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ABSTRACT

This paper describes a time-sensitive approach to climate change projections that was developed as part of New

York City’s climate change adaptation process and that has provided decision support to stakeholders from 40

agencies, regional planning associations, and private companies. The approach optimizes production of pro-

jections given constraints faced by decision makers as they incorporate climate change into long-term planning

and policy. New York City stakeholders, who are well versed in risk management, helped to preselect the climate

variables most likely to impact urban infrastructure and requested a projection range rather than a single ‘‘most

likely’’ outcome. The climate projections approach is transferable to other regions and is consistent with broader

efforts to provide climate services, including impact, vulnerability, and adaptation information. The approach

uses 16 GCMs and three emissions scenarios to calculate monthly change factors based on 30-yr average future

time slices relative to a 30-yr model baseline. Projecting these model mean changes onto observed station data

for New York City yields dramatic changes in the frequency of extreme events such as coastal flooding and

dangerous heat events. On the basis of these methods, the current 1-in-10-year coastal flood is projected to

occur more than once every 3 years by the end of the century and heat events are projected to approximately

triple in frequency. These frequency changes are of sufficient magnitude to merit consideration in long-term

adaptation planning, even though the precise changes in extreme-event frequency are highly uncertain.

1. Introduction

This paper describes a methodological approach to

stakeholder-driven climate hazard assessment developed

for the New York, New York, metropolitan region (Fig. 1).

The methods were developed in support of the New York

City Panel on Climate Change (NPCC; Rosenzweig and

Solecki 2010). The NPCC is an advisory body to New

York City’s Climate Change Adaptation Task Force

(CCATF), formed by Mayor Michael Bloomberg in 2008

and overseen by the Mayor’s Office of Long Term Plan-

ning and Sustainability. As described in Rosenzweig and

Solecki (2010), the CCATF is composed of stakeholders

from 40 city and state agencies, authorities, regional
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planning associations, and private companies, divided

into four infrastructure working groups (communication,

energy, transportation, and water and waste) and one

policy working group.

The CCATF effort was motivated by the fact that the

population and critical infrastructure of New York City

(NYC) are exposed to a range of climate hazards, with

coastal flooding associated with storms and sea level rise

the most obvious threat. Approximately 7% (11%) of the

NYC area is within 1 m (2 m) of sea level (Weiss et al.

2011). A recent study ranked NYC seventh globally

among port cities in exposed population and second

globally in assets exposed to storm-surge flooding and

high winds (Nicholls et al. 2008). Furthermore, because

NYC, like much of the United States (ASCE 2009), has

aging infrastructure, climate vulnerability may be en-

hanced. By showing leadership in the infrastructure ad-

aptation process, the NYC effort may be able to provide

lessons to other cities as they plan adaptation strategies.

Stakeholder input regarding climate information was

collected in several ways. Between September of 2008

and September of 2009, each CCATF sector working

group held monthly meetings in conjunction with the

Mayor’s Office of Long Term Planning and Sustain-

ability. During the initial meetings, representatives from

each sector identified key climate hazards; they also

interacted iteratively with the scientists, seeking clarifi-

cation and requesting additional information. They com-

mented on draft documents that describe the region’s

climate hazards, and climate seminars were held with in-

dividual agencies as requested. The climate hazard

assessment process was facilitated by prior collaborative

experience between the NPCC’s climate scientists and

stakeholders in earlier assessments, including the Metro

East Coast Study (Rosenzweig and Solecki 2001), as

well as work with the New York City Department of

Environmental Protection (NYCDEP; NYCDEP 2008;

Rosenzweig et al. 2007) and the Metropolitan Trans-

portation Authority (MTA; MTA 2007).

The climate hazard approach is tailored toward im-

pact assessment; it takes into consideration the resource

and time constraints faced by decision makers as they

incorporate climate change into their long-term plan-

ning. For example, the formal write-up of the climate

risk information was needed within less than 8 months of

the NPCC’s launch (National Research Council 2009);

given this time frame and the broad array of stake-

holders in the CCATF, a standardized set of climate

variables of broad interest was emphasized, with the un-

derstanding that future studies could provide climate in-

formation tailored to unique applications.1

Within this framework, the NPCC worked with stake-

holders to preselect for analysis those climate variables

and metrics that are most likely to impact existing

FIG. 1. Satellite map of the New York metropolitan region. Shown on the map are the Central

Park weather station (circle) and the Battery tide gauge (triangle). Source: Esri World Imagery.

1 For example, a tailored assessment of changes in snow depth

and timing of snowmelt in the Catskill Mountains approximately

100 mi (160 km) north of NYC (NYCDEP 2008) would be of

interest to managers of only a small but important subset of

infrastructure—reservoirs and water tunnels. Such a finescale

assessment would benefit from more complex downscaling ap-

proaches than those applied here.
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assets, planned investments, and operations (Horton

and Rosenzweig 2010). For example, the number of

days below freezing was identified as an important

metric for many sectors because of the impacts of

freeze–thaw cycles on critical infrastructure (this pro-

cess took place over 2008–09 at CCATF and working

group meetings of the Mayor’s Office of Long Term

Planning and Sustainability). Because of the diversity of

agencies, projections were requested for multiple time

periods spanning the entire twenty-first century.

Stakeholders also helped to determine the presenta-

tion of climate hazard information. Because NYC stake-

holders are used to making long-term decisions under

uncertainty associated with projections of future reve-

nues, expenditures, and population trends, for example,

they (CCATF) preferred projection ranges to a single

‘‘most likely’’ value.

Itemized risks associated with each climate variable

were ultimately mapped to specific adaptation strategies.

For example, more frequent and intense coastal flooding

due to higher mean sea level was linked to increased

seawater flow into New York City’s gravity-fed and low-

lying wastewater pollution control plants, resulting in

reduced ability to discharge treated effluent (Rosenzweig

and Solecki 2010; NYCDEP 2008). NYCDEP is reducing

the risk at the Far Rockaway Wastewater Treatment

Plant by raising pumps and electrical equipment to 14 ft

(4.3 m) above sea level on the basis of the projections

described here (New York City Office of the Mayor 2009).

Climate hazard assessment was only one component

of the NPCC’s impact and adaptation assessment. Vul-

nerability of infrastructure (and the populations that

rely on it) to climate impacts can be driven as much by its

state of repair (and how it is used) as by climate hazards

(National Research Council 2009). Climate adaptation

strategies should be based on many nonclimate-related

factors, such as cobenefits (e.g., some infrastructure in-

vestments that reduce climate risks will also yield more

efficient and resilient infrastructure in the face of non-

climate hazards; National Research Council 2010a) and

cocosts (e.g., adapting by using more air conditioning in-

creases greenhouse gas emissions). NPCC experts in

the risk management, insurance, and legal fields pro-

vided guidance on these broader issues of vulnerability

and adaptation, developing, for example, an eight-step

adaptation assessment process and templates for rank-

ing relative risk and prioritizing adaptation strategies

(Rosenzweig and Solecki 2010). This paper focuses on

the provision of stakeholder-relevant climate informa-

tion in support of the broader NPCC assessment.

Section 2 describes the method used for the NPCC’s

climate hazard assessment. Section 3 compares climate-

model hindcasts with observational results for the New

York metropolitan region. Hindcast results are a re-

curring stakeholder request, and they helped to inform

the global climate model (GCM)–based projection

methods. Section 4 documents the regional projections

in the context of stakeholder usability. Section 5 covers

conclusions and recommendations for future work.

2. Methods

a. Observations

Observed data are from two sources. Central Park

station data from the National Oceanic and Atmospheric

Administration National Climatic Data Center U.S. His-

torical Climatology Network, version 1, dataset (Karl et al.

1990; Easterling et al. 1999; Williams et al. 2005) formed

the basis of the historical analysis and projections of tem-

perature and precipitation. Gridded output corresponding

to NYC from the National Centers for Environmental

Prediction–U.S. Department of Energy (NCEP–DOE)

Reanalysis 2 dataset (Kanamitsu et al. 2002) is also used

for GCM temperature validation (section 3).

b. Climate projections: General approach

1) GLOBAL CLIMATE MODELS AND EMISSIONS

SCENARIOS

Climate projections are based on the coupled GCMs

used for the Intergovernmental Panel on Climate Change

Fourth Assessment Report (IPCC AR4; Solomon et al.

2007). The outputs are provided by the World Cli-

mate Research Programme (WCRP) Coupled Model

Intercomparison Project, phase 3, (CMIP3) multimodel

dataset (Meehl et al. 2007a). Of 23 available GCM con-

figurations from 16 centers, selected were the 16 GCMs

that had available output for all three emissions scenarios

(‘‘A2,’’ ‘‘A1B,’’ and ‘‘B1’’) from the IPCC Special Report

on Emissions Scenarios (SRES; Nakicenovic et al. 2000)

and that were archived by the WCRP (Table 1).

The 16 GCMs and three emissions scenarios com-

bine to produce 48 output sets. The 48 members yield a

model- and scenario-based distribution function that is

based on equal weighting of each GCM and emissions

scenario. The model-based results should not be mis-

taken for a statistical probability distribution (Brekke

et al. 2008) for reasons including the following: 1) no

probabilities are assigned by the IPCC to the emissions

scenarios2; 2) GCMs are not completely independent,

2 It has been argued that, because high growth rates of global

anthropogenic carbon dioxide emissions (3.4% yr21 between 2000

and 2008; Le Quere et al. 2009) led to 2008 estimated emissions

reaching the levels of the highest SRES scenario (‘‘A1FI’’), other

SRES scenarios may be unrealistically low.
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with many sharing portions of their code and a couple

differing principally in resolution only; and 3) the GCMs

and emissions scenarios do not sample all possible out-

comes, which include the possibility of large positive ice-

albedo and carbon-cycle feedbacks, in addition to uncertain

aerosol effects. Caveats notwithstanding, the model-based

approach has the advantage (relative to projections based

on single numbers) of providing stakeholders with a

range of possible outcomes associated with uncertainties

in future greenhouse gas concentrations, other radiatively

important agents, and climate sensitivity (National Re-

search Council 2010b).

Some authors (e.g., Smith et al. 2009; Tebaldi et al.

2005; Greene et al. 2006; Brekke et al. 2008; Giorgi and

Mearns 2002) have explored alternate approaches that

weight GCMs on the basis of criteria that include hind-

casts of regional climate or key physical processes. There

are several reasons why that more complex approach is

eschewed here in favor of equal GCM weighting. First,

because model ‘‘success’’ is often region specific and

variable specific and because stakeholders differ in their

climate variables and geographical ranges of interest,3

production of consistent scenarios that are based on model

weighting is a major research effort beyond the scope of

NYC’s initial assessment. Second, although long-term

research could be geared toward developing optimized

multivariate (and/or multiregion) weighting, research

suggests that compensating biases tend to yield compa-

rable model performance (Brekke et al. 2008). Third,

historical accuracy may have been achieved for the

‘‘wrong’’ reasons (Brekke et al. 2008) and GCM hind-

casts did not share identical forcing, especially with re-

spect to aerosols (Rind et al. 2009). Fourth, shifting

climate processes with climate change may favor dif-

ferent models in the future. Fifth, the elimination of

ensemble members reduces the representation of un-

certainty relating to climate sensitivity.

2) TIME SLICES

Because current-generation GCMs used for climate

change applications have freely evolving ocean and at-

mospheric states, they are most appropriate for detec-

tion of long-term climate and climate change signals. The

30-yr time slice applied here is a standard time scale

(World Meteorological Organization 1989) that repre-

sents a middle ground, allowing partial cancellation of

currently unpredictable interannual-to-interdecadal vari-

ability (achieved by including many years) while

maintaining relatively monotonic anthropogenically in-

duced forcing trends (achieved by including few years).

The ‘‘1980s’’ time slice represents baseline conditions

between 1970 and 1999; future time slices for the 2020s,

2050s, and 2080s are similarly defined.

3) CLIMATE CHANGE FACTORS AND THE DELTA

METHOD

Mean temperature change projections are expressed

as differences between each model’s future time-slice

simulation and its baseline simulation; mean precipi-

tation is based on the ratio of a given model’s future to

its baseline values. This approach offsets a large source

of model bias: poor GCM simulation of local baseline

TABLE 1. Acronym, host center, atmosphere and ocean gridbox resolution, and reference for the 16 GCMs used in the analysis.

Model acronym Institution

Atmospheric

resolution

(lat 3 lon)

Oceanic

resolution

(lat 3 lon) References

BCCR-BCM Bjerknes Center for Climate Research (Norway) 1.9 3 1.9 0.5–1.5 3 1.5 Furevik et al. (2003)

CCSM National Center for Atmospheric Research 1.4 3 1.4 0.3–1.0 3 1.0 Collins et al. (2006)

CCCMA-CGCM Canadian Centre for Climate Modeling and Analysis 2.8 3 2.8 1.9 3 1.9 Flato (2010)

CNRM National Weather Research Center, Météo-France 2.8 3 2.8 0.5–2.0 3 2.0 Terray et al. (1998)

CSIRO_Mk3 CSIRO Atmospheric Research (Australia) 1.9 3 1.9 0.8 3 1.9 Gordon et al. (2002)

MPI-ECHAM5 Max Planck Institute for Meteorology 1.9 3 1.9 1.5 3 1.5 Jungclaus et al. (2006)

MIUB-ECHO-G Meteorological Institute of the University of Bonn 3.75 3 3.75 0.5–2.8 3 2.8 Min et al. (2005)

GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory 2.0 3 2.5 0.3–1.0 3 1.0 Delworth et al. (2006)

GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory 2.0 3 2.5 0.3–1.0 3 1.0 Delworth et al. (2006)

GISS NASA Goddard Institute for Space Studies 4.0 3 5.0 4.0 3 5.0 Schmidt et al. (2006)

INMCM Institute for Numerical Mathematics (Russia) 4.0 3 5.0 2.0 3 2.5 Volodin and Diansky (2004)

IPSL Pierre Simon Laplace Institute (France) 2.5 3 3.75 2.0 3 2.0 Marti et al. (2005)

MIROC Frontier Research Center for Global Change (Japan) 2.8 3 2.8 0.5–1.4 3 1.4 K-1 Model Developers (2004)

MRI-CGCM Meteorological Research Institute (Japan) 2.8 3 2.8 0.5–2.0 3 2.5 Yukimoto and Noda (2003)

PCM National Center for Atmospheric Research 2.8 3 2.8 0.5–0.7 3 1.1 Washington et al. (2000)

UKMO-HadCM3 Hadley Center for Climate Prediction, Met Office 2.5 3 3.75 1.25 3 1.25 Johns et al. (2006)

3 NYC’s task force included corporations with national and

international operations.
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conditions (section 3b) arising from a range of factors,

including the large difference in spatial resolution be-

tween GCM grid boxes and station data.

Because monthly averages from GCMs are generally

more reliable than daily output (Grotch and MacCracken

1991), monthly mean GCM changes were projected onto

observed 1971–2000 daily Central Park data for the cal-

culation of extreme events.4 This simple and low-cost

downscaling approach is known as the delta method

(Gleick 1986; Arnell 1996; Wilby et al. 2004). Like more

complex statistical downscaling techniques (e.g., Wigley

et al. 1990), the delta method is based on stationarity

(e.g., Wilby et al. 1998, 2002; Wood et al. 2004) and

largely excludes the possibility of large variance changes

through time, although for the northeastern United States

such changes are uncertain.5

More complex statistical approaches, such as those that

empirically link large-scale predictors from a GCM to

local predictands (e.g., Bardossy and Plate 1992) may

yield more nuanced downscaled projections than does

the delta method. These projections are not necessarily

more realistic, however. Historical relationships between

large-scale predictors and more impacts-relevant local

predictands may not be valid in a changing climate (Wilby

et al. 2004). GCM development and evaluation have also

historically been more focused on seasonal and annual

climatological distributions than on the daily and inter-

annual distributions that drive analog approaches. Table 2

provides a set of stakeholder questions to inform the

choice of downscaling technique—a topic that is dis-

cussed further in section 5.

4) SPATIAL EXTENT

The projections are for the land-based GCM grid box

covering NYC. As shown in Fig. 2, the 30-yr averaged

mean climate changes are largely invariant at subregional

scales; the single gridbox approach produces results that

are nearly identical to those of the more complex meth-

ods that require extraction of data from multiple grid

boxes and weighted spatial interpolation. As shown in

section 4d, for the metrics evaluated in this study, the

GCM gridbox results also produce results that are com-

parable to those of finer-resolution statistically and dy-

namically downscaled products. Because baseline climate

(as opposed to projected climate change) does differ

dramatically over small spatial scales (because of factors

such as elevation and surface characteristics), and be-

cause these finescale spatial variations by definition can-

not be captured by coarse-resolution GCMs, GCM changes

are trained onto observed Central Park data using the

procedures described in section 2b(3).

5) NUMBER OF SIMULATIONS

For 13 of the 16 GCMs’ climate of the twentieth

century and future A1B experiments, and for the cli-

mates of 7 of the 16 B1 and A2 future experiments,

multiple simulations driven by different initial condi-

tions were available. Analysis of hindcasts and pro-

jections (Table 3) from the available National Center for

Atmospheric Research (NCAR) Community Climate

System Model (CCSM) coupled GCM simulations6 re-

vealed only minor variations in 30-yr averages, sug-

gesting that one simulation per model is sufficient. Using

an ensemble for each GCM that is based on all of the

available simulations with that GCM is an alternative

approach; the effort and data storage needs may not be

justified, however, given the similarity of the ensemble

and individual simulation results shown in Table 3. Fur-

thermore, ensemble averaging unrealistically shrinks the

temporal standard deviation.7

c. Climate projections: Sea level rise

To address large uncertainties associated with future

melting of ice sheets, two projection methods for sea level

rise were developed. These methods are referred to as the

IPCC-based and rapid ice melt scenarios, respectively.

1) IPCC AR4-BASED APPROACH

The IPCC AR4 approach (Meehl et al. 2007b) was

regionalized for NYC, utilizing four factors that con-

tribute to sea level rise: global thermal expansion, local

water surface elevation, local land uplift/subsidence, and

global meltwater.8 Thermal expansion and local water

surface elevation terms are derived from the GCMs

(outputs were provided through the courtesy of WCRP

and Dr. J. Gregory 2007, personal communication).

Local land subsidence is derived from Peltier (2001) and

Peltier’s ‘‘ICE-5G,’’ version 1.2, ice model (from 2007)

(obtained online at http://www.pol.ac.uk/psmsl/peltier/

index.html). The meltwater term was calculated using

4 For coastal flooding and drought, the twentieth century was

used as a baseline because of high interannual/multidecadal vari-

ability and policy relevance of 1-in-100-yr events.
5 An exception may be short-term precipitation variance, which

is expected to increase regionally with the more intense pre-

cipitation events associated with a moister atmosphere (e.g., Emori

and Brown 2005; Cubasch et al. 2001; Meehl et al. 2005).

6 This GCM was selected because it provided the most twentieth-

and twenty-first-century simulations.
7 This is a general criticism; for the particular case in which the

delta method is used (as here), shrinking of the temporal standard

deviation has no bearing on the results.
8 Only seven GCMs provided outputs for projections of sea level

rise; see Horton and Rosenzweig (2010) for additional information.
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TABLE 2. Checklist of questions to inform selection of climate hazard assessment and projection methods.

Question Possible implication for choice of method, plus NYC context

1) Are high-quality historical data available

for a long time period?

When few high-quality historical climate data are available, options for

projections are extremely limited. Records of at least several decades

are needed to sample the range of natural variability. As regional

climate models (RCM) continue to improve, use of raw outputs from

RCMs may increasingly be used in such regions, since bias correction

and statistical approaches are not feasible without historical climate

data. This was not an issue in data-rich NYC.

2) Are projections needed for the entire

twenty-first century?

If yes, this may preclude RCMs because of computational expense. This

was an important consideration for NYC, since some sectors such as

telecommunications were focused on the 2020s time slice while others

such as Port Authority of New York and New Jersey manage

infrastructure that is expected to last until 2100.

3) Are multiple emissions scenarios needed—for

example, to emphasize how mitigation can

complement adaptation?

If yes, RCMs may not be the best approach, since computational expense

generally precludes the use of more than one or two scenarios. This

was an important consideration in NYC, since the adaptation effort

was part of a broader sustainability effort (‘‘PlaNYC’’) that embraced

greenhouse gas mitigation.

4) Are a large group of GCMs and initializations

required, so as to sample a broad range of global

climate sensitivities and estimates of within-GCM

variability, respectively?

If yes, RCMs may not be the best approach, since computational expense

generally precludes the use of more than a few GCMs or GCM

initializations per RCM. NYC stakeholders expressed interest in the

full range of GCM sensitivities.

5) What climate variables are needed, and are they

available at the necessary spatial and temporal

resolutions within public climate-model archives?

In NYC, relatively few variables were needed and subdaily information

was not required. Additional variable needs at subdaily resolution

might argue for the use of RCM archives such as NARCCAP as

they continue to be populated, instead of archives such as the first

generation of bias-corrected and spatially disaggregated data (BCSD)

(monthly temperature and precipitation only). Although use of public

climate-model archives minimizes cost and time, even archived outputs

generally require at least some bias and/or scale correction and

postprocessing for stakeholder applicability.

6) What level of resources are available, and in what

time frame is the information needed?

Region- and question-specific tailored downscaling efforts, as opposed

to use of archived downscaled products, may not be possible when

resources and time are limited. NYC had substantial resources

available, but the short time frame (;8 months) precluded developing

new tailored downscaling.

7) Are projections needed for a single in-depth sectoral

application and variable in one municipality, or does

a large multisectoral and panregional group of

stakeholders need a coordinated set of scenarios

covering a series of standard variables?

In tailored statistical downscaling the method is optimized to the

particular location and/or variable. When many variables and a larger

region are included, no single optimization method will generally be

best for all variables and locations, potentially leading to inconsistencies

in either methods or projections across variables and locations. In NYC,

the initial emphasis was on generating a common denominator of

consistent scenarios based on consistent methods (the delta method)

to facilitate coordination across 40 stakeholder entities.

8) Are high-frequency climate inputs that are

continuous in time and space required, such

as for input into an impacts model (e.g., a

hydrological model to assess turbidity)?

If an impacts model is to be run with climate outputs, the range of

climate and impact results (rather than just the ‘‘delta’’ mean) will

likely be of interest, which may argue for a downscaling technique

that allows variance to change, such as BCSD. Statistical

downscaling techniques that include weather generators [such as the

Statistical Downscaling Model (SDSM)] may be desirable to create a

long record at the needed resolution that includes a range of extreme

outcomes for planning purposes. The larger the continuous geographic

domain (e.g., a large watershed) is, the greater is the need for caution

regarding weather-generator treatment of spatiotemporal correlation.

Although impacts modeling was not the initial thrust of the NYC

CCATF effort, climate scenarios for impact modeling are being

developed for specific sectors (e.g., NYCDEP 2008).

9) Is the region’s climate characterized by large spatial

heterogeneity?

If not, applying the delta method to a single GCM grid box may be

justifiable for many applications, as it was in NYC.

10) Are modes of variability important and predictable? If not, the use of 30-yr time slices (and the delta method) that emphasize

the signal of greenhouse gases and other radiatively important

agents should be emphasized, as was done for NYC.
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mass-balance temperature-sensitivity coefficients for

the different ice masses on the basis of observed his-

toric relationships among global mean surface air tem-

perature, ice mass, and rates of sea level rise (Meehl

et al. 2007b).9 Regionalization of projections of sea

level rise, on the basis of the four components described

above, has been used in other studies (e.g., Mote et al.

2008).

2) RAPID ICE MELT SCENARIO

Because of large uncertainties in dynamical ice sheet

melting (Hansen et al. 2007; Horton et al. 2008) and

recent observations that ice sheet melting has acceler-

ated within this past decade (e.g., Chen et al. 2009), an

alternative sea level rise scenario was developed. This

upper-bound scenario of sea level rise allowing for rapid

ice melt was developed on the basis of paleo–sea level

analogs, in particular the ;10 000–12 000-yr period of

rapid sea level rise following the end of the last ice age

(Peltier and Fairbanks 2006; Fairbanks 1989). Although

the analog approach has limitations (most notably, the

continental ice supply is much smaller today; Rohling

et al. 2008), past rapid rise is described below because it

may help to inform discussions of upper bounds of fu-

ture sea level rise.

Average sea level rise during this more-than-10 000-yr

period after the last ice age was 9.9–11.9 cm (10 yr)21,

although this rise was punctuated by several shorter epi-

sodes of more rapid sea level rise. In the rapid ice melt

scenario, glaciers and ice sheets are assumed to melt

at that average rate. The meltwater term is applied as

a second-order polynomial, with the average present-

day ice melt rate of 1.1 cm (10 yr)21 for 2000–04 used

as a base. This represents the sum of observed moun-

tain-glacier (Bindoff et al. 2007) and ice-sheet melt

(Shepherd and Wingham 2007) during this period. The

rapid ice melt scenario replaces the IPCC meltwater

term with the modified meltwater term; the other three

sea level terms remain unchanged. This approach does

not consider how rapid ice melt might indirectly in-

fluence sea level in the New York region through future

second-order effects, including gravitational, glacial iso-

static adjustment, and rotational terms (e.g., Mitrovica

et al. 2001, 2009).

d. Climate projections: Extreme events

On the basis of stakeholder feedback, quantitative and

qualitative projections were made using the extreme-

events definitions that stakeholders currently use. For

example, temperature extremes were defined on the

basis of specific thresholds, such as 908F (;328C), that

the NYC Department of Buildings uses to define cooling

requirements, whereas coastal flooding was defined by

frequency of occurrence (Solecki et al. 2010).

1) QUANTITATIVE PROJECTIONS: COASTAL

FLOOD EXAMPLE

The coastal flooding projections are based on changes

in mean sea level, not storms. Projected changes in mean

sea level (using the IPCC AR4-based approach) were

superimposed onto historical data. For coastal flooding,

critical thresholds for decision making are the 1-in-10-yr

FIG. 2. (a) Temperature change (8C) and (b) precipitation change (%) for the 2080s time slice relative to the 1970–99

model baseline, A1B emissions scenario, and 16-GCM ensemble mean.

9 Corrections were not made to account for reductions in glacier

area over time.
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and 1-in-100-yr flood events (Solecki et al. 2010). The

latter metric is a determinant of construction and envi-

ronmental permitting, as well as flood insurance eligi-

bility (Sussman and Major 2010).

The 1-in-10-yr event was defined by using historical

hourly tide data from the Battery tide gauge in lower

Manhattan [http://tidesandcurrents.noaa.gov; for more

information, see Horton and Rosenzweig (2010)]. The

1-in-100-yr flood was analyzed using flood-return-period

curves that are based on data provided by the U.S. Army

Corps of Engineers for the Metro East Coast Regional

Assessment [see Gornitz (2001) for details].

Because interannual variability is particularly large

for rare events such as the 1-in-10-yr flood, a base period

of more than the standard 30 years was used. Similarly,

because each year between 1962 and 1965 was drier in

Central Park than the driest year between 1971 and

2000, the entire twentieth-century precipitation record

was used for the drought analysis. More-rigorous solu-

tions for the rarest events await better predictions of

interannual-to-multidecadal variability, better under-

standing of the relationship between variability at those

time scales and extreme events (e.g., Namias 1966;

Bradbury et al. 2002), and the growing event pool of

realizations with time.

2) QUALITATIVE EXTREME-EVENT PROJECTIONS

The question arose of how best to meet stakeholder

needs when scientific understanding, data availability, and

model output are incomplete; quantitative projections are

unavailable for some of the important climate hazards

consistently identified by infrastructure stakeholders and/

or are characterized by such large uncertainties as to

render quantitative projections inadvisable. Examples

in the NYC region include ice storms, snowfall, lightning,

intense subdaily precipitation events, tropical storms, and

northeasters. For these events, qualitative information

was provided, describing only the most likely direction

of change and an associated likelihood using the IPCC

Working Group I likelihood categories (Solomon et al.

2007).10 Sources of uncertainty and key historical events

were also described to provide stakeholders with con-

text and the opportunity to assess sectorwide impacts of

historical extremes.

3. GCM hindcasts and observations

The results of the GCM hindcasts and observational

analysis described in this section informed the devel-

opment of the projection methods described in section 2.

Stakeholders commonly request hindcasts and historical

analysis (e.g., NYCDEP 2008) because they provide trans-

parency to decision makers who may be new to using GCM

projections as a planning tool.

a. Temperature and precipitation trends

As shown in Table 4, both the observed and modeled

twentieth-century warming trends at the annual and

seasonal scale are generally significant at the 99% level.

Although GCM twentieth-century trends are generally

approximately 50% smaller than the observed trends,

it has been estimated that approximately one-third of

NYC’s twentieth-century warming trend may be due to

urban heat island effects (Gaffin et al. 2008) that are

external to GCMs. Over the 1970–99 period of stronger

greenhouse gas forcing, the observed annual trend was

0.218C (10 yr)21 and the ensemble trend was 0.188C

(10 yr)21.

TABLE 3. NCAR CCSM mean climatological values of available simulations and CCSM ensemble for the grid box covering NYC for the

1970–99 hindcast and for the A1B 2080s (2070–99 average) relative to the same-simulation 1970–99 hindcast.

1970–99 mean

temperature (8C)

1970–99 mean

precipitation (cm)

2080s A1B temperature

change (8C)

2080s A1B precipitation

change (%)

CCSM run1 9.38 98.03 3.44 2.81

CCSM run 2 9.27 91.88 3.32 10.15

CCSM run 3 9.67 92.08 3.03 12.44

CCSM run 5 9.42 94.87 3.24 9.75

CCSM run 6 9.64 95.22 2.75 9.56

CCSM run 7 9.64 91.30 2.96 12.03

CCSM run 9 9.68 94.69 3.01 10.36

CCSM ensemble 9.53 94.10 3.11 9.52

10 Given the large impact of these extreme events on in-

frastructure, stakeholders requested information about likelihood

for comparative purposes (e.g., ‘‘Which is more likely to increase in

frequency: Northeasters specifically or intense precipitation events

generally?’’). Assignment of likelihood to generalized categories

for qualitative extremes (on the basis of published literature and

expert judgment, including peer review) was possible because

predictions are general (e.g., direction of change), as opposed to

the quantitative model-based projections.
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Modeled seasonal warming trends in the past three

decades and both annual and seasonal precipitation

trends over the entire century for NYC generally de-

viate strongly from observations, consistent with prior

results for the Northeast (e.g., Hayhoe et al. 2007). Ob-

served and modeled trends in temperature and pre-

cipitation at a particular location are highly dependent

on internal variability and therefore are highly sensitive

to the selection of years. For example, the 1970–99 ob-

served Central Park annual precipitation trend of 21.77 cm

(10 yr)21 shifts to 0.56 cm (10 yr)21 when the analysis is

extended through 2007. This is especially true for the

damaging extreme events11 (Christensen et al. 2007) that

are often of particular interest to infrastructure managers.

In coupled GCM experiments with a freely evolving

climate system, anomalies associated with climate vari-

ability generally will not coincide with observations, lead-

ing to departures between observed and modeled trends

(Randall et al. 2007).

For stakeholders trained in analyzing recent local

observations, it is challenging but important to empha-

size that 1) trends at continental and centennial time scales

are often most appropriate for identifying the greenhouse

gas signal and GCM performance, since (unpredictable)

interannual-to-interdecadal variability is lower at those

scales (Hegerl et al. 2007), and 2) during the twenty-first

century, higher greenhouse gas concentrations are ex-

pected to increase the role of the climate change signal,

relative to climate variability.

b. Temperature and precipitation
climatological values

Comparison of station data with a GCM grid box is

hindered by the spatial-scale discrepancy; NYC’s low

elevation, urban heat island (see, e.g., Rosenzweig et al.

2006), and land–sea contrasts are not captured by GCMs.

As shown in Fig. 3a, the observed average annual tem-

perature over the 1970–99 period for New York City

exceeds the GCM ensemble value by 2.68C and is higher

than those of all but 2 of the 16 GCMs. When the GCMs

are contrasted with the spatially comparable NCEP–

DOE reanalysis grid box, the annual mean temperature

bias is reduced to 1.18C. The departure of the Central

Park station data from the GCM ensemble is largest in

July and is smallest in January, indicating that the an-

nual temperature cycle at this location is damped in the

GCMs (Fig. 3b).

Although Fig. 3c reveals that the GCM ensemble of

average annual precipitation from 1970 to 1999 is 8%

below observations for Central Park, the ensemble av-

erage lies well within the range of precipitation for NYC

as a whole; GCM precipitation exceeds the LaGuardia

Airport station by 9%. Most of the GCMs are able to

capture the relatively even distribution of monthly pre-

cipitation throughout the year (Fig. 3d).

The above analysis reveals that mean climatological

departures from observations over the hindcast period

are large enough to necessitate bias correction, such as

the delta method as part of the GCM projection approach,

rather than direct use of model output.

c. Temperature and precipitation variance

1) INTERANNUAL

Of the 16 GCMs, 11 overestimate the 1970–99 in-

terannual standard deviation of temperature relative to

the station data and 10 overestimate it relative to the

TABLE 4. Annual and seasonal temperature [8C (10 yr)21] and

precipitation [cm (10 yr)21] trends for the twentieth century and

1970–99. Shown are observed Central Park station data, the 16

GCM ensemble, and four points on the GCM distribution (lowest,

17th percentile, 83rd percentile, and highest). Only 15 GCMs were

available for the twentieth-century hindcast.

Min 17% 83% Max Ensemble Obs

Twentieth-century temperature

Annual 20.03 0.02 0.12 0.17 0.07* 0.15*

DJF 20.04 0.02 0.16 0.19 0.08* 0.20*

MAM 20.05 20.02 0.12 0.25 0.06* 0.18*

JJA 20.02 0.03 0.11 0.15 0.07* 0.12*

SON 0.00 0.03 0.15 0.18 0.09* 0.08

1970–99 temperature

Annual 20.11 0.10 0.28 0.39 0.18* 0.21

DJF 20.47 20.05 0.35 0.51 0.11 0.76

MAM 20.36 20.15 0.41 0.74 0.14 0.10

JJA 20.01 0.13 0.29 0.44 0.20* 0.05

SON 20.06 0.13 0.50 0.70 0.29* 20.03

Twentieth-century precipitation

Annual 21.22 20.22 0.66 0.76 0.16 1.60

DJF 20.23 20.18 0.27 0.78 0.05 0.27

MAM 20.27 20.13 0.28 0.39 0.10 0.90

JJA 20.69 20.39 0.22 0.35 20.07 20.09

SON 20.25 20.08 0.32 0.46 0.10 0.61

1970–99 precipitation

Annual 23.52 0.02 2.05 5.73 0.87 21.77

DJF 23.21 20.19 1.48 2.94 0.48 20.48

MAM 22.33 21.37 1.05 1.98 20.08 1.55

JJA 22.08 21.33 1.19 1.75 20.03 21.51

SON 21.72 20.55 1.89 2.93 0.48 21.72

* Trend is significant at the 99% level.

11 Among twentieth-century Central Park trends in observed

extremes, only trends in cold extremes have been robust. For the

number of days per year with minimum temperatures below freez-

ing, both the 100-yr trend of 22 days (10 yr)21 and the 30-yr trend of

25.2 days (10 yr)21 are significant at the 99% level. GCM hindcasts

of extreme events were not conducted because of the small signal-

to-noise ratio.
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NCEP–DOE reanalysis. The similarities among GCMs,

reanalysis, and station data suggest that spatial-scale

discontinuities may not have a large impact on inter-

annual temperature variance. All 16 GCMs under-

estimate interannual precipitation variability relative

to Central Park observations, and 14 of the 16 GCMs

underestimate variance relative to two other stations

analyzed (Port Jervis and Bridgehampton). The large

difference between the GCMs and station data suggests

that spatial-scale discontinuities, likely associated with

features like convective rainfall that cannot be resolved

by GCMs, may be partially responsible for the relatively

low modeled interannual precipitation variance. Observed

interannual temperature variance is greatest in winter—a

pattern not captured by 7 of the 16 GCMs.

2) HIGH FREQUENCY

The daily distribution of observed Central Park tem-

perature (Figs. 4a–c) and precipitation (Fig. 5) was

compared with single gridbox output from 3 of the 16

GCMs used in the larger analysis. The three models were

part of a subset with daily output stored in the WCRP/

CMIP3 repository and were selected because (of the

subset) they featured the highest resolution [coupled

‘‘ECHAM5’’–Max Planck Institute for Meteorology Ocean

Model (referred to here as MPI; Jungclaus et al. 2006)

FIG. 3. (a) Mean annual temperature for the NYC region (8C), 1970–99, in each of the 16 GCMs, GCM ensemble, Central Park station

data, and reanalysis (see section 2 for more information). Also shown as hash marks is the interannual standard deviation about the mean

for each of the 19 products. (b) Monthly mean temperature for the NYC region (8C), 1970–99. The two observed products, the GCM

ensemble average, and four points in the GCM distribution (lowest, 17th percentile, 83rd percentile, and highest) are shown. (c) Mean

annual precipitation for the NYC region (cm), 1970–99, in each of the 16 GCMs, GCM ensemble, and Central Park observations. Also

shown as hash marks is the interannual standard deviation about the mean for each of the 18 products. (d) Monthly mean precipitation for

the NYC region (cm), 1970–99. Central Park observations, the GCM ensemble average, and four points in the GCM distribution (lowest,

17th percentile, 83rd percentile, and highest) are shown.
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and Commonwealth Scientific and Industrial Research

Organisation, mark 3.0, model (CSIRO Mk3.0) (re-

ferred to here as CSIRO; Gordon et al. 2002), both at

1.888 latitude 3 1.888 longitude] and lowest resolution

[National Aeronautics and Space Administration (NASA)

Goddard Institute for Space Studies Model E-R (GISS-

ER) (referred to here as GISS; Schmidt et al. 2006), at

48 latitude 3 58 longitude]. Analysis was conducted on

summer [June–August (JJA)] daily maximum tempera-

ture and winter [December–February (DJF)] daily mini-

mum temperature.

Summer maximum temperature distribution for the

region in all three GCMs is narrower than that in the

observations, and the warm tail is more poorly simulated

than is the cold tail. During winter, CSIRO and MPI

underestimate variance relative to the station data while

the GISS GCM has excessive variance.

Figure 5 shows the number of days with precipitation

exceeding 10 mm, which is a level of rainfall that can

trigger combined sewer overflow events at vulnerable

sites in NYC (PlaNYC 2008). Relative to Central Park

data, all three GCMs underestimate the frequency of

daily precipitation above 50 mm—a level of precipita-

tion that can lead to widespread flooding and drainage

problems, including in subways (MTA 2007).

Given that precipitation in GCMs of this class and

spatial resolution is highly parameterized to the gridbox

spatial scale and seasonal/decadal climate time scales,

departures of the distribution from observed daily sta-

tion data can be expected. The low model variance at

daily time scales for temperature and precipitation, and

at interannual time scales for precipitation, reinforces

the need for statistical downscaling approaches such as

FIG. 4. Daily distribution (number of days per year) of (a) all-

year mean, (b) summer (JJA) maximum, and (c) winter (DJF)

minimum temperature anomalies (8C) during 1980–99 for Central

Park observations (solid line) and three GCMs (CSIRO, GISS, and

MPI).

FIG. 5. Daily distribution (number of days per year) of precipi-

tation (mm) during 1980–99 for Central Park observations (solid

line) and three GCMs (CSIRO, GISS, and MPI). The first bin,

containing less than 10 mm, is not shown.
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the delta method that apply monthly mean model changes

to observed high-frequency data.

d. Sea level rise

Sea level was also hindcast for the twentieth century,

based on a 1990–99 projection relative to the 1900–04

base period.12 The ensemble average hindcast is a rise of

18 cm, whereas the observed increase at the Battery is

25 cm. The 5-yr average local elevation term in the

models meanders through time, frequently with an am-

plitude of 2–3 cm, with a maximum range over the cen-

tury of approximately 7 cm, suggesting that decadal

variability (primarily in the local elevation term) and

spatial resolution may explain the discrepancy between

models and observations.

4. Future projections

a. Mean temperature and precipitation

1) ANNUAL

Table 5 shows the projected changes in temperature

and precipitation for the 30-yr periods centered around

the 2020s, 2050s, and 2080s relative to the baseline pe-

riod. The values shown are the central range (middle

67%) of the projected model-based changes.

Figure 6 expands upon the information presented in

Table 5 in three ways. First, inclusion of observed data

since 1900 provides context on how the scale of pro-

jected changes associated with forcing from greenhouse

gases and other radiatively important agents compares

to historical variations and trends. Second, tabulating

high and low projections across all 48 simulations provides

a broader range of possible outcomes, which some

stakeholders requested (New York City Climate Change

Adaptation Task Force meetings over 2008–09). Third,

ensemble averaging of results by emissions scenario as

they evolve over time is informative to stakeholders

involved in greenhouse gas mitigation (and adaptation),

because it reveals the large system inertia: not until the

2030s and 2040s do the B1 scenario projections begin to

diverge from A2 and A1B, but thereafter they diverge

TABLE 5. Mean annual changes in temperature and precipitation

for New York City, on the basis of 16 GCMs and three emissions

scenarios. Shown is the central range (middle 67%) of values from

model-based distributions; temperatures ranges are rounded to the

nearest tenth of a degree, and precipitation is rounded to the

nearest 5%.

2020s 2050s 2080s

Air temperature 10.88–1.78C 11.78–2.88C 12.28–4.28C

Precipitation 10%–5% 10%–10% 15%–10%

FIG. 6. Combined observed (black line) and projected (a) tem-

perature (8C) and (b) annual precipitation (mm) for New York

City. Projected model changes through time are applied to the

observed historical data. The three thick lines (red, green, and

blue) show the ensemble average for each emissions scenario

across the 16 GCMs. Shading shows the central 67% range across

the 16 GCMs and three emissions scenarios. The bottom and top

lines, respectively, show each year’s minimum and maximum

projections across the suite of simulations. A 10-yr filter has been

applied to the observed data and model output. The dotted area

between 2003 and 2015 represents the period that is not covered

because of the smoothing procedure.

12 In this calculation, the land subsidence term was identical to

that used for the twenty-first-century projections. The same surface

mass-balance coefficients used by the IPCC, based on global av-

erage temperature changes over a 1961–2003 baseline, were used

for the 1900–04 base period, which likely leads to a slight over-

estimate of the meltwater here. The effect is negligible, though,

because the meltwater term is a minor contributor to the overall

twentieth-century sea level rise.
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rapidly. Thus, a delay in greenhouse gas mitigation ac-

tivities greatly increases the risk of severe long-term cli-

mate change consequences, despite apparent similarity in

the near-term outlook.

Although the precise numbers in Table 5 and Fig. 6

should not be emphasized because of high uncertainty

and the smoothing effects of ensemble averaging, the

stakeholder can see that in the New York metropolitan

region 1) mean temperatures are projected to increase

this century in all simulations, at rates exceeding those

experienced in the twentieth century, 2) although pre-

cipitation is projected to increase slightly in most simu-

lations, the multiyear precipitation range experienced in

the past century as a result of climate variability exceeds

the twenty-first-century climate change signal,13 and 3)

climate projection uncertainties grow throughout the

twenty-first century, in step with uncertainties regarding

future emissions and the climate system response.

2) SEASONAL

Warming in the NYC region is of similar magnitude

for all seasons in the GCMs, although seasonal projections

are characterized by larger uncertainties than are annual

projections (Fig. 7a). The fact that interannual temper-

ature variability is smallest in summer suggests that the

summer warming may produce the largest departures

from historical experience. Some impacts and vulnera-

bilities are also amplified by high temperatures. Energy

demand in NYC is highly sensitive to temperature dur-

ing heat waves, especially because of increased reliance

on air conditioning. This increased demand can lead to

elevated risk of power shortages and failures at a time

when vulnerable populations are exposed to high heat

stress and air pollution (Kinney et al. 2001; Hill and

Goldberg 2001; Hogrefe et al. 2004).

GCMs tend to distribute much of the additional pre-

cipitation during the winter months (Fig. 7b), when water

supply tends to be relatively high and demand tends to

be relatively low (NYCDEP 2008). During September

and October, a time of relatively high drought risk, total

precipitation is projected by many models to decrease

slightly.

b. Sea level rise

Addition of the two regional components leads to

higher projections of sea level rise for the region than

does the global average (by ;15 cm for end-of-century

projections; Meehl et al. 2007b; Peltier 2001). This is due

both to land subsidence and to higher sea level rise along

the northeastern U.S. coast, the latter largely being due

to geostrophic constraints associated with projected weak-

ening of the Gulf Stream (Yin et al. 2009) in the results

of many GCMs (Meehl et al. 2007b).

As shown in Table 6, the projections with the rapid ice

melt scenario diverge from the IPCC-based approach as

the century progresses. The 2100 value of up to ;2 m

associated with this scenario (not shown) is generally

FIG. 7. Seasonal (a) temperature change (8C) and (b) precipitation change (%) projections, relative to the 1970–99

model baseline, based on 16 GCMs and three emissions scenarios for the New York City metropolitan region. The

maximum and minimum are shown as thin solid horizontal lines, the central 67% of values are boxed, and the median

is the thick solid line inside the boxes.

13 The projection lines in Fig. 6 depict the ‘‘predictable’’ anthro-

pogenic forcing component while capturing some of the uncertainty

associated with greenhouse gas concentrations and climate sensi-

tivity at specific points in time. Because decadal variability is un-

predictable in the Northeast, it was not included in the time-specific-

projection portion of the figure. It was, however, emphasized to

stakeholders that, while interannual variability appears to be greatly

reduced in the projection portion of the figure, the observed portion

(black line) reflects the kind of unpredictable variations that have

been experienced in the past and that likely will exist on top of the

mean change signal in the future.
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consistent with other recent results that roughly con-

strain sea level rise globally (e.g., Pfeffer et al. 2008;

Rahmstorf 2007; Horton et al. 2008; Grinsted et al. 2009;

Rignot and Cazenave 2009) and regionally (Yin et al.

2009; Hu et al. 2009) to between ;1 and ;2 m. The

consistency with other studies supports the usefulness of

;2 m as a high end for a risk-averse approach to cen-

tury-scale infrastructure investments, including bridges

and tunnels, rail lines, and water infrastructure.

At the request of agencies that manage some of these

long-term investments, two presentations were given to

technical staff specifically describing the rapid ice melt

method and projections. Although these and other stake-

holders wanted to know the probability of the rapid ice

melt scenario relative to the IPCC-based method, it was

emphasized that such probability statements are not pos-

sible given current scientific understanding.

c. Extreme events

1) STAKEHOLDER PROJECTIONS BASED ON

THE DELTA METHOD

Table 7 shows projected changes in the frequency of

heat waves, cold events, and coastal flooding in the NYC

region. The baseline average number of extreme events

per year is shown, along with the central range (middle

67%) of the projections. Because the distribution of

extreme events around the (shifting) mean could also

change while mean temperature and sea level rise shift,

stakeholders were strongly encouraged to focus only on

the direction and relative magnitudes of the extreme-

event changes in Table 7.

The key finding for most stakeholders is the extent to

which mean shifts alone can produce dramatic changes

in the frequency of extreme events, such as heat events

and coastal storm surges. On the basis of the central

range, the number of days per year over 908F (;328C) is

projected to increase by a factor of approximately 3 by

the 2080s. The IPCC-based sea level rise projections

alone, without any changes in the historical storm cli-

matological mean and surge levels, lead to a more than

threefold increase in the frequency of the baseline 1-in-

10-yr coastal flood event by the 2080s.

In contrast to relatively homogeneous mean climate

changes, it was emphasized to stakeholders that absolute

extreme-event projections like days below freezing and

TABLE 6. Sea level rise projections for New York City, on the

basis of seven GCMs and three emissions scenarios. Shown is the

central range (middle 67%) of values from model-based distribu-

tions rounded to the nearest centimeter. The scenario for rapid ice

melt is based on recent rates of ice melt in the Greenland and West

Antarctic Ice Sheets and on paleoclimatic studies. See the text for

details.

2020s 2050s 2080s

IPCC based 15–13 cm 118–30 cm 130–54 cm

Rapid ice melt scenario ;13–25 cm ;48–74 cm ;104–140 cm

TABLE 7. Extreme-event projections. For heat and cold events, shown is the central range (middle 67%) of values from model-based

distributions, on the basis of 16 GCMs and three emissions scenarios. For coastal floods and storms, shown is the central range (middle

67%) of values from model-based distributions, on the basis of seven GCMs and three emissions scenarios. Decimal places are shown for

values of ,1 (and for all flood heights). A heat wave is defined as three or more consecutive days with maximum temperature exceeding

908F (;328C).

Extreme event Baseline (1971–2000) 2020s 2050s 2080s

Heat and cold events

No. of days per year with max

temperature .908F (;328C)

14 23–29 29–45 37–64

No. of days per year with max

temperature .1008F (;388C)

0.4 0.6–1 1–4 2–9

No. of heat waves per year 2 3–4 4–6 5–8

Avg duration of heat wave (days) 4 4–5 5 5–7

No. of days per year with min

temperature #328F (08C)

72 53–61 45–54 36–49

Coastal floods and storms*

1-in-10-yr flood to reoccur,

on average, . . .

;once every 10 yr ;once every 8–10 yr ;once every 3–6 yr ;once every 1–3 yr

Flood heights (m) associated with

1-in-10-yr flood

1.9 2.0–2.1 2.1–2.2 2.3–2.5

1-in-100-yr flood to reoccur,

on average, . . .

;once every 100 yr ;once every 65–80 yr ;once every 35–55 yr ;once every 15–35 yr

Flood heights (m) associated with

1-in-100-yr flood

2.6 2.7–2.7 2.8–2.9 2.9–3.2

* Does not include the rapid ice melt scenario.
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days with more than 1 in. (2.54 cm) of precipitation vary

dramatically throughout the metropolitan region, since

they depend, for example, on microclimates associated

with the urban heat island and proximity to the coast. In

a similar way, maps were generated for stakeholders to

show that the surge heights for the open estuary at the

Battery are higher than corresponding heights in more-

protected riverine settings.

It was emphasized to stakeholders that, because of

large interannual variability in extremes, even as the cli-

mate change signal strengthens, years with relatively few

extreme heat events (relative to today’s climatological

mean) will occur. For example, Central Park’s tempera-

tures in 2004 only exceeded 908F twice. The delta method

suggests that not until the middle of this century would

such a relatively cool summer (as 2004) feature more

days above 908F than are typically experienced today.

High year-to-year extreme-event variability may al-

ready give some stakeholders a framework for assessing

sector-specific climate change impacts; even if climate

adaptation strategies for extremes are not already in

place, short-term benefits may be evident to planners.

For example, Central Park in 2010 experienced tem-

peratures of higher than 908F on 32 different days, which

is consistent with projections for a typical year around

midcentury. This suggests that some of the infrastruc-

ture impacts of extreme heat (such as voltage fluctua-

tions along sagging power lines and increased strain on

transportation materials, including rails and asphalt;

Horton and Rosenzweig 2010) may have been experienced

in 2010 to an extent that may become typical by mid-

century. Adaptation strategies designed for an extreme

year today (such as a fixed level of mandatory energy use

reductions and a fixed level of reductions of train speeds)

may be inadequate or unpalatable in the future, however,

because of the increase in frequency, duration, and in-

tensity of extreme heat (as an example) associated with

climate change (e.g., Meehl et al. 2009; Tebaldi et al.

2006; Meehl and Tebaldi 2004).

2) GCM CHANGES IN INTRA-ANNUAL

DISTRIBUTIONS

Because high-frequency events are not simulated well

in GCMs, the results described here were not included

in the NYC adaptation assessment; they are explored

here as an exercise, since there is the possibility of dis-

tributional changes in the future. The daily distribution

of 1) maximum temperatures14 in summer (JJA), and

2) minimum temperatures in winter (DJF) are analyzed

in the three GCMs described earlier (CSIRO, GISS, and

MPI; section 3d), both for the 1980–99 hindcast and the

2080–99 A1B experiment.

The results indicate that GCM temperature changes

in the region in some cases do reflect more than a shifting

mean. The intra-annual standard deviation15 of winter

minima decreases in all three GCMs (in two cases by

approximately 10%), whereas summer standard devi-

ation changes are negligible. One tail of a season’s dis-

tribution can be more affected than the other; as shown in

Fig. 8 for CSIRO, the winter minimum changes are more

pronounced on anomalously cold days than on anoma-

lously warm days. All three GCMs show a larger shift in

the coldest 1% of the distribution than in the warmest

1%. This asymmetry at the 1% tails is most pronounced

in CSIRO, for which the future coldest-1% event occurs

8 times as often in the baseline whereas the baseline

warmest-1% event occurs 3 times as often in the future.

d. Comparison of GCM gridbox–based projections
with other downscaling methods

The GCM gridbox results used for the New York as-

sessment were compared with statistically downscaled

results from bias-corrected and spatially disaggregated

(BCSD) climate projections at 1/88 resolution derived

from the WCRP CMIP3 multimodel dataset. The BCSD

projections were obtained online (http://gdo-dcp.ucllnl.org/

downscaled_cmip3_projections/; Maurer et al. 2007).

Results were also compared with simulations from four

FIG. 8. Daily distribution (number of days per year) of winter

(DJF) minimum temperature (8C), for the New York metropolitan

region in the CSIRO GCM. Solid line: 1980–99 hindcast; dotted

line: 2080–99 A1B scenario.

14 Precipitation was excluded on the basis of the preliminary

analysis of hindcast daily precipitation described in section 3d.

15 As calculated separately for each year and then averaged

across the 20 years to minimize the role of interannual variability.
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pairings of GCMs and regional climate models (RCMs;

Table 8) contributing to the North American Regional

Climate Change Assessment Program (NARCCAP;

Mearns et al. 2009). Comparison of the three methods

is limited to the 2050s time slice under the A2 emis-

sions scenario relative to the 1970–99 baseline, because

NARCCAP projections are not available for other emis-

sions scenarios or time periods. The comparison focuses

on projections rather than validation, since the BCSD

method by definition includes bias correction whereby

the baseline GCM outputs are adjusted to match the

observed mean and variance. Preliminary analysis of

NARCCAP results indicates that these simulations, like

GCM projections, require bias correction.

The ensemble mean changes for the GCM gridbox,

BCSD, and RCM approaches differ from each other by

no more than 0.38C for temperature and 3% for pre-

cipitation. The intermodel temperature range is slightly

larger for the GCM gridbox approach than for BCSD,

and the opposite is the case for precipitation. The four

RCM simulations perhaps not surprisingly feature a smaller

intermodel range than do the 16 ensemble members for

the GCM gridbox and BCSD approaches.

The number of days above 908F was evaluated as

a measure of extreme events. The delta method applied

to the GCM grid box and BCSD16 produce virtually

identical results (increases of approximately 185% and

180%, respectively, in the number of days above 908F).

When actual daily values from RCMs are used, the in-

crease is approximately 170%. When the delta method

from the RCMs is applied to the observations, the in-

crease is approximately 195%.

For mean changes and the daily extreme metric as-

sessed here, BCSD and the four RCMs offer compara-

ble results to the single-gridbox GCM approach in the

New York metropolitan region. Future research will

assess how statistical and dynamic downscaling perform

in more specialized contexts tailored to unique stakeholder

needs that are beyond the scope of the NYC initial as-

sessment. For example, reservoir managers concerned with

water turbidity might desire information about sequences

of days with intense precipitation during particular times of

the year. Future research will also explore the pros and

cons of projections that incorporate highly uncertain

modeled changes in interannual variance through time.17

5. Conclusions and recommendations for
future work

A framework for climate hazard assessment geared

toward adaptation planning and decision support is de-

scribed. This GCM single-gridbox, delta method–based

approach, designed for cities and regions that are smaller

than typical GCM gridbox sizes that face resource and

time constraints, achieves comparable results in the

New York metropolitan region to other statistically and

dynamically downscaled products. When applied to high-

frequency historical data, long-term mean monthly cli-

mate changes (which GCMs are expected to simulate

more realistically for point locations than they will other

features such as actual long-term mean climate or high-

frequency statistics) yield dramatic changes in the fre-

quency of stakeholder-relevant climate hazards such as

coastal flooding and heat events. The precise projections

should not be emphasized given the uncertainties, but

they are of sufficient magnitude relative to the historical

hazard profile to justify development and initial prioriti-

zation of adaptation strategies. This process is now well

under way in the New York metropolitan region.

When climate-model results for the New York met-

ropolitan region are used only for the calculation of

monthly climate change factors based on the differences

and ratios between 30-yr future time slices and a 30-yr

baseline period, three generalized findings follow. First,

TABLE 8. Pairings of global and regional climate models used from NARCCAP.

GCM driver RCM Combination RCM reference

Geophysical Fluid Dynamics

Laboratory

Regional Climate Model, version 3 (RCM3) RCM3 1 GFDL Pal et al. (2007)

Third-Generation Coupled General

Circulation Model (CGCM3)

RCM3 RCM3 1 CGCM3 Pal et al. (2007)

CGCM3 Canadian Regional Climate Model (CRCM) CRCM 1 CGCM3 Caya and Laprise (1999)

Hadley Centre Coupled Model,

version 3 (HadCM3)

Hadley Regional Model 3/Providing Regional

Climates for Impacts Studies (HRM3)

HRM3 1 HadCM3 Jones et al. (2004)

16 At the time of analysis, BCSD was only available at monthly

resolution.

17 Preliminary analysis reveals that over the New York met-

ropolitan region grid box a slight majority of the GCMs show

increasing interannual variance of monthly temperature T and pre-

cipitation P whereas a large majority of the BCSD and NARCCAP

RCM projections do.
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using multiple ensemble members from the same GCM

provides little additional information, since the 30-yr

average intramodel ranges are smaller than the com-

parable intermodel range. Second, the spatial pattern

of climate change factors in many regions (including

New York City) is sufficiently homogeneous—relative

to the intermodel range—to justify use of climate change

factors from a single overlying GCM grid box. Third,

for these metrics, newer statistically (BCSD) and dynam-

ically (four NARCCAP RCMs) downscaled products

provide results that are comparable to those of the

GCM single-gridbox output used by the NPCC.

The checklist in Table 2 provides a series of questions

to help to inform the selection of the most appropriate

climate hazard assessment and projection methods. For

example, the delta method is more justified when 1)

robust, long-term historical statistics are available and

2) evidence of how modes of interannual and inter-

decadal variability and their local teleconnections will

change with climate change is inconclusive. Both of

these criteria are met in the NYC metropolitan region.

In contrast, more complex applications (than the delta

method) of statistically and dynamically downscaled

products especially may be more appropriate when

spatially continuous projections are needed over larger

regions with complex topography. For example, where

a large mountain range is associated with a strong pre-

cipitation gradient at sub-GCM-gridbox scales, percent-

age changes in precipitation might also be expected to

be more spatially heterogeneous than in the New York

metropolitan region.

Extreme-event projections, so frequently sought by

stakeholders for impact analysis, will likely improve as

statistical and dynamical downscaling evolve. RCMs

especially hold promise for assessing how ‘‘slow’’ vari-

ations associated with climate change and variability will

affect the future distribution of ‘‘fast’’ extremes like sub-

daily rainfall events. Nevertheless, translating RCM sim-

ulations into stakeholder-relevant projections requires

many of the same adjustments and caveats described here

for GCMs (such as bias correction). Statistical down-

scaling techniques also hold promise as well for the

simulation of extremes (nonstationarity notwithstand-

ing), to the extent that predictor variables are simulated

well by GCMs and are linkable to policy-relevant local

climate variables. Projections of extremes will also bene-

fit from improved estimates of historical extremes (such

as the 1-in-100-yr drought and coastal flood) as long-term

proxy records of tree rings and sediment (as examples)

are increasingly utilized.

There is also a need for improved simulation of cli-

mate variability at interannual-to-decadal scales, be-

cause this is the time horizon for investment decisions

and infrastructure lifetime in many sectors, including

telecommunications (Rosenzweig and Solecki 2010). The

limits to such predictability are beginning to be explored

in Coupled Model Intercomparison Project (CMIP5) ex-

periments initialized with observed ocean data, but this

is a long-term research issue.

An absence of local climate projections need not pre-

clude consideration of adaptation. For many locales, cli-

mate changes in other regions may rival the importance

of local changes by influencing migration, trade, and eco-

system and human health, for example. Furthermore,

some hazards such as drought are often regional phe-

nomena, with multistate policy implications (such as

water-sharing agreements). Last, since climate vulnera-

bility depends on many nonclimatic factors (such as

poverty), some adaptation strategies (such as poverty-

reduction measures) can be commenced in advance of

climate projections.

Monitoring of climate indicators should be encour-

aged because it reduces uncertainties and leads to refined

projections. On a local scale, sustained high-temporal-

resolution observation networks can provide needed mi-

croclimatic information, including spatial and temporal

variation in extreme events such as convective rainfall

and storm-surge propagation. At the global scale, mon-

itoring of polar ice sheets and global sea level will

improve understanding of sea level rise. Periodic as-

sessments of evolving climate, impacts and adaptation

science will support flexible/recursive adaptation strat-

egies that minimize the impact of climate hazards while

maximizing societal benefits.
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