

X- or C-band passive or active microwave observations

are not available for the entire satellite era (1979–present).

The assimilation of screen-level air temperature and hu-

midity observations has been operational at a number

weather centers and is used in ERA-I (section 2b). For

the assimilation of satellite-based land surface tempera-

ture data, abundant observations are available through-

out the satellite era, though appropriate assimilation

approaches are considerably less mature (Reichle et al.

2010). The assimilation of snow cover fraction (Zaitchik

and Rodell 2009) shows promise, and while MERRA

does not contain a snow analysis, most weather centers

have been assimilating satellite snow cover observations

and in situ snow depth measurements for many years (e.g.,

Drusch et al. 2004). Even though current-generation sat-

ellite retrievals of SWE do not appear to be accurate

enough for use in land assimilation, emerging dynamic

retrieval approaches may provide useful information

(Tedesco et al. 2010), and progress has been made toward

a radiance-based SWE analysis (Durand and Margulis

2008). Total water storage information from the Gravity

Recovery and Climate Experiment (GRACE) has been

successfully assimilated into a land surface model (Zaitchik

et al. 2008). Advances in the utilization of all of these land

data sources are continually proceeding. It seems reason-

able to predict that next-generation estimates of global

land surface hydrological fields will indeed be based on

a comprehensive land surface analysis.
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APPENDIX

Skill Metric

Bias is a common problem when validating land model

estimates representing scales of ;10–50 km against point-

scale in situ measurements such as the soil moisture and

snow depth observations used here—see for instance

(Reichle et al. 2004). For soil moisture, the discrepancy

between the modeled layer depths and the depths at

which in situ sensors are installed can lead to additional

bias errors. Specifically, Catchment model surface soil

moisture covers the top 2 cm of the soil column while

the in situ surface soil moisture observations were taken

at 5-cm depth. Moreover, Catchment model root zone

soil moisture covers the top 1 m of the soil profile and is

validated with a depth-weighted average of the SCAN

sensors at 5, 10, and 20 cm because quality-controlled

SCAN data at 50 and 100 cm were too sparse and in-

termittent (Reichle et al. 2007; Liu et al. 2011).

Fortunately, temporal variations (in a percentile sense)

are typically more important for model-based applica-

tions (Entekhabi et al. 2010). We therefore first compute

the climatological seasonal cycle over the period of in-

terest (separately for each data product), obtain anom-

alies by subtracting this climatology from the time series,

and finally assess skill in terms of correlation coefficients

(R values). For soil moisture and snow depth we con-

structed pentad-average anomaly time series (because

GPCP precipitation estimates are pentad averages). For

runoff, we constructed smoothed anomalies by applying

a 3-month moving average to the anomalies (because

MERRA and ERA-I lack routing schemes). For the soil

moisture skill analysis we excluded from the computa-

tion of the R values the times and locations for which the

soil was frozen. Similarly, for the snow skill analysis we

excluded times and locations for which WMO (or CMC)

indicated snow-free conditions.

For the results presented here we first computed anom-

aly R values for each site (or grid cell) and then com-

puted the average skill by averaging the R values across all

sites. Common masks and minimum data requirements
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were applied to ensure consistent and sensible estimates

of the climatological seasonal cycle on which the anoma-

lies are based. For soil moisture and snow, we also re-

quired a minimum of 50 pentad-average anomalies across

the multiyear experiment period for computing the anom-

aly R value.

We also computed approximate 95% confidence in-

tervals for the R estimates at each site based on the Fisher

Z transform. These confidence intervals depend on the

estimated R value and on the number of degrees of free-

dom, which is approximated here by the number of pentad

averages that go into the R computation (for soil mois-

ture and snow). Because of the 3-month smoothing we

only assume 4 degrees of freedom per data year in the

runoff skill analysis. The approximate 95% confidence

intervals for the average skill estimates across all sites

were then computed by averaging the 95% confidence

intervals of the N contributing sites and subsequently

dividing by the square root of N. It is important to stress

that the 95% confidence intervals computed here are

only approximations and may underestimate the true

widths of the confidence intervals because temporal

error correlations may reduce the number of degrees of

freedom below the numbers assumed here.
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