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ABSTRACT

A new approach to reduce biases in satellite-based estimates in real time is proposed and tested in this

study. Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many

efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. Most of

these efforts require timely availability of surface gauge measurements. The new proposed approach does

not require gauge measurements in real time. Instead, the Bayesian logic is used to establish a statistical

relationship between satellite estimates and gauge measurements from recent historical data. Then this re-

lationship is applied to real-time satellite estimates when gauge data are not yet available. This new scheme is

tested over the United States with six years of precipitation estimates from two real-time satellite products

[i.e., the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) re-

search product 3B42RT and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH)]

and a gauge analysis dataset [i.e., the CPC unified analysis]. The first 4-yr period was used as the training

period to establish a satellite–gauge relationship, which was then applied to the last 2 yr as the correction

period, during which gauge data were withheld for training but only used for evaluation. This approach

showed that satellite biases were reduced by 70%–100% for the summers in the correction period. In addition,

even when sparse networks with only 600 or 300 gauges were used during the training period, the biases were

still reduced by 60%–80% and 47%–63%, respectively. The results also show a limitation in this approach as

it tends to overadjust both light and strong events toward more intermediate rain rates.

1. Introduction

Precipitation estimates from satellite-based sensors

have become indispensible in a wide range of hydro-

logical applications, especially since the launch of the

Tropical Rainfall Measuring Mission (TRMM). Their

global coverage, timely availability and unprecedented

spatial and temporal resolutions make them crucial in

studies such as global water cycle, water resources, crop

yield, droughts, floods, and landslides.

Despite their advantages, currently purely satellite-

based precipitation estimates contain considerable er-

rors. This is primarily a result of the inherently indirect

nature of precipitation remote sensing, which mostly

derives precipitation rates from infrared (IR) or micro-

wave signatures of cloud or ice particles, and to the lim-

ited spatial and temporal sampling of the space-borne

sensors. Most of the current data products take advan-

tage of the availability of multiple IR and microwave

sensors to optimally intercalibrate and merge the re-

trievals from these sensors, in an effort to reduce these

errors. Nevertheless, compared with ground-based gauge

or radar measurements, these products still have much

room to improve (e.g., Sorooshian et al. 2000; Gottschalck

et al. 2005; Yilmaz et al. 2005; Ebert et al. 2007; Tian
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et al. 2007; Sapiano and Arkin 2009; Habib et al. 2009;

Tian et al. 2010). For example, Gottschalck et al. (2005)

showed that satellite-based estimates have a correlation

of 0.5–0.8 with surface gauge measurements over the

southeastern United States and less than 0.5 over other

areas of the contiguous United States (CONUS). Ebert

et al. (2007) showed that IR-based estimates under-

estimated summer precipitation by as much as 50% over

the eastern CONUS, while they overestimated winter

precipitation by 50%–100% throughout CONUS. Tian

et al. (2010) found that among four different satellite-

based precipitation datasets, the retrievals over the east-

ern United States have as much as a 32% overestimate in

summer and a 48% underestimate in winter.

Currently the most practical approach to reduce these

errors is to merge ground-based measurements from

rain gauges or radar networks. A leading example is the

TRMM Multisatellite Precipitation Analysis (TMPA)

research product 3B42 version 6 (Huffman et al. 2007,

2009) produced at the National Aeronautics and Space

Administration (NASA) Goddard Space Flight Center.

After merging intercalibrated passive microwave (PMW)

retrievals from multiple space-borne sensors, and filling

PMW coverage gaps with IR-based estimates, 3B42 uses

the monthly accumulation of global surface gauge mea-

surements to rescale the satellite-based estimates in

post–real time. This procedure results in estimates with

substantially reduced biases, especially on the time

scales of a month or longer. Smith et al. (2006) used the

median of the long-term mean values from an ensemble

of satellite-based products as the reference value, to es-

timate and reduce biases in satellite-based estimates, es-

pecially over the ocean when gauge data do not exist.

This method works best when the errors in different

satellite-based estimates are independent, but this con-

dition is usually not satisfied. The Air Force Weather

Agency (AFWA) has been producing a real-time global

precipitation analysis, based on PMW and IR retrievals,

superseded by gauge reports from the World Meteoro-

logical Organization (WMO)’s Global Telecommuni-

cation System (GTS). But the gauge reports available

from GTS in real time are rather sparse, and this ap-

proach leaves some artifacts that result from the dis-

parity between satellite-based estimates and isolated

gauge reports (Tian et al. 2009). Recently Xiong et al.

(2008) and Janowiak et al. (2009) proposed a procedure

to correct the National Oceanic and Atmospheric Ad-

ministration (NOAA) Climate Prediction Center (CPC)

Morphing technique (CMORPH; Joyce et al. 2004) in

real time. This procedure first performs bias correc-

tion for CMORPH with the (probability density func-

tion) PDF-matching technique against real-time global

daily rain gauge data. Then it combines the corrected

CMORPH with the gauge analysis itself with the opti-

mal interpolation (OI) technique. Their test results over

China showed substantial improvements in the merged

CMORPH analysis. Over CONUS, Boushaki et al.

(2009) used the real-time CPC daily gauge analysis

(Higgins et al. 2000) to correct the Precipitation Esti-

mation from Remotely Sensed Information Using Ar-

tificial Neural Networks–Cloud Classification Scheme

(PERSIANN-CCS; Hong et al. 2004) data, and the

corrected data show dramatic improvements over test

areas in the southwestern United States.

A critical requirement in the existing gauge-correction

schemes is the availability of gauge data as timely as that

of the satellite-based estimates. Otherwise, gauge cor-

rection in real time is not possible; one has to resort

to an approach similar to TMPA 3B42 with a monthly

scale correction, at the price of a latency in the avail-

ability of such data products. However, the number of

gauge reports available in real time over the globe is

rather limited; a significant number of gauge reports,

such as those within the WMO’s GTS, are issued with

various delays. In addition, many regions over the world,

including the United States, are seeing many weather

stations disappear recently (Stokstad 1999), leaving only

historical data available. For example, there were over

18 000 daily gauge reports over United States before

2004, but there have been less than 10 000 since 2004

(Chen et al. 2008). In China, there had been ;700 hy-

drological stations before they ceased to operate in 1997

(Xie et al. 2007). Finally, collecting, processing, and

quality-controlling real-time gauge reports are logisti-

cally tedious and complex. Therefore, it is highly desir-

able to explore a new approach to reduce the biases in

the satellite-based estimates in real time, without de-

pending on the timely availability of surface gauge ob-

servations.

In this study, we propose a scheme to explore this

possibility. This new scheme is based on the observation

that the error characteristics in satellite-based estimates

are remarkably consistent. For example, over CONUS,

estimates for summer show regularly positive biases

(overestimates), while those for winter suffer negative

biases (underestimates; Tian et al. 2009). In addition,

most of the errors are caused by hit biases, meaning the

satellite-based estimates have sufficient capability in

detecting precipitation events, but are short in deter-

mining the correct rate rates of the events. Therefore,

we developed a Bayesian approach to ‘‘train’’ an algo-

rithm with the coincidental satellite and gauge data

within a recent historical period. This algorithm essen-

tially establishes a statistical relationship between co-

incidental gauge measurements and satellite estimates.

Then we apply this ‘‘learned’’ relationship to real-time
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satellite estimates, when gauge data are not available, to

derive the mostly likely values of gauge measurements

as the corrected satellite estimates.

This scheme was tested with nearly 6 yr of satellite-

based estimates from 2 real-time products: TMPA

3B42RT and CMORPH (see section 3). We used the

first 4 yr as the training period when historical gauge

data are available. The last 2 yr were used as the cor-

rection period, during which the gauge data were with-

held for correction but only used for validation. Our test

results showed satellite biases were reduced by 70%–

100% for the summers in the correction period. In ad-

dition, even when sparse networks simulated with only

600 or 300 gauges were used during the training period,

the biases were still reduced by 60%–80% and 40%–

60%, respectively. Thus, this method can potentially

complement the existing real-time correction schemes.

Compared with other existing bias-correction schemes,

this approach is theoretically more rigorous and ge-

neric, with minimal assumptions of the error charac-

teristics in the data. We envision this scheme, if proven

effective, could be used by data producers as an integral

part of their processing algorithm, or by data consumers

as a postprocessing step for their applications requiring

low-bias precipitation estimates in real time. However,

in practice, there are many factors affecting the effec-

tiveness of this approach, which will be discussed in this

paper. Because of these practical factors, this scheme

can only yield incremental improvements, rather than

an ultimate solution. Currently this scheme has been

tested with real satellite-based data, but has not been

employed to produce corrected data operationally.

The formulation of the Bayesian scheme is given in

section 2. Data and methodology used in this study are

described in section 3. Results are presented in section 4,

followed by conclusions and a discussion in section 5.

2. Formulation

At a grid point, when both gauge measurements and

satellite estimates are available, we denote their values

as Gi and Sj, respectively. Then for the training period,

we can compute the joint probability P(Gi, Sj) from the

existing data, and by the Bayesian theorem:

P(G
i
jS

j
) 5

P(G
i
, S

j
)

P(S
j
)

, (1)

we can compute the conditional probability P(GijSj),

which gives the likelihood of a gauge measurement Gi

at the grid point when a satellite-based estimate has the

value of Sj. Since all the terms on the right-hand side of

Eq. (1) can be computed from the training data, we can

calculate the most probable value of the gauge mea-

surement Gj0 given any Sj, which maximize P(GijSj). The

end result from the training is a lookup table, which will

be used during the correction period when only satellite

estimates are available. We can then find Gj0 from a

given Sj in the lookup table, and we use Gj0 to replace

the corresponding Sj as the corrected satellite estimate

value.

Theoretically, the most probable value of Gi,

(i 5 1, 2, . . . , N) should be the one that gives a unique

and well-defined maximum of P(GijSj) for each Sj. In

practice, however, the number of (Gi, Sj) sample pairs

at an individual grid point is not always large enough

to guarantee that, making the determination of max-

imum P(GijSj) unreliable. To increase the number of

samples for more stable statistics, we encompassed the

neighboring grid points within a limited range for the

collection of the samples. The size of the neighborhood

has to be small enough to keep the local precipitation

regime and error characteristics uniform. In this study, we

used a neighborhood within five grid boxes around the

central box. In addition, we discretized the daily rain-rate

values into logarithmic bins, to keep the number of strong

events sufficiently large, and the events distribution closer

to normal distribution. In this study, a constant size ratio

of 1.16 between two adjacent bins was used. Finally, we

used the average of all the Gi values for each particular

Sj, weighted by P(GijSj), as an approximation of Gj0,

instead of using the single value of Gi (which is often not

unique), which gives the maximum of P(GijSj).

3. Data and methodology

Two real-time satellite-based estimates were used to

test our correction scheme. One is the TMPA real-time

product 3B42RT (Huffman et al. 2007, 2010), and the

other is the CMORPH product (Joyce et al. 2004). Both

products are purely satellite based; they have not been

corrected in any way with ground-based gauge or radar

measurements. TMPA 3B42RT derives its precipitation

estimates primarily by merging the most recent PMW

scans available from the array of sensors including the

TRMM Microwave Imager (TMI), the Special Sensor

Microwave Imager (SSM/I), the Advanced Microwave

Sounding Unit-B (AMSU-B), and the most recent Ad-

vanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E). Then it uses IR-based

retrievals from geostationary satellites to fill PMW cov-

erage gaps. We note that 3B42RT data prior to February

2005 are considered obsolete because they were pro-

duced from an outdated algorithm, but for the purpose

of this study we retained part of the outdated data for

the training period, whose impact will be discussed later.
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CMORPH’s PMW-based retrievals are from almost the

same set of sensors as 3B42RT, but it takes advantage

of the high-resolution IR imagery to derive the advec-

tion of precipitation patches between PMW scans, and

uses this information to obtain a smooth ‘‘morphing’’

of PMW rain patterns. Both the original 3B42RT and

CMORPH used in this study have a 0.258 3 0.258 spatial

resolution and a 3-h temporal resolution, and we used

their daily accumulation to match that of the gauge data

(below).

The gauge data we used to correct the satellite-based

estimates are the NOAA CPC unified daily gauge anal-

ysis (CPC-UNI; Xie et al. 2007; Chen et al. 2008). This

dataset employs an OI technique to reproject quality-

controlled gauge reports over CONUS to a 0.258 3 0.258

grid. The OI-based interpolation has been shown to

have higher correlation with individual gauge measure-

ments than other techniques (Chen et al. 2008). There are

about 6000–10 000 gauge reports daily in CPC-UNI for

most of our study period.

For both the satellite-based and gauge-based data,

we only train with and correct precipitation rates

of 1 mm day21 or higher, because estimates below

1 mm day21 are much less reliable, and their contribu-

tion to the total precipitation amount is insignificant.

Our study period covers nearly 6 yr (5 yr and 8

months) from March 2003 to October 2008. The whole

record is divided into two periods: the first period of

nearly 4 yr (3 yr and 8 months) is designated as the

training period, and the second period of 2 yr as the

correction period. During the training period, both

the gauge data and satellite-based estimates were used

to establish the gauge–satellite statistical relationship.

Then during the correction period, the gauge data were

withheld for any training or correction. The correction

was performed first, and then the corrected satellite data

were evaluated against the withheld gauge data. Since

the correction will work for the satellite data within the

training period as well, we also went back to correct

them for the first 4 yr.

During the training period, we further split each an-

nual cycle into a warm season (from May to October)

and a cold season (from November to April), resulting in

four warm seasons and three cold seasons. The training

was performed separately for the two different seasons.

This is based on the observation that the error charac-

teristics have a strong seasonal dependency (Ebert et al.

2007; Sapiano and Arkin 2009; Tian et al. 2009, 2010);

the inconsistent performance between warm and cold

seasons will degrade the training of the satellite data if

lumped together. Ideally the annual cycle could be split

into more segments, such as four seasons, if the train-

ing data are abundant. But with the current amount of

training data available, the two-season separation is a

compromise between the amount of training data and

the resolution of the seasonality.

To investigate the impact of gauge density on this

scheme, we use the gauge data to simulate gauge net-

works with three different densities:

1) A really dense network with gauge analysis data at

every grid point over CONUS used. We denote this

density as ‘‘100%.’’

2) A sparse network with 600 gauges over CONUS,

whose locations were randomly picked from the

CPC-UNI analysis. We denote this density as ‘‘10%,’’

as the number of the simulated gauges is nearly 10%

of the minimum number of gauges used in CPC-UNI

analysis.

3) An even sparser network with only 300 gauges over

CONUS, similarly picked from the CPC-UNI anal-

ysis data, and we denote this density as ‘‘5%.’’

The three gauge densities are illustrated in Figs. 1a–c.

The correction scheme was tested with each of the three

gauge densities, and the corresponding corrected data

were all evaluated against the gauge analysis of the orig-

inal density (100%). By testing with sparse networks, we

can assess how the scheme would work in other areas over

the globe where dense gauge deployments are rare.

4. Results

a. Bias correction

The correction scheme proved to be able to reduce

the biases in satellite-based estimates substantially. Fig-

ure 1 shows comparisons of biases between the original,

uncorrected 3B42RT and CMORPH, and their cor-

rected counterparts produced with the three respective

gauge densities (100%, 10%, and 5%) shown in the left

column. During the last warm season in the correction

period (May–October 2008), both of the original 3B42RT

and CMORPH (Figs. 1d,h) show similar, large areas

of overestimates over the central CONUS, a well-

documented characteristics (Gottschalck et al. 2005; Tian

et al. 2007, 2009). Corrections with 100% gauge data ef-

fectively removed these overestimates (Figs. 1e,i), con-

siderably improving the overall estimates over CONUS.

Some smaller areas of overestimates along the East

Coast and over southern Florida, especially for 3B42RT,

were also eliminated. But the narrow stripe of positive

biases in southern California was largely not affected

(Fig. 1e).

Corrections with 10% and 5% gauge densities also

exhibit remarkable improvement, to a varying degree.

With the gauge density of 10% (600 gauges), the positive
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biases over central CONUS were largely removed, but

not completely (Figs. 1f,j). Several small patches of

biases still existed, such as the ones in western Nebraska

and eastern Kansas. Further examination reveals that

the gauge distribution over these areas is much sparser

(Fig. 1b), and it is reasonable to expect the performance

to degrade in such cases. With a gauge density of 5%

(300 gauges), those areas saw even fewer gauges (Fig. 1c),

and consequently the areas of less-corrected biases were

larger (Figs. 1g,k). Obviously a too sparse gauge net-

work does not offer much help to our correction scheme

or to other schemes.

Bias reduction for cold seasons (not shown) is not sig-

nificant. This is because for these seasons, both 3B42RT

and CMORPH are dominated with underestimates over

CONUS, especially over higher latitudes and mountain-

ous areas (Tian et al. 2009). These underestimates are

primarily caused by missed detection by satellite-based

FIG. 1. (a)–(c) Three gauge densities and average biases (mm day21) before and after the correction for the last warm season (May–

October 2008) for (d)–(g) 3B42RT and (h)–(k) CMORPH. The color bars for (a)–(c) are the daily rain rates reported by each gauge for

1 Mar 2003 as a sample day.
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estimates over cold land surfaces such as snow and ice

cover, whereas our current scheme can only correct sat-

ellite retrievals when they are detected events or false

alarms.

Figure 2 shows the time series of the biases before and

after the corrections, for the whole study period, in-

cluding both the training (white area) and the correction

period (shaded area). The biases in the original esti-

mates (black curves) show a roughly regular seasonal

dependence, especially for CMORPH (Fig. 2b): during

warm seasons the satellite data tend to overestimate,

while during cold seasons they tend to underestimate.

For the reasons mentioned above, our scheme provides

limited improvement to the satellite estimates during

cold seasons, especially during the correction period.

However, for the warm seasons, the reduction in biases

is rather substantial. Specifically, both summers of 2007

and 2008 saw decreases of the overestimates in either

3B42RT (Fig. 2a) or CMORPH (Fig. 2b) by over 50%

after the scheme was trained with 100% of the gauges

(green curves). The reduction of the biases was gradually

smaller with 10% and 5% gauge densities (yellow and red

curves), but was still significant. A similar amplitude of

reduction was achieved for the 4-yr training period.

The fact that our scheme did not completely eliminate

the biases in either 3B42RT or CMORPH even in sum-

mer is primarily related to the inevitable inconsistencies

in the error characteristics of the original data. For ex-

ample, the first 2 yr of data from 3B42RT (produced

from an obsolete algorithm) have distinctively different

error behavior from other years. For most of the time

during that period it shows overestimates, except several

brief episodes during the winters. Such a different pe-

riod will contribute misleading information to the scheme

during the training period, reducing the accuracy of the

correction.

Table 1 summarizes the seasonal-scale biases before

and after the corrections for the two winters [December–

February (DJF)] and summers [June–August (JJA)] in

the correction period (i.e., the last two years). For either

3B42RT and CMORPH, the reductions in biases with

100% gauges are dramatic during the two summers:

3B42RT saw over 80% decrease in biases for the first

summer and nearly 100% for the second, and CMORPH

FIG. 2. Time series of biases before and after correction with different gauge densities for (a) 3B42RT and

(b) CMORPH. The shaded area indicates the 2-yr correction period during which no gauge data were available for

correcting the biases in satellite-based estimates. The light blue curve in the background is the area-averaged pre-

cipitation from gauge analysis, to help readers assess the relative amplitudes of the biases.

TABLE 1. Average biases (mm day21) for the last two winters (DJF) and summers (JJA). The percentage numbers are the reductions in

biases relative to the biases in the uncorrected data.

Season

3B42RT CMORPH

Original 100 10 5 Original 100 10 5

DJF 2007 20.23 20.01 20.05 20.08 21.15 20.87 20.90 20.98

97% 79% 67% 24% 21% 15%

DJF 2008 20.40 20.17 20.21 20.26 21.45 21.19 21.22 21.30

58% 46% 35% 18% 15% 10%

JJA 2007 1.15 0.22 0.41 0.61 1.23 0.31 0.47 0.65

81% 64% 47% 75% 62% 47%

JJA 2008 0.97 0.01 0.19 0.36 1.05 0.30 0.39 0.51

99% 81% 63% 72% 63% 51%
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enjoyed 75% and 72% reductions in overestimates for

the two summers, respectively. With 10% and 5% gauge

densities, the degree of improvement became less pro-

nounced, but was still around 60% or more for 600

gauges, and not far below 50% for 300 gauges. For the

two winters, the reduction of biases in CMORPH is

rather limited, with amplitudes around 10%–20% for all

the three gauge densities, as our scheme cannot improve

on underestimates caused by missed detection of pre-

cipitation events. The dramatic percentage numbers in

3B42RT for the two winters are rather misleading: the

seasonal-scale biases in 3B42RT in the original data are

already very low (less than 30% of CMORPH’s; also see

Fig. 2), so any slight improvement would result in large

percentage changes.

b. Correction curves

As indicated in section 2, after the training was done,

we obtained a lookup table at every grid point mapp-

ing a value of satellite estimates to a most likely value

of gauge measurements. We denote such a mapping a

‘‘correction curve.’’ By examining a correction curve,

we can have a better understanding how the correction

scheme works. As a sample, Fig. 3 shows the different

correction curves at a location in the central United

States (428N, 968W) corresponding to cold and warm

seasons and to the 3 gauge densities, for both 3B42RT

and CMORPH.

All the correction curves showed a similar feature: the

amplitude of strong events (.16 mm day21) will be

FIG. 3. Correction curves for a sample location in the central United States (428N, 968W) during the (a),(b) cold

season and (c),(d) warm season from the three gauge densities for 3B42RT and CMORPH, respectively. The di-

agonal line indicates no correction.
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reduced, while that of light events (,8 mm day21) will

be increased. This is more obvious for 3B42RT (Figs.

3a,c). For both 3B42RT and CMORPH, light events less

than 4 mm day21 will be nearly uniformly boosted to

over 4 mm day21. This indicates the satellite estimates

tend to underestimate light rain by several times during

the training period.

The correction curves for the same season and same

dataset but from different gauge densities are largely

similar. This confirms the results shown in Figs. 1 and 2

that sparse gauge distributions can do a reasonable

job as well. As expected, the correction curves ob-

tained with 100% gauges are fairly smooth, while those

with 10% and 5% have considerable fluctuations, be-

cause of the reduced number of data samples available

during the training period, especially during the cold

season. At about 70 mm day21, 3B42RT showed a heavy

dip for either 10% or 5% gauge density, probably

caused by a few erroneous events when 3B42RT de-

tected strong precipitation whereas the gauges reported

little precipitation. The reduced number of samples

made the impact of such events outstanding, and such

a dip will cause significant overcorrection around this

rate.

From the nonlinearity of the correction curves we can

see one of the advantages of this scheme: it is entirely

self-adaptive. The scheme automatically generates cor-

rection curves from the training data themselves, with-

out any predefined error models or tunable parameters.

Moreover, as new data become available in post–real

time, the training can be repeated to assimilate the new

information and update the correction curves.

c. Impact on daily events

To examine the impact of the correction scheme on

event-scale precipitation values, we computed and com-

pared the intensity distribution of the daily precipitation

for original and corrected satellite estimates, with that

of the gauge data, for the correction period, in Fig. 4.

Before the corrections, 3B42RT has about 1/3 more pre-

cipitation events than the gauge data over the western

CONUS (Fig. 4a), but has slightly less light precipitation

and more strong precipitation events (.32 mm day21)

over the eastern CONUS (Fig. 4b). CMORPH has less

light and more strong precipitation events over both the

western and eastern part of the continent (Figs. 4c,d).

After the corrections, both the amount of strong pre-

cipitation and light precipitation are severely reduced

FIG. 4. Daily precipitation amount (mm) as a function of precipitation rate (mm day21) for (a),(b) 3B42RT and

(c),(d) CMORPH over the (a),(c) western and (b),(d) eastern CONUS, respectively, for the original and corrected

satellite-based estimates, compared with the gauge data. The CONUS was separated into western and eastern re-

gions along the 100th meridian. The logarithmic scale was used to bin the precipitation rates.
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for both dataset, especially for 3B42RT, and for both

datasets over the western CONUS, and intermediate

rain rates were amplified. Consequently, the intensity

distributions became narrower, indicating the precipi-

tation fields were more uniform with the corrections,

especially with the 100% gauge density (Fig. 4).

This behavior is undesirable for many applications.

The correction scheme improves on the amount of long-

term and large-scale estimates of precipitation amount,

at the price of shrinking the dynamical range of event-

scale estimates, and reducing the number of extreme

events in particular. This will adversely affect applica-

tions that are more sensitive to extreme events, such as

floods and landslides.

Such overcorrections are most likely caused by the

inconsistencies of the error characteristics during the

training period and between the training and the cor-

rection period. As seen from Fig. 2, during the training

period both 3B42RT and CMORPH have higher over-

estimates during warm seasons. The most notable case is

the first two years for 3B42RT (Fig. 2a) during which the

number of strong events are obviously overestimated.

Our correction scheme will ‘‘learn’’ to shrink the am-

plitude of these events much more to reduce the total

biases. When this is applied to the correction period,

3B42RT itself is already much improved, therefore the

information acquired during the worse performance

years will lead to overcorrections for the last two

years.

The reduction in the amount of light rain can also be

explained. As shown in Tian et al. (2009), most of the

underestimates during winters are caused by missed

detection of precipitation events, chiefly light in in-

tensity (,10 mm day21). The current scheme cannot

reinstate those missed events. To reduce the underesti-

mates, it has to increase the amplitude of the already

detected light events, moving them into the range of

more intermediate intensity. This is more the case for

CMORPH, as it has higher underestimates during the

last years (Fig. 2b).

One possible approach to correct the intensity distri-

bution is using the PDF-matching method, which has

been widely applied for satellite data intercalibration

(e.g., Turk and Miller 2005; Huffman et al. 2007) as well

as satellite–gauge data merging (Janowiak et al. 2009).

However, this is just a practical solution to a problem

caused by other sources—primarily the consistency of

the data between the training and correction periods

(see section 5), and this method will introduce additional

uncertainties in the corrected data. In theory, if the error

characteristics in the satellite-based estimates are con-

sistent, the Bayesian scheme can both reduce the biases

and match the PDFs of the gauge data. The PDF

mismatch is one of the manifestations of the data in-

consistency, not the failure of the Bayesian scheme itself.

5. Summary and discussion

In this study, we proposed and tested a new approach

for reducing the biases in the satellite-based estimates

in real time. The major advantage of this approach over

other existing methods is its applicability when real-time

gauge data are not available. It takes advantage of

the availability and relative abundance of post-real-time

gauge measurements, to train an algorithm based on the

Bayesian inference. The training period yields spatially

and temporally varying statistical relationships between

post-real-time satellite-based estimates and gauge mea-

surements. Then such statistical relationships are used to

correct real-time satellite estimates when gauge data are

unavailable, thus eliminating the acute need of real-time

gauge reports as in other existing schemes. This scheme

is also entirely self-adaptive: it adjusts itself to different

training datasets without the need of any predefined,

tunable parameters.

We tested the scheme with two satellite-based prod-

ucts, TMPA 3B42RT and CMORPH, using CPC’s uni-

fied gauge analysis for training and validation, for a

period of 6 yr. The first 4 yr were used as the training

period, during which the gauge data were used to guide

the Bayesian algorithm, while the following 2 yr were

used as the correction period when the gauge data were

not used except for evaluation. The results showed that

the scheme worked particularly well for summer, having

nearly completely reduced the high overestimates over

most of the central CONUS for both 3B42RT and

CMORPH (Figs. 1 and 2).

A subset of the gauge data were also used to simulate

sparse networks and to investigate their effectiveness.

Even with only 600 or 300 gauges randomly distributed

over CONUS for the training period, the bias reductions

ranged from 60% to 80% for the former and from 47%

to 63% for the latter. This suggests that our scheme can

be used over other areas of the globe, where sparser

networks are more common. However, when a network

gets too sparse (e.g., 300 gauges), the scheme will leave

‘‘holes’’ of uncorrected regions (Fig. 1).

There are also some undesirable but explainable ef-

fects resulted from this correction procedure with the

two sample datasets, including the narrowing of the rain

intensity distribution particularly (Fig. 4). The draw-

backs in the corrected data are not an indicator of the

method’s limitation; rather, they are the manifestation

of the training data quality that affects the effective-

ness of the method. Specifically, the lack of consistent

and abundant training data is the leading cause. The
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underlying assumption for our scheme is the consistency

of the error characteristics in the satellite-based esti-

mates, including their seasonal and regional dependence

in particular. While largely the case, there are consid-

erable inconsistencies between the training period and

the correction period within either 3B42RT or CMORPH.

As a result, on the daily time scale, the intensity distribu-

tions of precipitation were modified by overcorrection of

both strong (.20 mm day21) and light (,4 mm day21)

events, producing precipitation fields with reduced spa-

tial and temporal variability (Fig. 4). From this per-

spective, we would argue that, if the satellite retrievals

could not remove errors, it would be much better to

keep the errors consistent. Additionally, the limited

availability of the training data leads to less reliable

correction for strong events. Therefore, these draw-

backs in the results should not discount the validity of

the proposed method, which is theoretically more rig-

orous than other existing solutions with minimal assum-

ptions about the data and their error characteristics.

Other empirical approaches, such as linear or nonlinear

regression, Kalman filtering, or optimal interpolation, are

just special cases of the Bayesian approach (Wikle and

Berliner 2007).

The current practical constraints, namely, inconsis-

tencies in error characteristics and lack of sufficient

training data, make it too early to apply this method in

operational use. However, we envision the proposed

approach will be revisited when both the quality and

quantity of the training data are improved in the future.

We also want to note that this method is designed only

to reduce the systematic errors (biases), not the random

errors. The latter are difficult to quantify or correct,

especially when the uncertainties in the ground refer-

ence data themselves are not known (Barnston 1991;

Krajewski et al. 2000). However, the random errors will

be affected simply because of the rescaling of the sat-

ellite estimates, but this effect can not be quantified

in the current study. In addition, the gauge analyses

themselves are not accurate presentations of the true

area rainfall either (e.g., Villarini and Krajewski 2008);

the uncertainties in the gauge analyses contribute di-

rectly to the total uncertainties between the gauge

analyses and the satellite data (Barnston 1991). With the

errors in the gauge analyses unknown in the present

study, our working assumption is that the errors in

the gauge analyses are much smaller than those in the

satellite-based estimates, and reduction in the biases

relative to the gauge data is an incremental improve-

ment to the satellite data. This assumption is shared by

the other existing gauge-correction schemes and largely

true at least over CONUS because of the dense gauge

networks (Tian et al. 2009).

Finally, the effectiveness of this scheme shown in this

study is by no means to discount the value of real-time

gauge measurements. Obviously this scheme works best

for error corrections on seasonal scales or longer, and

it cannot improve performance metrics such as proba-

bility of detection or false-alarm rate. Only through

real-time gauge data, preferably from dense networks,

intelligently merged with satellite-based estimates, can

such performance metrics be improved. Therefore, our

scheme can complement, rather than replace, existing

techniques to improve real-time precipitation estimates

from multiple sensors.
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