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ABSTRACT

The goal of this paper is to derive the equation for the turbulence dissipation rate « for a shear-driven flow.

In 1961, Davydov used a one-point closure model to derive the « equation from first principles but the final

result contained undetermined terms and thus lacked predictive power. Both in 1987 (Schiestel) and in 2001

(Rubinstein and Zhou), attempts were made to derive the « equation from first principles using a two-point

closure, but their methods relied on a phenomenological assumption. The standard practice has thus been to

employ a heuristic form of the « equation that contains three empirical ingredients: two constants, c1,« and c2,«,

and a diffusion term D«. In this work, a two-point closure is employed, yielding the following results: 1) the

empirical constants get replaced by c1, c2, which are now functions of K and «; 2) c1 and c2 are not independent

because a general relation between the two that are valid for any K and « are derived; 3) c1, c2 become

constant with values close to the empirical values c1,«, c2,« (i.e., homogenous flows); and 4) the empirical form

of the diffusion term D« is no longer needed because it gets substituted by the K–« dependence of c1, c2, which

plays the role of the diffusion, together with the diffusion of the turbulent kinetic energy DK, which now enters

the new « equation (i.e., inhomogeneous flows). Thus, the three empirical ingredients c1,«, c2,«, D« are replaced

by a single function c1(K, «) or c2(K, «), plus a DK term. Three tests of the new equation for « are presented:

one concerning channel flow and two concerning the shear-driven planetary boundary layer (PBL).

1. Introduction

The dynamic equations for the kinetic energy K and

the dissipation « are two basic equations in turbulence.

While the first equation is exact, the second is ‘‘entirely

empirical,’’ as Pope (2000) has described the commonly

used form of it (P stands for production and D« is the

diffusion):

›«

›t
1 D

«
5

«

K
(c

1,«
P� c

2,«
«). (1)

Although an exact equation for « was derived by Davydov

(1961) using a one-point closure, the final result contained

unknown terms and thus had no predictive power. At-

tempts to use a two-point closure using the definition

« 5 2n

ð‘

0

k2E(k) dk (2)

face different types of difficulties. This was emphasized

by Pope (2000), who pointed out that (2) interprets « as

pertaining to the dissipation range whereas he suggests it

is more physical to interpret « as the energy flow rate in the

cascade process, which is determined by large scales that

are independent of viscosity. The choice of small- versus
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large-scale approach has important implications because

any approach based on (2) is not likely to be successful

since no known two-point closure exists that is capable

of providing a reliable energy spectrum in the high-

wavenumber regime where the integrand peaks. The

large-scale ‘‘option’’ is more hopeful since the low-k

infrared (IR) regime has been amenable to more suc-

cessful predictions than the high-k regime. Different

studies of the IR regime (e.g., Batchelor 1970; Chasnov

1995; Reynolds 1987) have suggested a functional de-

pendence of the type E(k) ; ks with s 5 2, 4. A key

advantage of these results is that they are almost model

independent, as the work of Saffman (1967) showed. In

that paper, one can also find a list of references of

previous work on the IR spectrum.

The availability of infrared spectra is, however, not

sufficient to derive an equation for «. The first reason is

that one needs to continue the spectrum in the k region

after the IR regime; this does not seem to be a serious

conceptual or practical problem since use of a Kolmogorov

spectrum for E(k) and a Lumley spectrum (Lumley

1967; Pope 2000) for shear are reasonable assumptions.

Adding to the IR spectrum a Kolmogorov spectrum was

the approach pursued by Schiestel (1987) and Rubinstein

and Zhou (2001), who arrived at a final equation for «

under the following conditions: (a) since the number of

equations was less than the number of unknowns, the

authors had to adopt an empirical relation, Eq. (12) be-

low, a procedure that Rubinstein and Zhou (2001) called

‘‘another way of stating the final result’’ and (b) the final

result was only valid for homogeneous turbulence cor-

responding to D« 5 0 in Eq. (1). It must nonetheless be

stressed that they predicted the values of the constants

c1,« 5 1.5, c2,« 5 11/6, which were remarkably close to

c1,« 5 1.44, c2,« 5 1.92 cited by Pope (2000) as ‘‘compro-

mise’’ values (the values of c2,« determined from freely

decaying turbulence are 1.87, 1.77, and 1.69). The con-

clusion one may legitimately draw from these results is

that the approach used in Schiestel (1987) and Rubinstein

and Zhou (2001) is promising but incomplete in two as-

pects, which we will try to find a way around.

The first task is to try to avoid the empirical relation

(12) below used in Schiestel (1987) and Rubinstein and

Zhou (2001) by replacing it with one derived on a theo-

retical basis, while the second is to avoid the homoge-

neous, zero-diffusion approximation D« 5 0. Succeeding

with the first task alone would lead to a theoretically in-

teresting but somewhat academic result since diffusion

plays a key role in near-wall (surface) flows where in-

homogeneity is at its maximum. This in turn raises two

problems: a conceptual one, since at first sight it might

seem that spectral methods, such as the ones used in the

previous studies (Schiestel 1987; Rubinstein and Zhou

2001), are intrinsically inadequate tools to handle in-

homogeneous flows; and a practical one of how to mimic

the effects of the diffusion term D« without adding it ad

hoc to the « equation.

It is the goal of this paper to show that it is indeed pos-

sible to solve both tasks with an extension of the spectral

method, the final result being an equation for « in which

the empirical form of the diffusion term D« is no longer

needed since it is replaced by two terms: the first is

‘‘intrinsic’’ in the sense that it is always present as long as

the flow is inhomogeneous, and the second term is en-

tirely due to the diffusion of the equation of K. The

presence of two diffusion terms in the « equation ex-

plains why, in the surface layer of a planetary boundary

layer (PBL), even when the diffusion in the K equation

is negligible, the diffusion in the « equation still plays an

important role and cannot be neglected.

2. Extension to inhomogeneous flows

Any extension of a two-point closure formalism for

homogeneous flows—defined as those in which random

motions have average properties independent of location

[Batchelor 1970, see his section 5.3 and Eq. (6.6.1)]—to

one in which some features depend on location is neces-

sarily heuristic. We follow the spirit of Saffman (1967),

who, while recognizing that ‘‘large-scale structures are

unlikely to be isotropic,’’ still considered it useful to study

the results because of their simplicity. To that consider-

ation, we add an additional one. With a minimal change

to the homogeneous formalism, we shall derive results

that are physically meaningful and much easier to use

than those of the full inhomogeneous, diffusion-based

formalism represented by Eq. (1).

Looking ahead, in the case of zero diffusion in the

equation for K, the « equation that we derive has the

traditional form:

›«

›t
5

«

K
(c

1
P� c

2
«). (3)

But we shall show that c1,2 are now functions of both

K, «:

c
1,2

5 c
1,2

(K, «). (4)

Thus, one can rewrite (3) in the form (1) with constant

coefficient terms plus an additional K, «-dependent term,

which will be shown to play the role of D«. More specif-

ically, the new term is now a function of the differences

D
«
[c

1
(K, «)� c

1,«
, c

2
(K, «)� c

2,«
]. (5)
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Furthermore, since it will also be shown that for any K, «

1

c
1

1
1

c
2

5
4

3
, (6)

the traditional assumption of three independent heuris-

tic variables,

D
«
, c

1,«
, c

2,«
0 c

1,2
5 c

1,2
(K, «), (7)

is no longer necessary since it is reduced to a single

function, c1 5 c1(K, «) or c2(K, «), whose form is pre-

dicted by the model.

Looking ahead again, in the case of nonzero diffusion

DK in the equation for K, D« in (5) will have an addi-

tional term representing the effect of DK.

We shall study the consequences of the new D« in three

different cases, the first being that of a high-Re, fully

developed channel flow, the second that of a planetary

boundary layer where turbulence is shear driven and near

the ground is highly inhomogeneous, and the third is a

comparison of the turbulence integral length scale de-

rived from the present model with the large-eddy simu-

lation (LES) data and the well-known Blackadar relation

(Blackadar 1962).

3. Derivation of the e equation

We follow and generalize previous authors Schiestel

(1987) and Rubinstein and Zhou (2001) by considering

the following spectra corresponding to a shear-driven

flow:

E(k) 5
Aks, for k

c
# k # k

m

Ko«2/3k�5/3, for k $ k
m

,

(
(8a)

m(k) 5
Bks, for k

c
# k # k

m

CS«1/3k�7/3, for k $ k
m

,

(
(8b)

where Ko is the Kolmogorov constant, m(k, t) is the

Reynolds stress spectrum �uw 5
Ð ‘

kc
m(k) dk, S 5 ›U/›z

is the shear, and the production in Eq. (1) is given by

P 5 �uw S while the form of m(k) is Lumley’s spec-

trum (Pope 2000; Lumley 1967; Canuto and Dubovikov

1996); furthermore, km is the wavenumber of the energy

containing eddies corresponding to where E(k) and

m(k) peak, A and B will be given by Eq. (9), and C is a

constant associated with the production term. The gen-

eralization with respect to previous studies that is im-

plied in (8a) and (8b) is twofold: first, we generalize the

previous authors’ IR spectrum as follows:

0 # k # k
m

0 k
c

# k # k
m

, (8c)

which at this stage is still an inconsequential mathemati-

cal extension. The key departure from previous work is

the assumption we shall make in what follows that the

lowest wavenumber kc can be interpreted as

k�1
c 5

2

p

� �
min(z, H � z), (8d)

where min(z, H 2 z) is meant to represent the distance

to the nearest boundary and H has to be chosen so as to

represent the physical extent of the fluid; Eq. (8d) can

also be viewed to describe the largest eddy size allowed

by the geometry of the system at any given z. We must

stress that both (8c) and (8d) do not affect any of the

second-order model derivation that we carry out below

and that it is only in the final expressions that (8d) is used

(i.e., in the expressions integrated over all wavenumbers);

for example the eddy kinetic energy relation,

K 5

ð‘

k
c

E(k) dk, (8e)

is formally identical to the one corresponding to a ho-

mogeneous flow in which the lowest wavenumber is zero

rather than a finite kc. The relations (8c) and (8d) also do

not affect any second-order closure relation one may

employ since in principle the latter are valid at any k and

it is only in the final stages that one chooses the value of

the lower limit in (8e). One might also consider that the

extension to a finite kc is not done here for the first time.

The best example is the case of fully buoyancy-driven

flows: it was shown in Canuto and Goldman (1985) that

the heat flux constructed using a second-order closure

model, once integrated over all wavenumbers beginning

at kc, reproduced the well-known and rather successful

mixing length expression (Canuto 2009) with the ‘‘mixing

length’’ ‘ identified with the inverse of kc in the manner

suggested in (8d). Going back to relations (8a) and (8b),

continuity of the spectra at km requires that

A 5 Ko«2/3k�s�5/3
m , B 5 CS«1/3k�s�7/3

m . (9)

The turbulent kinetic energy K and the energy produc-

tion P are easily obtained to be

K 5
(3s 1 5� 2c)

2(s 1 1)
Ko«2/3k�2/3

m ,

P 5
(3s 1 7� 4c)

4(s 1 1)
CS2«1/3k�4/3

m , (10a)

where the variable c is defined as follows:

k
c

k
m

5 c1/(11s). (10b)
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Clearly, the homogenous limit is recovered by taking

kc 5 0 and thus c 5 0 in both relations (10a). Taking the

time derivatives of the first of (10a) and of (10b), we

obtain after some algebra

1

«

›«

›t
5

3

2

1

K
(�D

K
1 P� «) 1

1� c

1� 2c/(3s 1 5)

� �
1

k
m

›k
m

›t
,

(11a)

where we have used the relation

›K

›t
1 D

K
5 P� «, (11b)

where DK is the diffusion term in the equation for K. At

this point, we can no longer proceed unless we have an

additional relation to express the last term in (11a)

representing the time derivative of km, in terms of the

other variables in (11a). As discussed at the beginning,

previous authors Schiestel (1987) and Rubinstein and

Zhou (2001) assumed the heuristic relation

›k
m

›t
5�b

«

E(k
m

)
, (12)

which contains an empirical constant b; also, as noted by

Rubinstein and Zhou (2001), the rhs of (12) lacks the

production term that should be present by physical

considerations. This junction is where we depart from

the previous derivations (Schiestel 1987; Rubinstein and

Zhou 2001) and substitute the ad hoc relation (12) with

one based on a more solid foundation. To do so, we

substitute the spectra (8a) and (8b) into the well-known

dynamic equation governing the spectrum E(k, t)

(Batchelor 1970):

›E(k, t)

›t
5�D

K
(k, t)|fflfflfflfflffl{zfflfflfflfflffl}

diffusion

1 m(k, t)S|fflfflfflffl{zfflfflfflffl}
source

1 T(k, t)|fflfflffl{zfflfflffl}
transfer

� 2nk2E(k, t)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
dissipation

,

(13)

where DK(k, t) is the diffusion in wavenumber space,

T(k, t) is the transfer function due to the nonlinear in-

teractions, and the last term represents the dissipation

by the kinematic viscosity n. Since the key problem of

turbulence is the modeling of T(k), the use of (13) is

predicated on knowing such a function. In this deriva-

tion, we need to apply (13) only to the infrared region

kc # k , km, where we prove that

�D
K

(k, t) 1 T(k, t) 5 0, k
c

# k , k
m

. (14)

To that end, for kc # k , km we substitute (8a) and (8b)

into (13) and neglect the viscous term that does not af-

fect the large-eddy infrared region. The result is

›A

›t
5 BS 1 [�D

K
(k) 1 T(k)]k�s, k

c
# k , k

m
. (15)

Since both A and B are independent of k, one must have

�D
K

(k) 1 T(k) 5 cks, k
c

# k , k
m

, (16)

where c is a constant. Assuming, as is usually done, that

turbulence transfers no energy to or from the scale k�1
c ,

this means that at the specific wavenumber kc, we have

�DK(kc) 1 T(kc) 5 0. Inserting this result in Eq. (16), it

follows that c must be zero, which thus proves (14).

Strictly speaking, this is not an exact result since if we had

used smooth spectra rather than the form in (8a),

�DK(k) 1 T(k), while still zero at k 5 kc, would have

begun to be nonzero near km; this means that in adopting

(14) we are approximating a function smoothly rising

from zero near k 5 km with a Heaviside-like 0–1 func-

tion. Because of the smallness of the region near km

where�D
K

(k) 1 T(k) is not zero, we believe that (14) is

not a bad approximation. In any case, (14) is not an ad-

ditional assumption; it is the result of the starting split-

spectrum (8a). Using (8a) and (8b), the second part of

(10a) and (14) in (13), and neglecting the last term for the

interval kc , k , km, we obtain the new relation that

substitutes the heuristic relation (12):

3s 1 5

2

1

k
m

›k
m

›t
5

1

«

›«

›t
� 3(3s 1 5� 2c)

(3s 1 7� 4c)

P

K
. (17)

Solving (11a) and (17) for the two variables ›km/›t and

›«/›t, the latter has the following form:

›«

›t
5

«

K
(�c

2
D

K
1 c

1
P� c

2
«), (18a)

where

c
1

5
3

2
� 3(1� c)

3(s 1 1) 1 4(1� c)
, c

2
5

3

2
1

1� c

s 1 1
; (18b)

thus, for any c we have the relation

1

c
1

1
1

c
2

5
4

3
. (18c)

Equation (18c) shows that the harmonic mean of c1 and

c2 is 3/2. To complete the derivation, we need to relate

internal variable c to the basic variables K and «. This is

done by combining the first part of (10a) with (10b). The

result is the following algebraic relation expressing c in

terms of the dynamical variables K and «:
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1 1
2

3

1� c

s 1 1

� �
cp 5

K

K*
, p [

2

3(1 1 s)
,

K* [
3

2
Ko«2/3k�2/3

c , (18d)

where at c 5 1, K 5 K*. In addition, in terms of c, the

boundary condition implied by (8c), (8d), and (10b) is as

follows:

c # 1. (18e)

Thus, Eqs. (18a)–(18e) represent the complete form of

the new « equation.

4. Some implications of the new e equations
[Eqs. (18a) and (18b)]

From Eqs. (11a), (17), (10b), and (18e) we also obtain

c , 1:
›k

m

›t
5 � 2

3s 1 5

k
m

K
(c

2
D

K
1 c

1
P 1 c

2
«) (19a)

and

c 5 1: k
m

5 k
c
. (19b)

Equations (19a) and (19b) show that km decreases with

time until it reaches its minimum value kc (i.e., c 5 1),

where the governing Eq. (19a) yields to the boundary

condition (19b). Another way of expressing the same re-

sult is by saying that the energy-containing eddies grow

in time until they reach their maximum size (twice of) z

or H 2 z. Thus, as time evolves, the energy-containing

eddies reach the boundary where the flow is highly in-

homogeneous. By the same argument, the regime c� 1 is

only found away from the boundaries where the flow is

more homogeneous.

Now, consider the homogeneous case characterized

by c [ (kc/km)s11� 1. Equation (18b) gives

c� 1:

c
1
! c

1,«
5

3(3s 1 5)

2(3s 1 7)
5
’1.27, for s 5 2

’1.34, for s 5 4
,

�
(20a)

c
2
! c

2,«
5

3s 1 5

2(s 1 1)
5
’1.83, for s 5 2

51.70, for s 5 4
.

�
(20b)

The results show that in the homogeneous case, c1,2 are

indeed constant as in Eq. (1) where the inhomogeneity

represented by the diffusion term D« is now zero. We

may also note that the values of the constants predicted

by the model are close to the compromise values cited

earlier. On the other hand, in the inhomogeneous case,

when the eddy size approaches its maximum possible

value, c [ (kc/km)s11 / 1, Eq. (18b) yields

c 5 1: c
1
5 c

2
5

3

2
, (21)

which gives a physical interpretation to the harmonic

mean discussed after Eq. (18c), which is now seen to

correspond to the inhomogeneous limit kc/km / 1.

Next, we show that c 5 1 leads to the steady state.

Using the second part of (10a), (11b), (18a), (19a) and

(19b), we derive the relation

c 5 1:
›

›t

P

«

� �
5 � P

«K

›K

›t
, (22)

which implies that if ›K/›t . 0, then P/« will decrease

toward ›K/›t 5 0; if ›K/›t , 0, then P/« will increase

toward ›K/›t 5 0. Thus, at c 5 1, if the flow is not in

a steady state, it will relax to it.

In Fig. 1, we plot c1 and c2 versus c for s 5 2. For c� 1,

away from the steady-state limit, c1 and c2 are indeed

constant with values close to the empirical values; on the

other hand, as c increases toward unity, c1 and c2 exhibit

opposite behaviors (namely, c1 increases while c2 de-

creases, reaching the common value 3/2 at c 5 1) and

thus it becomes possible for the flow to approach the

FIG. 1. The c1 (solid line) and c2 (dashed line) obtained from the

new split-spectrum model vs c 5 (kc/km)s11 according to (18b) for

s 5 2. For c� 1, c1 and c2 are constants and c1 , c2; as c / 1, both

c1 and c2 approach the value 1.5, their harmonic mean.
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steady state. In Fig. 2, we used (18b) and (18d) to plot c1

and c2 versus K/K* for the s 5 2 case.

5. Tests of the new model

Here, we consider three tests of the new « equation.

We begin with a high-Re, fully developed channel flow

as discussed in Pope [2000, see his Eqs. (10.69)–(71)]. In

the log-wall region production and dissipation balance,

the diffusion term in the K equation vanishes, leading to

a constant K. The stationary limit of Eq. (1) then be-

comes

0 5�D
«

1
«2

K
(c

1,«
� c

2,«
). (23)

Using the down-gradient closure,

D
«

5� ›

›y
n

t

›«

›y

� �
, n

t
5 C

m

K2

«
, (24)

where y is the distance from the boundary. The solution

of Eq. (23) then reads

« 5 A
K3/2

y
, A2 5

C
m

(c
2,«
� c

1,«
)

. (25)

In the present model [(18a) and (18b)], the above con-

ditions lead to the following relations:

c
1
5 c

2
0 c 5 10 K 0 K*. (26)

Using the third part of (18d) and (8d), we obtain

« 5 B
K3/2

y
, B 5

p

2

2

3Ko

� �3/2

. (27)

The first part of (27) reproduces the first part of (25).

Using the standard values Cm 5 0.09, Ko 5 1.6, c1,« 5 1.44,

and c2,« 5 1.92, the two coefficients A 5 0.43 and B 5 0.42

are also very close to each other.

In the second test, we employ large-eddy simulation

data (Moeng and Sullivan 1994) for a shear-driven PBL

to compute the variables in (5). In Fig. 3 we plot the 2D«

term in Eq. (1) (solid line) given by Eq. (28) below

versus z/Zi, the height from the ground z 5 0 normalized

by the PBL depth Zi. The explicit form of D« is now

found to be

D
«

5
«

K
[c

2
D

K
� (c

1
� c

1,«
)P 1 (c

2
� c

2,«
)«]. (28)

Using the same LES data, we also plot (dashed line) the

«(c1,«P 2 c2,««)/K term in Eq. (1). As can be observed,

near the boundary where z/Zi is small and the flow is

highly inhomogeneous, the two terms cancel out and

a steady state is therefore possible. This means that (28)

FIG. 2. As in Fig. 1, but vs K/K* according to (18b) and (18d). For

K/K*� 1, c1 and c2 are constants and c1 , c2; as K/K* / 1, both

c1 and c2 approach the value 1.5.

FIG. 3. For a shear-driven PBL of height Zi and friction veloc-

ity u*, the solid line represents the diffusion-like term 2D«, given

by the present model Eq. (28) (normalized by u4
*Z�2

i ), in the

« equation [Eq. (1)]. The LES data to compute Eq. (28) are taken

from Moeng and Sullivan (1994). The dashed line represents

«(c1,«P 2 c2,««)/K (normalized by u4
*Z�2

i ) in Eq. (1). The figure

shows that near the boundary, where the flow is maximally inho-

mogeneous, the two terms cancel out and thus a steady state is

possible, consistent with observations.
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plays the role of the diffusion term in (1), with the dif-

ference that in the present formalism there is no longer

the necessity to introduce the heuristic diffusion term D«

as in the standard treatment (Umlauf and Burchard

2005) since it is now given by Eq. (28).

In the third test, which also deals with the PBL, we

show how to recover the LES data and Blackadar’s

formula for the dissipation length scale in the small z

limit. The first part of Eq. (10a) can be rewritten in terms

of the integral length scale L«:

« 5
(2K)3/2

L
«

, (29)

with

L
«

5 (3Ko)3/2 1 1
2

3

1� c

s 1 1

� �3/2

c1/(s11)k�1
c . (30)

In the PBL case, the variable H in Eq. (8d) can be re-

garded as infinity since the geometry is half open,

k�1
c 5 2z/p, and thus Eq. (30) becomes

L
«

5
2(3Ko)3/2

p
1 1

2

3

1� c

s 1 1

� �3/2

c1/(s11)z. (31)

Near the surface, for small z, c / 1, Eq. (31) gives

z! 0: L
«

5
2(3Ko)3/2

p
z 5 16.7kz, (32)

where k 5 0.4 is the Von Kármán constant, and Ko 5

1.6. Rewriting (32) in terms of the commonly used

length scale formula ‘ as

L
«

5 B
1
‘, B

1
5 (2K

s
)3/2/u3

* ’ 16.6, (33a)

where (33a) results from equating the production and

dissipation rates in the log-law region. Here Ks is the

value of K at the surface and u* is the friction velocity.

The ratio K1/2
s /u* determined from the average of eight

different measurements (Mellor and Yamada 1982)

yields B1 ’ 16.6, as in (33a). The constant 16.7 in (32) is

very close to the measured value of B1 in (33a). In ad-

dition, from (31) we obtain that

‘ ’ kz, as z! 0. (33b)

Thus, the present model [(31)] recovers the well-known

small z expression.

Away from the surface, inhomogeneity is reduced

and c becomes less than one, and thus the growth of L«

given by (31) is less than linear in z. This behavior is in

agreement with Blackadar’s length scale formula. The

full z dependence of L« requires the solution of the com-

plete K 2 « model.

6. Conclusions

We have used a two-point closure spectrum to derive

a new « equation, Eqs. (18). With respect to previous

attempts (Schiestel 1987; Rubinstein and Zhou 2001)

using a similar methodology, we substituted the empir-

ical closure (12) suggested in Schiestel (1987) with a new

relation based on a physical model of the transfer

function T(k, t) in the infrared region. In the homoge-

neous case, the « equation contains only production and

dissipation terms with constant coefficients and zero

diffusion D«. The present model predicts such a form

with the values of the constants c1,2 close to the ‘‘com-

promise’’ values used in the literature. We note that the

procedure we suggest has no adjustable parameters.

To encompass inhomogeneous flows, we have made

a simple suggestion: traditionally, the diffusion term D«

[see Eq. (1)] requires a closure whereas in the new for-

malism such a term is replaced by relation (28), which is

given by the model without the need to invoke additional

closure relations. A part of the new diffusion-like term is

due to the nonzero difference between c1(K, «) and

c2(K, «), which are now functions of both K, «, with their

constant counterparts c1,«, c2,« of the homogeneous case;

the other part of the diffusion in the « equation is simply

inherited from the diffusion in the K equation. The three

heuristic variables (7) of the traditional « equation [Eq.

(1)] are now replaced by one function (c1 or c2) plus an

additional one related to the diffusion in the K equation.

To allow realistic applications to geophysical flows,

buoyancy effects of both stable and unstable stratifica-

tion must be included in the derivation of the « equation.

Work is in progress to extend the above formalism to the

case of a shear- and buoyancy-driven flow. The present

study lays a foundation for the new approach.
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