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ABSTRACT

Hydrologists and other users need to know the uncertainty of the satellite rainfall datasets across the range

of time–space scales over the whole domain of the dataset. Here, ‘‘uncertainty’’ refers to the general concept

of the ‘‘deviation’’ of an estimate from the reference (or ground truth) where the deviation may be defined in

multiple ways. This uncertainty information can provide insight to the user on the realistic limits of utility,

such as hydrologic predictability, which can be achieved with these satellite rainfall datasets. However, sat-

ellite rainfall uncertainty estimation requires ground validation (GV) precipitation data. On the other hand,

satellite data will be most useful over regions that lack GV data, for example developing countries. This paper

addresses the open issues for developing an appropriate uncertainty transfer scheme that can routinely es-

timate various uncertainty metrics across the globe by leveraging a combination of spatially dense GV data

and temporally sparse surrogate (or proxy) GV data, such as the Tropical Rainfall Measuring Mission

(TRMM) Precipitation Radar and the Global Precipitation Measurement (GPM) mission dual-frequency

precipitation radar. The TRMM Multisatellite Precipitation Analysis (TMPA) products over the United

States spanning a record of 6 yr are used as a representative example of satellite rainfall. It is shown that there

exists a quantifiable spatial structure in the uncertainty of satellite data for spatial interpolation. Probabilistic

analysis of sampling offered by the existing constellation of passive microwave sensors indicate that transfer of

uncertainty for hydrologic applications may be effective at daily time scales or higher during the GPM era.

Finally, a commonly used spatial interpolation technique (kriging), which leverages the spatial correlation of

estimation uncertainty, is assessed at climatologic, seasonal, monthly, and weekly time scales. It is found that

the effectiveness of kriging is sensitive to the type of uncertainty metric, time scale of transfer, and the density

of GV data within the transfer domain. Transfer accuracy is lowest at weekly time scales with the error

doubling from monthly to weekly. However, at very low GV data density (,20% of the domain), the transfer

accuracy is too low to show any distinction as a function of the time scale of transfer.

1. Introduction

Precipitation is arguably one of the most important

components of the water cycle over land. One study

shows that almost 70%–80% of the variability in the

terrestrial water cycle can be explained from the spatio-

temporal variability observed in precipitation over land

(Syed et al. 2004). Existing missions such as the Trop-

ical Rainfall Measurement Mission (TRMM) provide

vital precipitation information for water cycle studies

(Huffman et al. 2007). Furthermore, planned missions

such as the Global Precipitation Measurement (GPM)

mission will provide a global hydrologic remote sensing

observatory to advance the use of precipitation sensing

technologies in scientific inquiry into hydrologic pro-

cesses (Krajewski et al. 2006). With the global and more

frequent precipitation observational capability planned

for GPM, such precipitation measuring satellite mis-

sions permit us to refine knowledge from physical and

hydrologic models that can then be converted to local

and global strategies for water resources management

(Voisin et al. 2008; Hossain et al. 2007). (Hereafter, be-

cause our focus is on liquid precipitation, the term
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‘‘rainfall’’ will be used as shorthand for ‘‘precipitation’’

for convenience.)

However, a crucial challenge in advancing satellite

rainfall-based surface hydrologic prediction, is the need

to bridge the scale incongruity between overland hy-

drologic processes that evolve at small scales (i.e., ,1 h

and ,5 km) and operational satellite precipitation data-

sets that will always be restricted to coarser scales from

passive microwave sensors (i.e., .1 h and .5 km; Hossain

and Lettenmaier 2006; Hossain and Huffman 2008).

There are two paths that have historically been followed

as a response to this scale incongruity: 1) apply satellite

rainfall data available at the native scale for hydrologic

prediction (e.g., Harris and Hossain 2008; Su et al. 2008;

Voisin et al. 2008); and 2) apply spatial and spatiotem-

poral disaggregation (or downscaling) techniques to

resolve satellite rainfall data at the required smaller

space–time scales for hydrologic prediction (e.g., Forman

et al. 2008; Bindlish and Barros 2000). Each option

leads to nonnegligible uncertainty in hydrologic simu-

lation. In the first case, the major source of this un-

certainty is due to the algorithmic and sampling

uncertainty [for passive microwave (PMW) sensors] of

satellite rainfall data at the native scale. In the second

case, the primary source of uncertainty is due to the

statistical disaggregation technique that further propa-

gates the native scale uncertainty to subgrid uncertainty

in ways that are not well understood (see, e.g., Rahman

et al. 2009). Either way, hydrologists and other users

need to know the uncertainty of the satellite rainfall

datasets across the range of time–space scales over the

whole domain of the dataset. This uncertainty can pro-

vide insightful information to the user on the realistic

limits of utility that can be achieved with satellite rainfall

datasets, for example for hydrologic predictability (Hong

et al. 2006), on which we will focus in this paper. While

representing the uncertainty structure of satellite rainfall

as a function of scale against quality-controlled ground

validation datasets remains a critical research problem for

GPM, therein lays a paradox. Satellite rainfall uncertainty

estimation requires ground validation (GV) precipitation

data. On the other hand, satellite data will be most useful

over ungauged regions in the developing world (Tang and

Hossain 2009).

In situ rainfall information from rain gauge networks

is generally considered the standard choice for GV

data (Villarini and Krajewski 2007; Habib et al. 2004;

McCollum et al. 2002). Such data is often referred to

as ‘‘reference’’ or ‘‘truth.’’ However, in situ gauges are

point measurements and unless there exists a dense net-

work to adequately capture the space–time variability of

rainfall process, its use for validating areal-averaged

satellite rainfall data for surface hydrologic processes

remains questionable (Ciach and Krajewski 1999). The

work of Gebremichael et al. (2003) clearly demonstrates

the sensitivity of satellite rainfall uncertainty estimation

to gauge density. Thus, in most regions across the globe

without adequate in situ rain gauge coverage, the un-

certainty associated with satellite data have been pa-

rameterized to sampling configuration of the sensors at

this stage (Li et al. 1998; Huffman 1997). Some examples

of this parameterization are the Global Precipitation

Climatology Project (GPCP; Huffman 2005, 1997) dataset

and the TRMM Multisatellite Precipitation Algorithm

(TMPA; Huffman et al. 2007) that now provide an estimate

of the root-mean-squared error (RMSE) of the satellite

rainfall estimates on the basis of sampling pattern and the

period of rainfall accumulation of interest to the user.

While such parameterized methodologies for esti-

mating uncertainty have been useful in providing users

with a level of confidence associated with satellite rain-

fall estimates, such uncertainty is essentially a standard

deviation measure of sampling uncertainty. Many of these

uncertainty methodologies are based on the conceptual

argument that uncertainty (i.e., standard deviation sE)

can be related directly or inversely to observation interval

Dt, observation period T, spatial averaging area A, and

rain rate R:

s
E

5 f
1

R
,

1

A
,

Dt

T
, parameters

� �
, (1)

as expressed by Steiner et al. (2003), among others.

In many cases, the functional form of this ‘‘predicted’’

uncertainty is not benchmarked to the realities of the

ground observations and hence may not provide a rea-

sonable assessment in indicating the expected reliabil-

ity for water cycle studies (Gebremichael et al. 2010).

Recently, several other parameterized methodologies

have evolved based on data assimilation approaches [e.g.,

Kalman filtering in the Global Satellite Mapping of

Precipitation (GSMaP) product of Ushio et al. 2009]. In

these approaches, an estimate of uncertainty that is

available is essentially related to the methodology of

the filtering technique and does not necessarily indicate

the actual level of agreement with GV rainfall data. In

some instances, however, the uncertainty is estimated

by comparing the output of a wide-coverage technique

[such as infrared (IR) advected PMW] to a more local-

ized but higher accuracy product (such as PMW only;

Ushio et al. 2009).

There now exists a sufficient body of knowledge on

uncertainty metrics and models that we should consider

a transition to a more hydrologically relevant frame-

work in anticipation of the satellite data-rich scenario

of GPM. Although existing uncertainty metrics and
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uncertainty models represent an important first step,

most treat uncertainty as a single measure representa-

tive for a large space and time domain. This unidimen-

sional uncertainty measure is invariably the standard

deviation of uncertainty [e.g., Eq. (1)]. However, a sat-

ellite rainfall product with a sE of X mm h21 over a large

space–time domain can be represented by a multiplicity

of distinct spatiotemporal patterns of rainfall, each

having a distinct response in surface hydrology (see, e.g.,

Lee and Anagnostou 2004).

What is therefore needed now for advancing the hy-

drological application of GPM is a practical methodol-

ogy that can routinely ‘‘transfer’’ a set of hydrologically

relevant uncertainty metrics from locations/regions hav-

ing GV-based values to ungauged regions for improv-

ing water cycle studies or water resources management.

Here, transfer is akin to spatial interpolation at non-

sampled locations (grid boxes) using measurements from

sampled but sparse locations (grid boxes). Figure 1 pro-

vides a conceptual rendition of this idea of the transfer

of uncertainty based on the concept of spatial interpo-

lation (reprinted from Tang and Hossain 2009).

This paper analyzes the open issues for developing an

appropriate uncertainty transfer scheme that can rou-

tinely estimate various uncertainty metrics across the

globe by leveraging a combination of spatially dense GV

data and temporally sparse surrogate (or proxy) GV

data from sources such as the TRMM-like Precipitation

Radar (PR) sensor anticipated during the GPM era. The

TMPA products 3B42RT and 3B41RT (Huffman et al.

2007) over the United States spanning a record of 6 yr

are used as a representative example of satellite rainfall.

The paper presents a probabilistic analysis of sampling

offered by the existing constellation of precipitation-

relevant satellite PMW sensors to understand the cur-

rent and expected spatial coverage during the GPM

era. A commonly used spatial interpolation technique

(kriging), that leverages the spatial correlation of rain-

fall estimation uncertainty, is then investigated for its

effectiveness. This effectiveness is cast in the context

of the expected sparseness in GV data expected from

TRMM and GPM missions. Finally, important issues

needing closure are summarized on the basis of our in-

vestigation of the transfer of satellite rainfall uncertainty

from GV to non-GV regions. To avoid confusion among

readers, hereafter, the terms ‘‘uncertainty’’ or ‘‘uncer-

tainty metric’’ will be used to define the quality indices

of the satellite rainfall estimate derived at GV locations

[such as bias, RMSE, and probability of detection (POD)].

The terms ‘‘error’’ or ‘‘transfer error’’ will be used specif-

ically to define the quality of the transfer (spatial inter-

polation) process of uncertainty metrics at non-GV

locations.

2. Spatial correlation of satellite rainfall
uncertainty

The initial requirement for an effective transfer (spa-

tial interpolation) scheme is the presence of a quanti-

fiable spatial structure (or spatial correlation) in the

variable being transferred. Therefore, we first inves-

tigated the presence of spatial correlation of satellite

rainfall uncertainty. First, to minimize the error of the

GV rainfall data, we used the National Centers for En-

vironmental Prediction (NCEP) 4-km Stage IV Next

Generation Weather Radar (NEXRAD) rainfall data

that is adjusted to precipitation gauges and is conve-

niently available as a quality-controlled data mosaic

over the United States (Lin and Mitchell 2005; Fulton

et al. 1998). TMPA’s near-real-time satellite rainfall

data products from PMW-calibrated IR and merged

PMW–IR estimates (labeled 3B41RT and 3B42RT, re-

spectively; Huffman et al. 2007) were used as the satel-

lite rainfall data. The data for GV and satellite rainfall

data spanned 6 yr from 2002 to 2007. The NEXRAD

Stage IV GV rainfall data were first remapped to 0.258

3-hourly resolution for consistency with the native scale

of the satellite rainfall products. 3B41RT data were also

remapped at the 3-hourly time scale. After a thorough

quality assessment (QA) and quality control (QC), the

datasets were organized by season and various regions

for the years 2002–07.

FIG. 1. Conceptual rendition of the idea of ‘‘transfer’’ of uncer-

tainty information from a gauged (GV) location to an ungauged

(non GV) location. (top) The notion of ‘‘uncertainty’’ of satellite

rainfall data (in this case, the scalar deviation of magnitudes is

termed uncertainty although there are many other types of un-

certainty). (bottom) The known uncertainty [(middle) derived

from GV sites shown in black] would be transferred to the non-GV

[(right) ungauged sites shown in gray]. [Reprinted from Tang and

Hossain (2009).]
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To study how the satellite rainfall uncertainty is spa-

tially dependent (or correlated), Tang and Hossain (2009)

derived the spatial correlograms for each uncertainty

metric using the TMPA dataset described above. Herein,

the correlation length (CL), where the autocorrelation

dropped to 1/e (e-folding distance), was first computed.

Next, the empirical semivariograms were derived and

then idealized as exponential semivariogram functions:

g(h) 5 c
0
1 c(1� e�h/a), (2)

where g(h) is the semivariance at spatial lag ‘‘h,’’

c0 represents the nugget variance (i.e., the minimum

variability observed or the ‘‘noise’’ level at a separation

distance of zero), c is the sill variance (when spatial lag

is infinite), and a is the correlation length. Figure 2 pro-

vides a summary of the ‘‘climatologic’’ correlation length

(e-folding distance) by season for various uncertainty met-

rics of the satellite rainfall products such as POD for rain,

POD for no rain, false-alarm ratio (FAR), RMSE, and

bias. Herein, climatologic refers to the mean error de-

rived from the entire 6 yr of data. The appendix provides

the mathematical formulation for the error metrics.

Figure 2 clearly demonstrates that, at the climatologic

(long term) time scale, satellite rainfall uncertainty can

FIG. 2. Correlation length of uncertainty metrics at climatologic time scales for (top) 3B41RT

and (bottom) 3B42RT as a function of season. Note the distance unit ( y axis) is 0.258 grid boxes

(;25 km). (from left to right) The vertical bars for each season are shown in order as Bias,

RMSE, POD rain, POD no-rain, and FAR (Tang and Hossain 2009).
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have distinct spatial organization that can be leveraged

for spatial interpolation. The correlation lengths for a

given uncertainty metric as a function of season appear

to be at least 3–5 (0.258) TMPA grid boxes long. As

a rule of thumb, this indicates that the transfer of error

from sampled locations may be effective up to 4 grid

boxes (;100 km) away. Another interesting feature that

is revealed in this figure is the significantly higher cor-

relation lengths (and spatial organization) observed for

3B41RT than 3B42RT. This can be traced to the sources

of the specific satellite estimates: 3B41RT is uniformly

computed using a calibration of IR brightness temper-

atures to a combined PMW estimate. The statistics of

the uncertainty are spatially very homogenous since they

originate from a single probability distribution at re-

gional scales. On the other hand, 3B42RT uses a variety

of PMW rainfall estimates with gaps filled during a 3-h

sampling period with the 3B41RT estimate ‘‘as is.’’ This

fill-in causes the 3B42RT data to draw on two different

probability distributions in space for uncertainty statis-

tics (IR and PMW); the increased spatial heterogeneity

in the uncertainty structure leads to a shorter correla-

tion length. This analysis shows that any uncertainty

transfer scheme should benefit from improvements in

the 3B42RT product to make it statistically more ho-

mogenous in space.

3. Spatial coverage offered by current constellation
of PMW sensors

Having observed a distinct spatial organization of

uncertainty, we also need to understand the space–time

dimension that is implicit in the concept of real-time

uncertainty transfer over non-GV regions. The space

dimension pertains to the regions with spatially sparse

GV data due to inadequate in situ gauge data (such

as that shown in Fig. 1), which are, of course, recorded

at fixed positions. The time dimension pertains to the

temporally sparse case of using the most accurate rain-

fall source currently available from space, such as the

orbiting TRMM PR as ‘‘proxy’’ GV data, over regions

where there is no ground-based GV data. Depending

on how we define GV data, there can be several types

of GV ‘‘voids’’ where uncertainty information will

be need to be estimated for GPM. For example, if we

rely on the ‘‘conventional’’ ground source for GV data,

voids will be represented by large and stationary re-

gions having little or no instrumentation. On the other

hand, if a proxy for GV is defined from orbiting sen-

sors, such as the TRMM PR, or even a highly accurate

PMW sensor, then voids will be numerous grid boxes

dynamically changing in location with each satellite

orbit.

The left panels of Fig. 3 shows the probability of

a 3B42RT grid box (0.258) having a conical-scanning

PMW overpass [comprising either the TRMM Micro-

wave Imager (TMI), Special Sensor Microwave Imager

(SSM/I), or the Advanced Microwave Scanning Radi-

ometer (AMSR)] in 3-, 6-, and 24-h windows. In the right

panels of Fig. 3, the probability of a 3B42RT grid box

having a TMI scan is shown. These probability maps

were created using a 100-day period of any PMW sensor

from the 2007–08 period. It is clear from the maps that

the spatiotemporal dynamics of the location of PMW

scans is strongly sensitive to the accumulation periods

of hydrologic relevance and one that must be investi-

gated carefully in order to identify how an uncertainty

transfer scheme may work using proxy-GV data.

At time scales of 3–6 h, there are vast regions lacking

conventional surface GV data in the tropics of Africa,

Asia, and South America where the probability of hav-

ing a PMW scan is less than 50% (Fig. 3). This makes the

estimation of uncertainty through transfer from GV

regions at these locations more important for hydrologic

applications. While GPM may improve the coverage of

PMW scans, such large voids with a low probability for

a PMW scan will still remain over these regions due the

continued dependence on polar-orbiting sensors. Since

gauge-based GV is sparse for these tropical regions at

hydrologic scales, proxy GV data from space-borne sen-

sors (such as that expected from the GPM dual-frequency

precipitation radar) may be one of the few ways to ex-

plore if the transfer of uncertainty is realistic. For the

higher-latitude land regions (which comprise mostly

the industrialized world with reasonably gauged fixed-

location GV instrumentation), the uncertainty could be

transferred from the stationary GV regions. The right

panels of Fig. 3 also show that the probability of having

a TMI scan also happens to be lowest (0.1–0.2 in 3 h)

over the tropical regions. However, over a 24-h time

period there is considerably higher probability of hav-

ing such a scan (;0.7–0.8). This implies that the practi-

cable time scale for transferring uncertainty metrics

over the tropics from a sun-asynchronous PMW sensor

is at least 24 h.

4. Transfer of uncertainty by spatial interpolation

Tang and Hossain (2009) recently showed that most

uncertainty metrics (such as bias and POD) are ame-

nable to the transfer from gauged to ungauged locations

using spatial interpolation at climatologic (6-yr average)

time scales. The method of ordinary kriging (OK) was

used for testing the transfer of uncertainty metrics. The

OK is the most common (and one of the simplest) spa-

tial interpolation estimator used to find the best linear
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unbiased estimate of a second-order stationary random

field with an unknown constant mean as follows:

Ẑ(x
0
) 5�

n

i51
l

i
Z(x

i
), (3)

where Ẑ(x0) is the kriging estimate at location x0; Z(xi) is

the sampled value at location xi; li is the weighting factor

for Z(xi) (summing to 1 over all i), and n is the number of

sampled (known) locations. Kriging methods have al-

ready been used for spatial interpolation of precipitation

FIG. 3. (left) Probability of a 3B42RT 0.258 grid box having a PMW scan from either TMI, SSM/Is, or AMSR for (top) 3-, (middle)

6-, and (bottom) 24-h periods. (right) As at (left), but for TMI only.
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from point gauge data with considerable success (see,

e.g., Seo et al. 1990; Krajewski 1987).

Using the same 6-yr database of high-resolution sat-

ellite rainfall data from TMPA over the central United

States, the OK method was applied to assess the effec-

tiveness of transfer of uncertainty metrics from GV to

non-GV grid boxes, using correlation as the main as-

sessment metric. Assuming that only 50% of the region

(i.e., grid boxes) was gauged (i.e., having access to GV

data), OK was implemented to estimate uncertainty

metrics at the other 50% of the (non GV) region. Se-

lection of ‘‘GV’’ grid boxes was random and hence each

FIG. 4. (a) Transfer of bias of 3B41RT from gauged to ungauged locations. (top left) The true field of uncertainty in bias based on 6 yr of

data. (bottom left) The randomly selected 50% of the region for computation of the empirical variogram and correlation length. (bottom

middle) The interpolated field of uncertainty based on kriging for the other 50% of the region that was assumed to have no GV. (bottom

right) The estimation of the bias at the non-GV grid boxes using ordinary kriging. (b) Histograms of kriging error and actual error for FAR

over ungauged grid boxes. Here, kriging error (black) is defined as the difference between transferred (or kriged) FAR and the actual

FAR derived from GV data. The actual GV-based FAR is shown in pink.
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kriging realization was repeated 10 times in a Monte

Carlo (MC) fashion to derive an average scenario. The

semivariogram and correlation lengths were computed

on the basis of the 50% of the assumed ‘‘available’’ data.

Spatial correlograms for each uncertainty metric were

derived and the CL, where the autocorrelation dropped

to 1/e, was computed. The empirical semivariograms

were derived and then idealized as exponential semi-

variogram functions.

Tang and Hossain (2009) showed that the transfer

of uncertainty metrics using kriging did not lead to

wholesale changes in the pattern of the uncertainty field

when compared to the true climatologic uncertainty field

(see top-left and top-right panels of Fig. 4a). Overall,

their assessment indicated that the transfer uncertainty

metrics from a gauged to an ungauged location through

spatial interpolation have merit for selected uncertainty

metrics. In Fig. 4b, the histograms for ‘‘kriging error’’

and actual uncertainty (over ungauged grid boxes)

demonstrate the accuracy of the transfer method for

FAR. Here, the kriging error refers to the difference

between ‘‘kriged uncertainty’’ and the ‘‘actual uncer-

tainty,’’ whereas the actual uncertainty is the ‘‘measured

uncertainty.’’ In other words, the kriging error is the es-

timation uncertainty while the actual uncertainty is the

true dataset uncertainty. The actual GV-based uncer-

tainty (i.e., FAR in this case) is shown in pink while the

black line represents the histogram for kriging error. The

histograms for the kriging error are considerably lower,

by almost an order of magnitude, compared to the actual

GV-based uncertainty and are almost unbiased.

However, a point to note is that the work of Tang and

Hossain (2009) demonstrated the utility of transfer only

at the climatologic time scales with a high degree of GV

coverage (50%). Also, at the climatologic scales, the

spatial structure of uncertainty can be expected to be

well defined and reasonably homogenous (longer cor-

relation lengths of uncertainty that lead to high accuracy

for kriging; see Fig. 2). Furthermore, the use of the

correlation measure may not necessary reflect the most

rigorous assessment of accuracy for the transfer of error

metrics. For example, there may be a high correlation

even with a large systematic bias in the ‘‘kriged’’ error

metric at non-GV grid boxes. In this study, we therefore

explored the effectiveness of kriging at seasonal (and

lower) time scales and modeled how the effectiveness of

transfer is impacted by GV data coverage. We also as-

sessed the accuracy of transfer using marginal and

noncorrelation type measures.

Figure 5 shows how GV coverage (as randomly lo-

cated grid boxes over a region) impacts the accuracy of

the kriging-based transfer of uncertainty over the grid

boxes lacking GV data for two different time scales

(climatologic and seasonal in the left and right panels,

respectively). The exercise was performed in a man-

ner similar to Tang and Hossain (2009) over the central

United States. The GV coverage was systematically

varied from 10% to 90% and the effectiveness of kriging

of uncertainty metric at locations lacking GV data was

assessed using the correlation measure with in situ (sam-

pled) uncertainty metric. For the seasonal case, the sum-

mer months of June–August in 2007 over the central

United States was chosen as an example and one seasonal

variogram was modeled.

The most striking feature of the GV-density study is

that the effectiveness of an uncertainty transfer scheme,

specifically kriging in this example, worsens consider-

ably at low GV coverage (correlation dropping to under

0.7) as time scales shorten. Qualitatively, this result is

expected, and clearly indicates that if a transfer scheme

for estimating uncertainty metrics is finer than seasonal

scale (ranging from 3–6-hourly to weekly–monthly), the

effectiveness for uncertainty transfer would intuitively

worsen further with kriging. A similar assessment can be

made from Fig. 3 on the potential of kriging using dy-

namically located sun-asynchronous PMW scans (such

as TMI) as proxy-GV data. At 3–6 h, the probability of

a grid box being scanned by a sun-asynchronous TMI

ranges from 0.1 to 0.4. In other words, this is equivalent

to a large region having a fixed GV coverage of 10%–

40%. Naturally therefore, the effectiveness of OK over

FIG. 5. Impact of GV coverage (or sparseness) on the effec-

tiveness of uncertainty metric transfer by ordinary kriging at the

(top) climatologic scale and (bottom) seasonal scale for the central

United States. Computed with TMPA data collected for a 100-day

period (May–August) in 2007–08.
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the tropics using proxy-GV data in the GPM era may not

be any better at time scales shorter than a day.

To demonstrate a more rigorous level of accuracy of

the interpolation scheme beyond the correlation mea-

sure, we reviewed our kriging simulations for two more

scenarios: 1) transfer of the uncertainty metric at monthly

time scales and 2) transfer of the uncertainty metric at

weekly time scales. For each scenario, we performed

a more in-depth assessment for the months of summer

and weeks of June 2007. We used mean error, in place

of correlation measure, to assess the accuracy of the

transfer, using the following error definitions:

Error 5
[(Interpolated uncertainty metric)� (Actual uncertainty metric)]

(Actual uncertainty metric)
, (4)

Mean error 5 hError(non�GV grid boxes)i,
(5)

Std dev of error 5 s[Error(non�GV grid boxes)].

(6)

Tables 1 and 2 summarize the assessment of OK

method using mean relative error [Eq. (5)] as the main

assessment metric for the transfer of uncertainty met-

rics: BIAS, RMSE, POD, and FAR. For each uncer-

tainty metric both the mean and standard deviation of

error of transfer is shown as measures of accuracy and

precision, respectively. It is observed that, unlike cor-

relation measure, the mean and standard deviation of

error reveal a somewhat different picture on the utility

of OK method. The error metric BIAS has the lowest

accuracy ranging from 50% error (at 10% missing GV

grid boxes) to 100% error (at 90% missing GV grid

boxes) for a monthly time scale. For a weekly time

scale, the mean error ranges from 80% (at 10% missing

GV grid boxes) to 120% (at 90% missing GV grid

boxes). On the other hand, POD, followed by RMSE

TABLE 1. Assessment of the transfer of uncertainty metrics [Eqs. (4)–(6)] at monthly time scales (for summer months of June–August).

Month

Percentage of region

lacking GV data

Bias RMSE PODRAIN FAR

Mean

error

Std dev

of error

Mean

error

Std dev

of error

Mean

error

Std dev

of error

Mean

error

Std dev

of error

June 10 0.53 0.78 0.19 0.18 0.12 0.10 0.22 0.27

20 0.64 0.86 0.22 0.29 0.13 0.13 0.23 0.25

30 0.60 0.93 0.21 0.24 0.13 0.12 0.24 0.31

40 0.66 1.00 0.22 0.24 0.13 0.14 0.22 0.26

50 0.68 1.08 0.23 0.20 0.14 0.16 0.24 0.37

60 0.73 1.12 0.25 0.27 0.14 0.16 0.25 0.33

70 0.75 1.11 0.26 0.25 0.15 0.15 0.26 0.35

80 0.85 1.24 0.27 0.30 0.16 0.16 0.28 0.40

90 1.00 1.43 0.31 0.29 0.19 0.23 0.31 0.47

July 10 0.54 0.71 0.20 0.20 0.16 0.15 0.32 0.43

20 0.64 0.98 0.22 0.22 0.17 0.18 0.27 0.31

30 0.67 0.98 0.22 0.21 0.16 0.19 0.28 0.32

40 0.61 0.85 0.23 0.24 0.18 0.22 0.31 0.41

50 0.67 1.01 0.25 0.24 0.18 0.21 0.31 0.39

60 0.72 1.09 0.26 0.27 0.17 0.19 0.32 0.40

70 0.80 1.13 0.26 0.24 0.19 0.24 0.33 0.44

80 0.87 1.32 0.30 0.34 0.21 0.25 0.35 0.48

90 0.99 1.46 0.33 0.34 0.24 0.30 0.39 0.51

August 10 0.47 0.79 0.21 0.22 0.14 0.17 0.28 0.47

20 0.56 0.84 0.24 0.32 0.16 0.19 0.28 0.41

30 0.52 0.78 0.23 0.28 0.15 0.17 0.28 0.35

40 0.62 1.00 0.24 0.30 0.15 0.17 0.27 0.34

50 0.62 0.95 0.25 0.34 0.16 0.21 0.27 0.35

60 0.70 1.09 0.26 0.30 0.17 0.21 0.27 0.34

70 0.69 1.05 0.30 0.36 0.17 0.20 0.29 0.40

80 0.78 1.16 0.36 0.49 0.18 0.20 0.31 0.43

90 0.83 1.19 0.35 0.42 0.21 0.23 0.33 0.50
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and FAR, have the highest accuracy for transfer of

error metrics at both time scales according the mean

relative error measure. As expected, the precision of

the kriging-based transfer scheme degrades at shorter

time scales. At very low GV coverage (,20%) the stan-

dard deviation of transfer error is high (.100%), indi-

cating poor performance of the OK method regardless

of the time scale at which the uncertainty metrics are

transferred.

5. Conclusions

Current open issues on uncertainty transfer

In light of the impact of GV coverage and the time

scale on effectiveness of uncertainty transfer, we now

need to consider the following: 1) explore other tech-

niques for transfer that are more sophisticated than or-

dinary kriging; and 2) understand how we can leverage

the methodological error estimate that is routinely avail-

able from uncertainty models such as Huffman (1997)

and the Kalman filtering techniques that many satellite

rainfall data algorithms use (e.g., Ushio et al. 2009). In

our interpolation method, the spatial structure of rain-

fall has not been used alongside that of estimation un-

certainty. Because the two (rainfall and its estimation

uncertainty) are related, it may be worthwhile to pursue

cokriging-type conditional interpolation schemes that

leverage existing information on the satellite rainfall

distribution as an extra constraint.

Also, for spatial interpolation methods, we should

keep in mind that traditional geostatistical tools are

pattern filling methods based on the spatial correlation

exhibited by two points in space separated by a lag h.

The variogram computed using this two-point geosta-

tistical approach may simplify the spatial patterns

manifested by the complex precipitation systems and

surface emissivity that dictate the accuracy of satel-

lite rainfall products at hydrologic time scales over

land. For the case of spatial interpolation of ground-

water contamination, it has recently been demon-

strated that the use of a highly nonlinear pattern

learning technique in the form of an artificial neural

network (ANN) can yield significantly superior results

TABLE 2. As in Table 1, but at weekly time scales (for June weeks only).

Week

no.

Percentage of region

lacking GV data

Bias RMSE PODRAIN FAR

Mean

error

Std dev

of error

Mean

error

Std dev

of error

Mean

error

Std dev

of error

Mean

error

Std dev

of error

1 10 0.78 1.13 0.45 0.73 0.27 0.29 0.35 0.32

20 0.88 1.17 0.46 0.68 0.28 0.29 0.35 0.32

30 0.87 1.16 0.41 0.53 0.31 0.34 0.36 0.33

40 0.86 1.15 0.48 0.76 0.33 0.35 0.35 0.31

50 0.97 1.25 0.41 0.54 0.33 0.35 0.34 0.30

60 0.93 1.15 0.53 0.83 0.33 0.36 0.38 0.34

70 1.05 1.35 0.52 0.80 0.34 0.36 0.38 0.32

80 0.98 1.15 0.56 0.81 0.37 0.38 0.38 0.33

90 1.15 1.37 0.74 1.06 0.39 0.38 0.40 0.38

2 10 0.85 1.23 0.39 0.77 0.23 0.25 0.35 0.31

20 0.81 1.15 0.37 0.64 0.25 0.27 0.34 0.32

30 0.82 1.20 0.47 0.78 0.26 0.29 0.37 0.37

40 0.80 1.19 0.47 0.77 0.27 0.31 0.37 0.37

50 0.90 1.33 0.47 0.75 0.26 0.27 0.35 0.33

60 0.94 1.28 0.48 0.78 0.28 0.31 0.36 0.32

70 0.94 1.29 0.51 0.84 0.29 0.32 0.38 0.36

80 1.08 1.45 0.61 0.96 0.29 0.33 0.38 0.38

90 1.11 1.46 0.68 1.06 0.31 0.38 0.40 0.37

3 10 0.76 1.04 0.42 0.56 0.28 0.33 0.31 0.28

20 0.80 1.25 0.50 0.77 0.28 0.29 0.32 0.29

30 0.79 1.25 0.54 0.91 0.31 0.34 0.33 0.30

40 0.82 1.19 0.52 0.80 0.32 0.37 0.32 0.29

50 0.83 1.18 0.55 0.93 0.31 0.33 0.32 0.32

60 0.86 1.26 0.52 0.75 0.32 0.36 0.33 0.32

70 0.94 1.32 0.58 0.90 0.32 0.34 0.33 0.33

80 0.98 1.30 0.60 0.88 0.35 0.38 0.34 0.35

90 1.09 1.43 0.73 1.16 0.39 0.44 0.39 0.38
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under the same set of constraints when compared to

the ordinary kriging method (Chowdhury et al. 2009).

Thus, the use of nonlinear mapping techniques is worth

an investigation.

Another aspect to keep in mind is the nature of use

of each uncertainty metrics. Different users will have

naturally different needs. Hydrology users engaged in

flash flood or monsoonal flood forecasting will probably

be more interested in the PODRAIN (to understand the

accuracy in estimating peak flow), FAR (to minimize

false alarms in flood warnings), and BIAS (to minimize

under/overestimation in river stage) for each grid box

(see Harris and Hossain 2008; Hossain and Anagnostou

2004). Hydrologists engaged in continuous simulation

based on soil moisture accounting for drought moni-

toring and water management would probably focus

more on PODNORAIN (to minimize uncertainty in un-

derestimating the soil wetness and evapotranspiration)

for each grid box. On the other hand, crop yield and

famine forecasters would like to focus more on the

seasonal bias over a large agricultural zone during

the growing season as the important indicator of re-

liability of a satellite rainfall product (Dr. C. Funk,

University of California, Santa Barbara, 2008, per-

sonal communication).

Developing an uncertainty transfer scheme that is

amenable to operational implementation for estimation

of uncertainty metrics for satellite rainfall data over re-

gions lacking surface GV data is a necessary requirement

for current and future satellite precipitation missions

to advance their hydrologic potential. Hydrologist users

around the world need to have a clear understanding

of the pros and cons of applying satellite rainfall data

for terrestrial hydrologic applications at a given scale if

the benefit of these missions is to be maximized. One

way of facilitating the understanding is through the

routine provision of various measures of uncertainty

that are of hydrologic relevance. If this uncertainty in-

formation is provided alongside the global and more

frequent precipitation observational capability planned

in GPM, it will permit us to refine knowledge from

physical and hydrologic models that can then be con-

verted to local and global strategies for water resources

management. Work is currently undergoing to address

some of the open issues discussed above and we hope to

report on them in the near future.
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APPENDIX

Formulation of Uncertainty Metrics

Consider the 2 3 2 contingency table (Table A1) of

hits and misses associated with satellite rainfall estimates:

Probability of Detection for Rain (POD
RAIN

):

N
A

N
A

1 N
B

, (A1)

Probability of Detection for No Rain (POD
NORAIN

):

N
D

N
D

1 N
C

, (A2)

False Alarm Ratio (FAR):
N

B

N
B

1 N
A

. (A3)

The PODRAIN essentially defines how often a satellite

rainfall estimate is likely to correctly detect grid boxes

as rainy according to the reference or ground validation

data. Similarly, PODNORAIN defines how often a satel-

lite rainfall estimate is likely to correctly detect a non-

rainy grid box as nonrainy according to the ground

validation data.
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