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ABSTRACT

Land surface (or ‘‘skin’’) temperature (LST) lies at the heart of the surface energy balance and is a key

variable in weather and climate models. In this research LST retrievals from the International Satellite Cloud

Climatology Project (ISCCP) are assimilated into the Noah land surface model and Catchment land surface

model (CLSM) using an ensemble-based, offline land data assimilation system. LST is described very dif-

ferently in the two models. A priori scaling and dynamic bias estimation approaches are applied because

satellite and model LSTs typically exhibit different mean values and variabilities. Performance is measured

against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations

Project at 48 stations. LST estimates from Noah and CLSM without data assimilation (‘‘open loop’’) are

comparable to each other and superior to ISCCP retrievals. For LST, the RMSE values are 4.9 K (CLSM),

5.5 K (Noah), and 7.6 K (ISCCP), and the anomaly correlation coefficients (R) are 0.61 (CLSM), 0.63 (Noah),

and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements

(over an open loop, as indicated by nonoverlapping 95% confidence intervals) of up to 0.7 K in RMSE and

0.05 in the anomaly R. The skill of the latent and sensible heat flux estimates from the assimilation integrations

is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux,

however, can be significantly worse than open loop estimates. Provided the assimilation system is properly

adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both

models.

1. Introduction

Land surface conditions are intimately connected

with the global climate system and have been associ-

ated, through different pathways, with atmospheric
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predictability. Land surface temperature (LST) lies at

the heart of the surface energy balance and is therefore

a key variable in weather and climate models (see sec-

tion 2 for more on the specific definition of LST used

here). LST influences the latent and sensible heat fluxes

to the atmosphere through which it affects the planetary

boundary layer and atmospheric convection. LST also

plays an important role in the assimilation of atmo-

spheric remote sensing observations. Because forward

radiative transfer modeling for surface-sensitive (win-

dow) channels requires accurate information about land

surface conditions, radiance observations from window

channels are typically not assimilated. Accurate LST

estimation is therefore critical to improving our esti-

mates of the surface water, energy, and radiation bal-

ance as well as atmospheric temperature and humidity

profiles, which in turn are all critical to improving

weather and climate forecast accuracy.

Satellite retrievals of LST (also referred to as the skin

temperature) are available from a variety of polar-

orbiting and geostationary platforms carrying infrared

and microwave sensors (Aires et al. 2004; Jin 2004; Minnis

and Khaiyer 2000; Pinheiro et al. 2004; Rossow and

Schiffer 1991; 1999; Trigo and Viterbo 2003; Wan and Li

1997). Land surface models (driven by observed meteo-

rological forcing data or coupled to an atmospheric

model) offer estimates of global land surface conditions,

including LST. Errors in the forcing fields, however, along

with the imperfect parameterization of land–atmosphere

interactions can lead to considerable drifts in modeled

land surface states. Land data assimilation systems com-

bine the complementary information from modeled and

observed land surface fields and produce dynamically

consistent, spatially complete and temporally continuous

estimates of global land surface conditions. Assimilating

LST retrievals into a land surface model should, in con-

cept, improve model estimates of land surface conditions.

There has been considerable progress in the meth-

odological development and application of land data

assimilation algorithms (Andreadis and Lettenmaier

2006; Balsamo et al. 2007; Crow and Wood 2003; Drusch

2007; Dunne and Entekhabi 2006; Mahfouf et al. 2009;

Margulis et al. 2002; Pan and Wood 2006; Reichle et al.

2009; Seuffert et al. 2003; Slater and Clark 2006; Walker

et al. 2001; Zaitchik and Rodell 2009; Zhou et al. 2006),

with ensemble-based Kalman filtering and smoothing

algorithms emerging as a promising method for land data

assimilation. Development and applications of land data

assimilation for global land surface and land–atmosphere

models, however, have largely focused on assimilating

observations of surface soil moisture, snow cover, and

snow water equivalent, with less effort devoted to LST

assimilation.

The goal of this study is to investigate the potential for

assimilating satellite retrievals of LST within a state-of-

the-art land surface data assimilation system. Specifi-

cally, LST retrievals from the International Satellite

Cloud Climatology Project (ISCCP) are assimilated into

the National Aeronautics and Space Administration’s

(NASA) Catchment land surface model (CLSM; Koster

et al. 2000) and into the Noah land surface model (Ek

et al. 2003) with the ensemble Kalman filter (EnKF)

developed at the NASA Global Modeling and Assimi-

lation Office (Reichle et al. 2009). For validation of the

assimilation products we use in situ observations from

the Coordinated Energy and Water Cycle Observations

Project (CEOP). We pay particular attention to the bias

between the observed and modeled LSTs and have fitted

the EnKF with several bias estimation algorithms de-

signed specifically to address LST biases (section 4c).

It will be shown that the assimilation algorithm must

be customized for the model-specific representation

of LST.

2. Background

Dating back to the early 1980s, infrared and microwave

sensors on geostationary and polar-orbiting platforms

have been used to retrieve LSTs. Given the extensive

global and multidecadal record of these satellite-based

LST retrievals, and given the importance of accurate

LST estimation in particular for global atmospheric data

assimilation systems, it is telling that the challenge of

operational LST assimilation has been largely unmet.

The difficulties of LST data assimilation are rooted in

the nature of LST retrievals and modeling. LST data

from retrievals and land surface models typically exhibit

strong biases that depend on the observation time and

location and that have been well documented (see, e.g.,

Jin et al. 1997; Trigo and Viterbo 2003; Jin 2004; see also

section 6 for examples). Biases arise for a variety of

reasons. For instance, LST modeling is fraught with

numerical stability problems because in nature the ef-

fective heat capacity associated with LST is very small.

Land modelers are thus forced to approximate the cor-

responding heat capacity as zero or to use a surface tem-

perature prognostic variable that represents more than

just a very thin layer. The first approach, used for ex-

ample in Noah, derives LST as a diagnostic variable

from the surface energy balance. The second approach,

used for example in CLSM, lumps the vegetation and

top few centimeters of soil matter into a single model

prognostic variable with a small but nonzero heat ca-

pacity. The latter approach is obviously at odds with

satellite retrievals of LST, which describe the tempera-

ture in a much shallower layer at the land–atmosphere
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interface (vegetation or soil, as viewed from the satellite

sensor). On the other hand, the zero-heat capacity ap-

proach requires an additional connection between the

diagnostic model LST variable and a model prognostic

variable to which data assimilation increments can be

applied (so that they can alter the model forecast). Ad-

ditional discrepancies between the LST observed by the

satellite and that computed by the land model stem from

the inability of global land models to resolve the land

surface at the same fine horizontal resolution as infrared

satellite sensors.

Satellite-based LST retrievals suffer from their own

set of disadvantages and problems. Infrared LST re-

trievals are only available under clear-sky conditions

and are notoriously prone to cloud contamination (Jin

2004). Microwave LST retrievals are available under

cloudy conditions (Aires et al. 2004) but depend on

uncertain estimates of microwave land surface emissiv-

ity. Both infrared and microwave LST retrievals depend

on knowledge of the atmospheric conditions above the

LST footprint. LST retrievals also depend on the look

angle, which is particularly important for retrievals at

high viewing angles (Minnis and Khaiyer 2000; Pinheiro

et al. 2004). The benefit of having a great variety and

long record of different platforms from which LST can

be retrieved is partly negated by the corresponding va-

riety of sensor characteristics and sensor-specific LST

retrieval algorithms that make it difficult to achieve

a homogeneous satellite LST record.

Additional complications arise when model and sat-

ellite LSTs are combined in a data assimilation system.

The strong seasonal and diurnal cycles of LST must be

considered because error characteristics may depend on

the time of day and season. Moreover, obvious problems

result when (clear sky) LST retrievals are assimilated

into a model at a time and location for which the model

state or forcing indicates cloudy conditions. Because the

infrared and microwave emissivities of the land surface

are not well known, it is difficult to compare the radio-

metric temperature observed by the satellite with the

physical temperature of the land model. Last but not

least, the dearth of validating in situ observations of LST

and land surface fluxes is a severe impediment to the

validation of data products from satellite observations,

modeling, and data assimilation.

One major development path is to assimilate LST

retrievals into a simple representation of the land sur-

face energy balance using an adjoint-based variational

assimilation approach (Castelli et al. 1999; Boni et al.

2001; Caparrini et al. 2004; Sini et al. 2008). This elegant

method requires only a minimal amount of ancillary

data and provides robust estimates of the evaporative

fraction. It is not, however, easily applicable to existing

global atmospheric or land data assimilation systems

because it is very difficult to develop and maintain ad-

joint models for the complex land surface model com-

ponents in such systems. Recently, Meng et al. (2009)

developed the adjoint model of just the surface energy

balance component of the Common Land Model. Using

the variational method, the authors assimilated in situ

LST observations from four AmeriFlux sites for up to

20 days and report improvements in evapotranspiration

estimates when verified against coincident in situ ob-

servations.

Other offline surface temperature assimilation studies

used filtering techniques. Kumar and Kaleita (2003)

used the extended Kalman filter to assimilate in situ

observations of surface soil temperature from a single

site for 1 month into a soil heat transfer model based on

the discretized diffusion equation. Lakshmi (2000)

merged 1 yr of satellite retrievals of LST over the Red

River–Arkansas River basin into a simple two-layer

model of the surface water and energy balance.

A few attempts have been made to adjust terms in the

surface energy balance of atmospheric models in re-

sponse to satellite LST retrievals. McNider et al. (1994)

describe a technique to assimilate satellite LST into the

surface energy budget of a regional-scale atmospheric

model. Their method assumes that surface soil moisture

is the least known parameter in the early morning sur-

face energy budget. Van den Hurk et al. (2002) assimi-

lated satellite LST and near-surface relative humidity

measurements into a regional weather forecast model. By

adjusting the root zone soil moisture and the roughness

length for heat, the authors find small improvements in

the surface energy balance. Garand (2003) outlines

a variational method for a unified land and ocean surface

skin temperature analysis, including a linear a priori bias

correction of the assimilated radiances.

Bosilovich et al. (2007) developed an algorithm for

LST assimilation into a global model that introduces an

incremental bias correction term into the model’s sur-

face energy budget. In contrast to the McNider et al.

(1994) approach, all temperature-dependent terms in

the surface energy budget respond directly to the LST

retrievals. In its simplest form, the Bosilovich et al.

(2007) algorithm estimates and corrects a constant time

mean bias for each grid point; additional benefits are

attained with a refined version of the algorithm that al-

lows for a correction of the mean diurnal cycle. The

results of Bosilovich et al. (2007) indicate that LST

assimilation improves estimates of 2-m air tempera-

ture, both in mean and variability, in a coupled land–

atmosphere model. Neglecting the diurnal cycle of the

LST bias causes degradation of the diurnal amplitude of

the background model air temperature in many regions.
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In situ measurements of energy fluxes at several loca-

tions were used to inspect the surface energy budget

more closely. LST assimilation generally improves the

sensible heat flux and, in some cases, it improves the

Bowen ratio. At many stations, however, LST assimila-

tion slightly increases the bias in the monthly latent heat

flux. A critical limitation of the method of Bosilovich

et al. (2007) is the assumption of unbiased LST retrievals.

In this paper, we restrict ourselves to uncoupled land

data assimilation and test several variants of the bias

estimation strategy of Bosilovich et al. (2007). We also

explore an alternative strategy of scaling the LST re-

trievals into the climatology of the modeled LST. As we

will show in section 6, not scaling the LST retrievals

prior to (uncoupled land) data assimilation can create

serious imbalances in the model-generated mass and en-

ergy fluxes and can lead to entirely unrealistic land surface

fluxes. We test these approaches with two land surface

models that represent LST very differently: CLSM and

Noah (section 4). Our results are directly linked to

weather and climate prediction applications because

these two land models are used in the atmospheric data

assimilation systems of the NASA Global Modeling

and Assimilation Office (GMAO) and the National

Oceanic and Atmospheric Administration/National Cen-

ters for Environmental Prediction (NOAA/NCEP),

respectively.

3. Data

In this study, we assimilate LST retrievals from ISCCP

(information online at http://isccp.giss.nasa.gov; see also

Rossow and Schiffer 1991, 1999). The ISCCP archive

contains satellite-based estimates of global cloud cover

and radiative properties from 1983 through the present

(recent data are added with a latency of about 1 yr), and

is based on observations from an international network

of meteorological satellites. Specifically, the ISCCP

30-km Pixel Level Cloud product (DX) includes global,

3-hourly, clear-sky LST retrievals from infrared radiances.

For this study, we extracted LST retrievals from the DX

archive for the geostationary platforms, including the U.S.

Geostationary Operational Environmental Satellites

(GOES) series, the European Meteosat series, and the

Japanese Geostationary Meteorological Satellite (GMS)

series. The data were then aggregated to a global latitude–

longitude grid with 18 resolution for assimilation into our

system.

The availability of validating land surface tempera-

ture and flux data is very limited. In this study, we use the

comparably large collection of such data provided by the

Coordinated Energy and Water Cycle Observations

Project (CEOP; information online at http://www.ceop.

net) to validate the data assimilation products. Specifi-

cally, we obtained hourly data from the network of

CEOP reference sites from 1 October 2002 through

31 December 2004 (Fig. 1, Table 1). Sufficient data for

validation are available at 48 distinct sites, of which

19 sites have LST data, 30 have latent heat (LH) and

sensible heat (SH) flux data, and 20 sites have ground

heat (GH) flux data. Only four stations have LST as

well as LH, SH, and GH observations sufficient for vali-

dation (Cabauw, the Netherlands; Bondville, Illinois;

Lindenberg Falkenberg, Germany; and Lindenberg

Forest, Germany; see also section 5). The hourly CEOP

data were aggregated to 3-hourly averages for compari-

son with the 3-hourly retrieval, model, and assimilation

products.

The surface meteorological forcing data for the two

land models are from the Global Land Data Assimila-

tion Systems (GLDAS) project (Rodell et al. 2004; in-

formation online http://ldas.gsfc.nasa.gov) and were

provided at 3-hourly time steps and at 28 and 2.58 re-

solutions in latitude and longitude, respectively. The

GLDAS data stream is based on output from the global

atmospheric data assimilation system at the NASA Global

Modeling and Assimilation Office (Bloom et al. 2005)

adjusted with pentad precipitation observations from the

Climate Prediction Center Merged Analysis of Pre-

cipitation (CMAP; information online at http://www.cdc.

noaa.gov/cdc/data.cmap.html) and daily estimates of sur-

face radiation from the Air Force Weather Agency’s

(AFWA) Agricultural Meteorology (AGRMET) system.

The observation-based corrections ensure that the forcing

data and hence the land model output are as close to re-

ality as is possible (without the benefit of assimilating the

LST retrievals).

4. Data assimilation system

a. The Catchment and Noah land surface models

Modeled LST and land surface fluxes are from in-

tegrations of CLSM (Koster et al. 2000) and Noah (Ek

et al. 2003). Again, these two models are the land model

components of the atmospheric data assimilation and

forecasting systems at GMAO and NCEP, respectively.

Both models dynamically predict land surface water and

energy fluxes in response to surface meteorological

forcing but follow markedly different approaches to

modeling soil moisture and LST.

CLSM’s basic computational unit is the hydrological

catchment (or watershed). The global land surface is

divided into catchments (excluding inland water and ice-

covered areas) with a mean linear scale of around 50 km

(ranging from a just a few to 250 km). Unlike traditional,
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layer-based models, CLSM includes an explicit treat-

ment of the spatial variation of soil water and water

table depth within each hydrological catchment based

on the statistics of the catchment topography. The sur-

face energy balance is computed separately for the

(dynamically varying) saturated, transpiring, and wilting

subareas of each catchment. In each of these three

subareas, the bulk temperature of the vegetation canopy

and the top 5 cm of the soil column is modeled with a

‘‘surface temperature’’ (TSURF) prognostic variable

that is specific to the soil moisture regime. The three

TSURF prognostic variables interact with an underlying

heat diffusion model for soil temperature (consisting of

six layers with depths equal to about 10, 20, 40, 75, 150,

and 1000 cm from top to bottom) that is common to the

three subareas (see Fig. 5 in Koster et al. 2000). In the

absence of snow, the area-weighted average of the three

prognostic TSURF variables (hereinafter also referred

to as the ‘‘surface temperature’’ in CLSM) is the most

appropriate quantity to compare to satellite-based LST

retrievals (Fig. 2). CLSM integrations were conducted

using the GMAO land data assimilation system (Reichle

et al. 2009) with a model time step of 20 min.

Noah is a more traditional, layer-based model. Four

soil layers of increasing thicknesses of 10, 30, 60, and

100 cm are used to model soil temperature and moisture

dynamics with layer-based formulations of the heat

diffusion equation (for energy) and of the standard

diffusion and gravity drainage equations (for unsaturated

water flow). LST in Noah is diagnosed from the surface

energy balance equation and, unlike in CLSM, is not

a prognostic variable and has no associated heat capacity

(Fig. 2). In this study, we use Noah version 2.7.1 on a 0.58

grid with a 30-min time step. Noah integrations were

carried out with the Land Information System (Kumar

et al. 2008) fitted with the GMAO ensemble data assim-

ilation and bias estimation modules (Reichle et al. 2009).

b. Data assimilation method and parameters

In a data assimilation system, the model-generated

land surface estimates are corrected toward observa-

tional estimates, with the degree of correction de-

termined by the levels of error associated with each. The

assimilation system used here is based on the ensemble

Kalman filter (EnKF), which is well suited to the non-

linear and intermittent character of land surface pro-

cesses (Reichle et al. 2002a,b). The EnKF works

sequentially by performing in turn a model forecast step

and a filter update step. Formally, the forecast step for

ensemble member i can be written as

x�t,i 5 f (x1
t�1,i, q

t,i
), (1)

where x�t,i and x1
t�1,i are the forecast (denoted with a su-

perscript minus sign) and analysis (denoted with a su-

perscript plus sign) state vectors at times t and t 2 1,

FIG. 1. Locations of CEOP stations. Stations suitable for validation are indicated with circles

(SH and LH, 30 stations), plus signs (GH, 20 stations), and crosses (LST, 19 stations).
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TABLE 1. CEOP stations with sufficient in situ LST, LH, SH, or GH observations for validation. The final column groups stations within

each Continental-Scale Experiment (CSE) into categories with similar data availability (a 5 LH1SH; b,c 5 LST1LH1SH1GH; d,h 5

LH1SH1GH; e 5 LST1GH; f 5 LST; g 5 GH; see Fig. 3).

CEOP identifier Coordinates (8)

Data availabilityCSE Reference site Station Lat Lon

Baltic Sea Experiment (BALTEX) Cabauw Cabauw 51.97 4.93 b

BALTEX Lindenberg Falkenberg 52.17 14.12 b

BALTEX Lindenberg Forest 52.18 13.95 b

CEOP Asia–Australia

Monsoon Project (CAMP)

Chao Phraya River, Thailand Lampang 18.40 99.47 g

CAMP Himalayas Pyramid 27.96 86.81 g

CAMP Mongolia BTS 46.78 107.14 e

CAMP Mongolia DGS 46.13 106.37 e

CAMP Mongolia DRS 46.21 106.71 e

CAMP Mongolia MGS 45.74 106.26 e

CAMP NE Thailand Nakhonrachasima 14.47 102.38 e

CAMP Tibet Amdo-Tower 32.24 91.62 g

CAMP Tibet ANNI-AWS 31.25 92.17 e

CAMP Tibet BJ-SAWS1 31.37 91.90 f

CAMP Tibet BJ-SAWS2 31.37 91.90 f

CAMP Tibet BJ-SAWS3 31.37 91.90 f

CAMP Tibet BJ-Tower 31.37 91.90 e

CAMP Tibet D105-AWS 33.06 91.94 e

CAMP Tibet D66-AWS 35.52 93.78 f

CAMP Tibet Gaize 32.30 84.05 e

CAMP Tibet MS3478-AWS 31.93 91.71 e

CAMP Tibet MS3608-AWS 31.23 91.78 f

CAMP Tongyu, China Cropland 44.42 122.87 h

CAMP Tongyu Grassland 44.42 122.87 h

GEWEX American

Prediction Project (GAPP)

Bondville Bondville 40.01 288.29 c

GAPP Southern Great Plains (SGP)

site, Atmospheric Radiation

Measurement (ARM)

program

E 1 Larned 38.20 299.32 a

GAPP SGP E 2 Hillsboro 38.31 297.30 a

GAPP SGP E 3 Le_Roy 38.20 295.60 a

GAPP SGP E 4 Plevna 37.95 298.33 a

GAPP SGP E 5 Halstead 38.11 297.51 a

GAPP SGP E 6 Towanda 37.84 297.02 a

GAPP SGP E 7 Elk_Falls 37.38 296.18 a

GAPP SGP E 8 Coldwater 37.33 299.31 a

GAPP SGP E 9 Ashton 37.13 297.27 a

GAPP SGP E 10 Tyro 37.07 295.79 a

GAPP SGP E 12 Pawhuska 36.84 296.43 a

GAPP SGP E 13 Lamont 36.60 297.48 a

GAPP SGP E 14 Lamont 36.61 297.49 a

GAPP SGP E 15 Ringwood 36.43 298.28 a

GAPP SGP E16 Vici 36.06 299.13 a

GAPP SGP E 18 Morris 35.69 295.86 a

GAPP SGP E 19 El_Reno 35.55 298.02 a

GAPP SGP E 20 Meeker 35.56 296.99 a

GAPP SGP E 21 Okmulgee 35.62 296.06 a

GAPP SGP E 22 Cordell 35.35 298.98 a

GAPP SGP E 24 Cyril 34.88 298.20 a

GAPP SGP E 26 Cement 34.96 298.08 a

GAPP SGP E 27 Earlsboro 35.27 296.74 a

Murray–Darling Basin

Water Budget Project (MDB)

Tumbarumba, NSW, Australia Tumbarumba 235.65 148.15 d
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respectively. The model error (or perturbation vector) is

denoted with qt,i. The filter update produces the ana-

lyzed state vector x1
t,i at time t and can be written as

x1
t,i 5 x�t,i 1 Kx, t

(y
t,i
� H

t
x�t,i), (2)

where yt,i denotes the observation vector (suitably per-

turbed) and Ht is the observation operator [which is

written as if it were linear for ease of notation, but in

practice the update is solved without explicitly com-

puting Ht; Keppenne (2000)]. The Kalman gain matrix

Kx,t is given by

K
x, t

5 P
x, t

HT
t (H

t
P

x, t
HT

t 1 R
t
)�1, (3)

where Px,t is the state forecast error covariance (di-

agnosed from the ensemble x�t,i), Rt is the observation

error covariance, and a superscript T denotes the matrix

transpose. Simply put, the Kalman gain Kx,t represents

the relative weights given to the model forecast and the

observations, based on their respective uncertainties

and based on the error correlations between the ele-

ments of the state vector and the model prediction of the

observed variable. In this paper, we use 12 ensemble

members with a ‘‘one-dimensional’’ (1D) EnKF that

processes each location independently of all other lo-

cations (see, e.g., Reichle and Koster (2003) for 1D

versus 3D assimilation). The key feature of the EnKF is

that error estimates of the model-generated results are

dynamically derived from an ensemble of nonlinear

model integrations.

Perturbation fields were generated and applied to the

surface air temperature and radiation, which represent

the dominant forcing inputs for LST. Perturbations were

also applied to model prognostic variables (the Catch-

ment surface temperature, TSURF, and the Noah top

layer soil temperature, TSOIL1), reflecting errors in the

modeling of the surface energy balance. Collectively,

the perturbations allow us to maintain an ensemble of

land surface conditions that represents the uncertainty

in modeled LSTs. An overview of the perturbation pa-

rameters is given in Table 2. Depending on the variable,

normally distributed additive perturbations or log-

normally distributed multiplicative perturbations were

applied. The ensemble mean for all perturbations was

constrained to zero for additive perturbations and to one

for multiplicative perturbations. Moreover, time series

correlations were imposed via a first-order autore-

gressive model [AR(1)] for all fields. Since we used

a one-dimensional EnKF in this study, the perturbation

fields were not spatially correlated. At hourly and daily

time scales, the meteorological forcing fields are ulti-

mately based on output from atmospheric modeling and

analysis systems and not on direct observations of sur-

face forcings. We imposed error cross correlations that

are motivated by the assumption that the atmospheric

forcing fields represent a realistic balance between ra-

diation, clouds, and air temperature. Under that as-

sumption, for example, a positive perturbation to the

downward shortwave radiation tends to be associated

with negative perturbations to the longwave radiation

and with a positive perturbation to air temperature.

Model errors are difficult to quantify at the global

scale. The parameter values listed in Table 2 are largely

based on experience and are partially supported by

earlier studies (Reichle et al. 2002b; Reichle and Koster

2003; Reichle et al. 2007). The success of the assimilation

presented here (section 6) suggests that these values are

acceptable. In any case, further calibration of the filter

parameters would, in theory, only improve the assimi-

lation results. Clearly, more research is needed on the

exact nature of the model and forcing errors. Recently

developed adaptive filtering methods for land assimila-

tion may assist with error parameter estimation (Reichle

et al. 2008; Crow and Reichle 2008).

The mapping of the satellite information from the

observation space into the space of the model states is

accomplished through the Kalman gain during the

EnKF update step. Equation (2) linearly relates ‘‘in-

novations’’ (observations minus corresponding model

estimates before EnKF update, i.e., y
t;i
� H

t
x�t;i) to ‘‘in-

crements’’ (difference in model states after and before

EnKF update, i.e., x1
t,i � x�t,i). In this study, we use

CLSM’s area-average TSURF variable and Noah’s

FIG. 2. LST is described in (left) CLSM with a prognostic variable

(TSURF) and (right) Noah with a diagnostic variable (TSKIN). LST

increments are applied to TSURF in CLSM and to TSOIL1 in Noah

(section 4b).

OCTOBER 2010 R E I C H L E E T A L . 1109



diagnostic TSKIN variable to compute the (observation

space) innovations (Fig. 2 and section 4a). The EnKF

state vector for CLSM consists of the three TSURF

prognostic variables (specific to each soil moisture re-

gime; see section 4a), while the EnKF state vector for

Noah consists of the top-layer soil temperature TSOIL1.

The key ingredients to the Kalman gain are the error

correlations between the LST variables in observation

space and the EnKF state variables (Reichle et al.

2002b). For Noah, the relevant error correlation is be-

tween the diagnostic TSKIN variable (which has no

associated heat capacity) and the temperature in the

top-10-cm soil layer. Therefore, in the case of Noah the

error correlation is affected by a small phase shift be-

tween the diurnal cycle of the diagnostic TSKIN and the

top-layer soil temperature TSOIL1. Observations are

not assimilated when precipitation is falling or when the

ground is covered with snow (as indicated by the land

model integration).

c. Bias estimation

For the reasons outlined in section 2 there are con-

siderable differences between the temporal moments of

the satellite and model LST (see section 6 for examples).

Such biases need to be addressed in the data assimilation

system. For this study, we implemented two different

strategies. The first strategy is to scale the satellite ob-

servations to the model’s climatology so that the first

and second moments of the satellite LST and the model

LST match. This strategy is a simplified version of the

cumulative distribution function matching (Reichle and

Koster 2004) that has been used successfully for soil

moisture assimilation (Reichle et al. 2009). Because of

the strong diurnal and seasonal cycles of LSTs, we esti-

mated the multiyear LST mean and variance separately

for each calendar month and for eight different times of

day (0000, 0300, . . . , 2100 UTC). This strategy is very

easy to implement through preprocessing of the LST

retrievals and makes no assumptions regarding whether

the model’s or the observations’ climatology is more

correct. Although the assimilation estimates are by de-

sign produced in the model’s climatology, they could be

scaled back to the observational climatology if desired.

The scaling strategy can be applied to the assimilation of

retrievals from a variety of satellite datasets with dif-

ferent climatologies. An obvious disadvantage is the fact

that the a priori scaling is static and cannot automatically

adjust to dynamic changes in bias.

The second strategy is to dynamically estimate bias

parameters along the lines of the algorithm developed

by Dee (2005), which was used for LST by Bosilovich

et al. (2007) and for soil moisture by De Lannoy et al.

(2007). This dynamic bias estimation approach is based

on a second Kalman filter for bias estimation (in addi-

tion to the Kalman filter for state estimation). Assume

that we have a bias estimate b1
t�1 at time t 2 1. Fur-

thermore, assume that this bias estimate can be propa-

gated to time t with a simple bias evolution model:

b�t 5 ab1
t�1, (4)

which relaxes the bias estimates to zero (0 , a , 1). In

our experiments, we chose a to correspond to an

e-folding scale of 1 day. The use of a relaxation factor is

different from the implementation of Bosilovich et al.

(2007) and is a prudent strategy for experiments that

cover many seasons. Because observations may not be

available for extended periods, relaxing the bias esti-

mate to zero is safer than keeping the latest bias estimate

through seasons for which it may not be appropriate.

Next, we compute a bias-corrected model forecast:

j�t,i 5 x�t,i � b�t , (5)

which is used in the state update Eq. (2) (instead of the

biased model forecast x�t,i). From ensemble average in-

novations (computed as yt � Htj
�
t [ E(yt,i � Htj

�
t,i),

where E(�) is the ensemble mean operator), we can then

update the bias via

b1
t 5 b�t � gKx,t

(y
t
� H

t
j�t ). (6)

A key assumption of this algorithm is that the bias error

covariance Pb,t is a small fraction of the state error

TABLE 2. Parameters for perturbations to meteorological forcing inputs and model prognostic variables.

Perturbation

Additive (A) or

multiplicative (M)? Std dev

AR(1) time series

correlation scale

Cross correlation with

perturbations in

T2M SW LW

Air temp (T2M) A 1 K 1 day N/A 0.4 0.4

Downward SW radiation M 0.3 1 day 0.4 N/A 20.6

Downward LW radiation A 20 W m22 1 day 0.4 20.6 N/A

Soil temp prognostic variables

(Catchment, TSURF; Noah, TSOIL1)

A 0.2 K 12 h 0 0 0
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covariance; that is, Pb,t 5 gPx,t. Based on this assump-

tion, the gain for the bias (Kb,t) can be computed as

a fraction of the gain for the state, which has already

been computed. Here, we use g 5 0.2 for Catchment and

g 5 0.05 for Noah. The difference in g is motivated by

the different surface layer thicknesses in the two models,

but like the perturbations parameters that govern the

model error, these bias parameters have not been opti-

mized and are justified primarily by the success of the

assimilation.

As formulated above, the bias algorithm estimates

a single bias parameter (per state and per location). Here,

we implemented a variant that estimates a separate bias

parameter for eight different times of day (0000, 0300, . . . ,

2100 UTC). Because this requires the estimation of eight

bias parameters per state and per location, we refer to

this algorithm as b8. Additional variants of the dynamic

bias algorithm are discussed in the appendix.

Equation (6) implies that, in practice, the bias esti-

mates can be thought of as an exponential moving (time)

average of the LST increments. Unlike the scaling ap-

proach, the dynamic bias estimation strategy adapts to

slow changes in bias over time. A major disadvantage of

this strategy is the implicit assumption that only the

model is biased, which contradicts previous findings that

retrievals from different sensors may be biased against

each other (e.g., Trigo and Viterbo 2003). It is therefore

critical that any bias between retrievals from different

sensors is small compared to the bias between retrievals

and the model estimates.

For this study we implemented the a priori scaling

method and the dynamic bias estimation schemes in-

dependently. The latter can be invoked with and without

a priori scaling. If invoked without a priori scaling, the

dynamic bias estimation corrects for static (long term)

biases as well as the shorter-term ‘‘bias’’ that results

from transient differences between the model and ob-

servational estimates. If invoked after a priori scaling,

the dynamic bias estimation mostly corrects for transient

bias. It can also be considered a tool for remembering

assimilation increments that would otherwise be for-

gotten within a single model time step (because of the

small heat capacity associated with LST). This is par-

ticularly important for CLSM as section 6 will show.

5. Experiment design and skill metrics

The experiment domain consists of the catchments (or

grid cells) that contain the CEOP station locations (Fig. 1).

The land models were spun up by cycling 10 times

through the 4-yr period from 1 January 2001 to 1 Janu-

ary 2005. The models were then integrated in ensemble

mode (12 members; using the perturbations settings of

Table 2) for the same 4-yr period. These open-loop in-

tegrations also recorded the LST innovations (without

applying any increments) for the computation of the

model and retrieval statistics that are required for the

a priori scaling approach. The (ensemble) assimilation

integrations covered the same 4-yr period and were

validated against the 27 months of CEOP observations

from 1 October 2002 through 1 January 2005.

For each of the two land models, we conducted one

open-loop (no assimilation) ensemble integration and

four different experiments in which ISCCP retrievals

were assimilated assuming an observation error stan-

dard deviation of 2 K. Two of the four assimilation

integrations (per model) were performed with the (un-

scaled) ISCCP retrievals (s0, for no scaling), the other

two utilized ISCCP retrievals that were scaled to each

model’s LST climatology prior to assimilation (s1; see

section 4c). In each set of two assimilation integrations,

one was done without bias correction (b0), and the other

used the dynamic bias algorithms (b8; see section 4c).

For each model, we thus compare four assimilation in-

tegrations: s0b0, s0b8, s1b0, and s1b8. (See the boldface

entries in Table A1 in the appendix for an overview of

the experiments discussed in the main text.)

All integrations were analyzed by computing RMSE

values (from raw time series) and anomaly correlation

coefficients (R; from anomaly time series) for LST, LH,

SH, and GH with respect to the available in situ CEOP

observations. These performance metrics were first

computed separately for each station from 3-hourly time

series and then averaged over the available stations.

Anomaly time series were computed by subtracting the

monthly mean seasonal and diurnal cycles (climatology)

from the raw data. The climatologies and metrics were

computed only from data at times and locations where

ISCCP retrievals were available so that only clear-sky

conditions are compared to the extent possible. Mean

values for a given calendar month and time of day are

computed only if a minimum of 20 data points are

available; mean monthly values are computed only if

mean values are available for all eight times of day for

the month in question; and performance metrics are

based on at least 100 data points. Figure 3 shows the

average fraction of the 27-month experiment period that

was used in the computation of the metrics for eight

groups of stations with similar data availability. The

combined mask of the assimilated ISCCP observations

and the in situ measurements (black bars) primarily in-

dicates the impacts of the clear-sky masking, with data

availability ranging from 20% to 60%. The additional

impacts of the minimum data requirements for the cli-

matologies result in the gray bars, which are typically

lower by a few percent.
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We analyze two performance metrics, RMSE and

anomaly R, to highlight the advantages and disadvan-

tages of the various assimilation approaches. Given the

typically strong seasonal and diurnal cycles of the LST

and land surface fluxes, metrics based on raw data are

dominated by errors in the climatology. Metrics based

on anomalies, by contrast, primarily capture day-to-day

variations. RMSE values measure how closely the data

agree in their original units and are affected by a mean

bias or a mean difference in the amplitude of variations.

On the other hand, R values are not affected by such

biases and only capture the correlation between the

estimates and the validating observations. The choice of

metric depends on the application at hand (Entekhabi

et al. 2010). RMSE values are most relevant if absolute

errors matter most. In other cases, anomaly R values

may be of most relevance, for example, in model-based

applications (such as numerical weather prediction) that

could correct for known biases in the mean and variance.

6. Results

a. Aggregate performance of retrieval and
model estimates

The station-average RMSE and R metrics, evaluated

against the CEOP in situ observations as discussed in the

previous section, measure the aggregate performance

of the satellite, model, and assimilation estimates. In

this section, we highlight the performance of select as-

similation integrations in terms of select metrics (see the

appendix for a complete table of the metrics and algo-

rithms). Before turning to the assimilation integrations,

however, we first assess the skill of the satellite retrievals

and of the model integrations without assimilation (open

loop). The top panel in Fig. 4 illustrates the RMSE values

computed from the raw LST estimates, which are 4.9 K

for CLSM (yellow bar), 5.5 K for Noah (light blue bar),

and 7.6 K for ISCCP (black bar).

The bottom panel in Fig. 4 shows corresponding RMSE

values for model estimates of LH, SH, and GH, which

range from 51 to 67 W m22. These values are within a

factor of 2 of the typical measurement errors (around

30 W m22) for surface turbulent fluxes (Finkelstein and

Sims 2001; Hollinger and Richardson 2005) and are

consistent with literature estimates (Kalma et al. 2008).

The situation is similar for the anomaly R metric,

shown in Fig. 5 for LST only. The models show rea-

sonable skill in terms of reproducing standardized

anomalies, with anomaly R values of 0.61 for CLSM and

0.63 for Noah. Again, ISCCP retrievals are considerably

less skillful than model estimates (anomaly R value of

0.52). The small difference in the anomaly R values for

the two model estimates indicates that the difference in

FIG. 3. The fraction of the 27-month experiment period used in the computation of (black bars) RMSE and (gray bars) anomaly R for

eight groups of stations [(a)–(g) correspond to data availability categories in Table 1]. Subplot titles indicate the number of stations in each

group and the percent of the data used for metrics computation in each group relative to all of the data used.
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the models’ RMSE is largely due to bias; that is, CLSM

has smaller bias than Noah when compared to the in situ

observations. The first important results of Figs. 4 and 5

are therefore that (i) the CLSM and Noah open-loop

integrations show similar levels of skill when compared

to CEOP in situ observations and that (ii) the model

estimates of LST are significantly better than the ISCCP

retrievals.

For a rough analysis of the sampling errors in the

station-average metrics, we first computed 95% confi-

dence intervals Di for each station (i 5 1, . . . , n). The

values of Di are determined by the values of the esti-

mated metric and by the amount of data used in its

computation (based on the Fisher transformation for

anomaly R and on a chi-square distribution for RMSE).

We then computed 95% confidence intervals for the

station-average metrics Davg by averaging the width of

the individual confidence intervals across all stations and

dividing by the square root of the number of stations;

that is, Davg 5 mean(Di)/
ffiffiffi

n
p

. This analysis of sampling

error reveals that the 95% confidence intervals for all R

values discussed here are less than 60.01. For RMSE

values, 95% confidence intervals are less than 60.1 K

for LST and less than 61 W m22 for surface fluxes. In

the following, RMSE and anomaly R values are rounded

accordingly (skill difference values rounded after com-

puting the difference). We also investigated the sensi-

tivity of the ISCCP skill to horizontal resolution by

processing the ISCCP retrievals onto the 0.58 grid of the

Noah integrations. The anomaly R is unchanged (0.52)

and the RMSE decreases only marginally (from 7.6 to

7.4 K). The sensitivity may be small because the addi-

tional spatial averaging in the 1.08 dataset filters out

some of the noise in the ISCCP observations and be-

cause most of the RMSE results from larger-scale errors.

b. Aggregate performance of assimilation estimates

Obviously, the superior skill of the model LST esti-

mates relative to the skill of the ISCCP retrievals limits

the improvements that can be expected from assimilat-

ing the ISCCP data. Nevertheless, as will be shown,

modest yet statistically significant improvements can be

achieved through the assimilation of ISCCP LST re-

trievals. We expect that the use of a priori scaling pro-

duces better anomaly estimates, whereas omitting

a priori scaling should yield better improvements in

terms of absolute numbers (i.e., raw data) due to likely

FIG. 4. RMSE vs CEOP in situ observations for (top) LST and

(bottom) flux estimates from ISCCP retrievals (LST only), model

integrations, and select assimilation integrations without a priori

scaling.

FIG. 5. The R value vs CEOP in situ observations for LST

anomalies from ISCCP retrievals, model integrations, and select

assimilation integrations with a priori scaling.
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biases in model climatology. Thus, for RMSEs com-

puted from raw data (Fig. 4), we focus on assimilation

without a priori scaling (s0b0, s0b8). The CLSM assim-

ilation integration without dynamic bias correction

(s0b0; orange bars in Fig. 4) is characterized by only

minor improvements in LST (0.2 K for RMSE) and

virtually no changes in the land surface flux estimates

(when compared to the open-loop skill). Recall that

CLSM’s prognostic ‘‘surface temperature’’ represents

the canopy and the top 5 cm of soil and is associated with

a very small heat capacity. Consequently, without dy-

namic bias estimation and correction, increments from

the assimilation of ISCCP retrievals dissipate quickly

and have little impact on the model state in CLSM. In-

crements applied to the Noah model’s top-layer (10 cm)

soil temperature, on the other hand, have a somewhat

more noticeable effect on the model state. For assimi-

lation without a priori scaling and without dynamic bias

correction (s0b0), the RMSE for Noah LST estimates is

improved by 0.5 K (medium blue bar in Fig. 4). Similar

to CLSM, the Noah assimilation estimates for the latent

and sensible heat fluxes are comparable to the open-

loop estimates. However, the RMSE value for the Noah

s0b0 estimates of GH increases by 12 W m22 (more on

this later).

Next, we analyze the skill of the assimilation in-

tegrations with dynamic bias estimation and correction

(s0b8), also illustrated in Fig. 4. For CLSM, adding dy-

namic bias estimation (red bar in Fig. 4) enhances the

LST improvements (over the open loop) to 0.7 K in

terms of RMSE. Using a bias-corrected model forecast

at every model time step [Eq. (5)] enhances the impacts

of the LST increments in the CLSM assimilation in-

tegrations and thereby yields enhanced improvements

from the assimilation of the ISCCP retrievals (relative to

not using the dynamic bias algorithm). For Noah, using

the dynamic bias algorithm (s0b8; dark blue bar in Fig. 4)

yields only slightly better LSTs than does the s0b0 as-

similation integration without dynamic bias correction

(RMSE now reduced by 0.6 K over the open loop). At

the same time, however, the deterioration of the GH

estimates is exacerbated in s0b8. The RMSE value for

assimilation estimates of GH increases by 30 W m22

when compared with the open-loop RMSE. The LH and

SH estimates from s0b8 are again comparable to open-

loop estimates.

For the analysis of assimilation integrations with

a priori scaling (s1b0, s1b8), we focus on the anomaly R

metric, shown in Fig. 5. Qualitatively, the results for

these integrations are similar to those obtained without

a priori scaling. In CLSM, a priori scaling alone (s1b0)

yields only small improvements in LST (the anomaly R

increases by 0.02). Most of the impact is realized through

dynamic bias estimation (the anomaly R for LST in-

creases by 0.05 over the open loop). For Noah, on the

other hand, the anomaly R for the LST already increases

by 0.04 (over the open loop) when only a priori scaling is

applied. The estimates get only slightly better when

dynamic bias correction is added (increase of 0.05 in

anomaly R for LST). There is also a deterioration in the

Noah GH estimates (relative to the open loop) when

a priori scaling is used (with or without bias correction),

but generally the loss of skill in GH is mitigated through

a priori scaling (see discussion of Table A1 in the ap-

pendix). Noah assimilation estimates of LH and SH

have marginally better anomaly R values than do the

open-loop estimates (see the appendix), but these im-

provements are comparable in magnitude to the size of

the 95% confidence intervals and we do not consider

them to be relevant.

In summary, using dynamic bias estimation for CLSM

(s0b8, s1b8) provides the best assimilation estimates and

enables modest LST improvements (over the open loop)

of up to 0.7 K in terms of RMSE and up to 0.05 in terms

of the anomaly R. Flux estimates from these CLSM as-

similation integrations are essentially identical to open-

loop estimates: assimilation of LST does not lead to

improved flux estimation. For Noah, assimilation with-

out a priori scaling and without dynamic bias estimation

(s0b0) already yields most of the benefits of assimilating

the satellite retrievals. Using a priori scaling and/or dy-

namic bias estimation yields only small additional im-

provements. For Noah, LST improvements (over the

open loop) are similar to those for CLSM: up to 0.6 K

for RMSE and up to 0.05 in terms of anomaly R. Noah

assimilation estimates of SH and LH are similar to the

open-loop estimates, but the assimilation estimates of

GH are considerably worse than the open-loop esti-

mates (up to a 30 W m22 increase in RMSE), with lesser

degradation seen when a priori scaling is used. Without

a priori scaling, the worsening of the GH estimates in

Noah may well outweigh the benefits of the LST im-

provements.

As shown earlier (Figs. 1 and 3, Table 1), most CEOP

stations either have LST and GH measurements or have

LH and SH measurements. Only four stations measure

LST and all three fluxes. The results in this section must

be interpreted with this caveat in mind. Conceivably, if

a large number of stations were able to provide LST,

LH, and SH measurements together, and if our analyses

were limited to that set of stations, we might indeed be

able to show that improved LST estimates from assim-

ilation correspond to improved estimates of the turbu-

lent fluxes. Given the limitations of the available in situ

measurements, we cannot know for sure. Such im-

provements might also require the increased sensitivity
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of model flux estimates to LST assimilation, which may

be difficult to achieve in an offline system that is domi-

nated by surface forcings. Note, however, that 15 out of

the 19 stations that have LST measurements also have

GH measurements, suggesting that for Noah the LST

improvements from assimilation are connected to the

worsening of GH estimates.

As discussed in section 5, the RMSE and anomaly R

values shown here are based on 3-h average data, in-

cluding the nighttime and wintertime when fluxes are

small and noise may overwhelm the signal. In a separate

analysis (not shown), we also computed the performance

metrics from daily average data. While RMSE values are

generally lower when based on daily averages (as can be

expected from increased averaging) and R values are also

somewhat different in overall magnitude, the relative

performance is similar regardless of whether metrics are

computed from daily or 3-h average data, and the main

conclusions of this section thus remain unchanged.

In a second separate analysis (not shown), we assessed

the performance based strictly on summertime data and

again found that our conclusions remain the same.

c. Seasonal and diurnal cycles

Estimates of the mean seasonal and diurnal cycles

provide additional insights into the modeling and as-

similation of LST. Figure 6 (left panels) shows the mean

seasonal cycle of LST at two locations: Bondville in the

midwestern United States and BJ-SAWS3 in Tibet. At

both locations, the seasonal cycle estimates of the CLSM

and Noah open-loop integrations agree fairly closely

with each other (to within 2 K), primarily because both

models are driven with the same surface meteorological

forcing data. At Bondville, the open-loop estimates of

the seasonal cycle also agree closely with the in situ

CEOP observations. At the Tibetan station, however,

the open-loop estimates are biased low by about 5 K

(relative to the in situ observations). In contrast, ISCCP

estimates of the seasonal cycle are biased high by about

3 K at BJ-SAWS3 and differ by up to 5 K in the first half

of the year at Bondville.

By construction, the seasonal and diurnal cycle esti-

mates of the assimilation integrations with a priori

scaling closely match those of the open-loop integration

(not shown). Figure 6 also shows the seasonal climatol-

ogy of the assimilation integrations without a priori

scaling and with dynamic bias estimation and correction

(s0b8). As expected, the s0b8 assimilation integrations

draw more closely to the ISCCP retrievals (when com-

pared to the open loop). At BJ-SAWS3, this fortuitously

brings the assimilation estimates of the seasonal cycle

into better agreement with the in situ observations than

either the ISCCP or the open-loop estimates.

Figure 6 (right panels) also illustrates the mean August

diurnal cycle estimates at Bondville and BJ-SAWS3. At

Bondville, the Noah open-loop estimates have a slightly

higher diurnal amplitude than the CLSM estimates

(because LST for Noah exceeds that of CLSM by up to

2 K during the day and by less than 1 K during the

night). At BJ-SAWS3, the open-loop integrations agree

closely with each other. Similar to the seasonal cycle

estimates, the open-loop estimates at Bondville are in

reasonable agreement with the in situ observations but

are biased low (by about 5 K) at BJ-SAWS3. ISCCP

retrievals, on the other hand, exhibit a weaker diurnal

amplitude at Bondville than do the model or in situ ob-

servations. At BJ-SAWS3, ISCCP retrievals are biased

high (compared to the in situ observations) in the

morning and midday but biased low in the evening and

at nighttime.

Again, the LST diurnal cycle estimates of the CLSM

s0b8 assimilation integrations draw toward the ISCCP

retrievals by construction (Fig. 6, right panels). This

brings them closer to the in situ observations at

BJ-SAWS3 but makes CLSM’s nighttime estimates at

Bondville worse when compared to the open loop. By

contrast, the LST from the Noah s0b8 assimilation in-

tegration is similar to the open-loop integration during

daytime. Only during the evening hours (at Bondville

and BJ-SAWS3) are the Noah s0b8 LST estimates

noticeably closer to the ISCCP retrievals. The delayed

impacts of the LST assimilation are probably a result of

the phase lag between the diagnostic LST (observa-

tions space) and the top-layer soil temperature (state

space) in Noah.

d. Filter diagnostics

Internal filter diagnostics offer further clues about the

performance of the assimilation algorithms. For a filter

that operates according to its underlying assumptions

(that various linearizations hold, that model and obser-

vation errors are unbiased, uncorrelated, and normally

distributed), the time average of the (ensemble mean)

innovations sequence (yt 2 Htxt
2) equals zero. More-

over, the standard deviation of the ‘‘normalized’’ in-

novations (yt 2 Htxt
2)(HtPx,tHt

T 1 Rt)
20.5 equals one

(Reichle et al. 2002a). The latter diagnostic compares

the actual spread in the innovations to what the filter

expects. A simple interpretation is that the assumed

error bars of a model forecast and its corresponding

observation must have an appropriate overlap.

Figure 7 displays the distribution of these two internal

filter diagnostics across the CEOP stations listed in

Table 1. The top panel in Fig. 7 indicates that without

a priori scaling of the ISCCP observations and without

dynamic bias estimation (s0b0), biases of several Kelvin
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FIG. 6. LST (left) annual seasonal and (right) August diurnal cycle (UTC) at (top) Bondville and (bottom)

BJ-SAWS3 for CEOP, ISCCP, model, and assimilation data.
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typically persist in the model forecast and are reflected in

the mean of the innovations. (The innovations statistics of

the open-loop integrations are essentially the same as

those of the s0b0 integrations and are not shown in Fig. 7.)

A very modest reduction of the bias can be achieved with

the b8 dynamic bias estimation algorithm. If in addition

to dynamic bias estimation the observations are also

scaled prior to data assimilation (s1b8), the innovations

mean at all stations is, by construction, much closer to

zero. These results hold for assimilation into both land

models: CLSM and Noah.

The standard deviation of the normalized innovations,

shown in the bottom panel of Fig. 7, exceeds the tar-

get value of one at almost all stations and for almost all

algorithms. This indicates that the model and/or the

observation error standard deviations were under-

estimated. As is the case for the innovations mean, a

priori scaling brings the standard deviation of the nor-

malized innovations much closer to its expected value

of one. This implies that a large part of the mismatch

between the actual spread in the innovations and the

expected spread is simply due to bias. Finally, the fact

that the innovation diagnostics are comparable for the

CLSM and Noah assimilation integrations indicates that

the assimilation performance (relative to its unknown

optimum) is comparable for the two models, which lends

further support to the broad conclusions reached in this

paper. In summary, a priori scaling in combination with

dynamic bias estimation exhibits the best performance

in terms of the innovations diagnostics, independent of

the land model used.

e. Impacts of bias in data assimilation

Estimates from a properly designed assimilation sys-

tem should be no worse than open-loop estimates. The

example in Fig. 8 further illustrates the potentially se-

rious detrimental impacts of not addressing bias prop-

erly in data assimilation. Figure 8 shows LST and land

surface flux time series from select Noah integrations for

a few days in August of 2003 at the MGS station in

Mongolia. At this location, LST and GH estimates from

the open-loop integrations agree fairly well with CEOP

in situ observations. The daytime peak LST estimates

from ISCCP, however, are warmer by as much as 30 K.

This extreme bias may be due to one or more of the

reasons discussed in section 2.

At any rate, when the unscaled ISCCP retrievals are

assimilated without a priori scaling (s0b0, s0b8), LST

assimilation estimates are drawn toward the extreme

temperatures in the ISCCP retrievals (Fig. 8). However,

since Noah is not designed to accommodate such ex-

treme temperatures, and because the surface meteoro-

logical forcing remains unchanged in the system, the

Noah assimilation integrations without a priori scaling

respond with unrealistic and excessive estimates of the

sensible and ground heat flux, most notably on 13 Au-

gust 2003. Because the impacts on LST of assimilating

unscaled ISCCP retrievals without bias correction

(s0b0) are more limited, the corresponding flux esti-

mates are less pathological than in the s0b8 case with

dynamic bias correction. For reference, Fig. 8 also shows

an assimilation integration with a priori scaling and dy-

namic bias correction (s1b8), which does not produce

such unrealistic flux estimates.

The situation is similar for LST from the CLSM as-

similation integrations for the same location and time

period (not shown), but for CLSM we obtain unrealistic

estimates of the latent heat flux for select assimilation

integrations without a priori scaling. To summarize,

Fig. 8 illustrates the pitfalls of assimilating LST retrievals

that are severely biased against the model LST. While the

assimilation can be designed to produce LST estimates

that are closer to the satellite retrievals, there may be

FIG. 7. (top) Mean of innovations (K) and (bottom) standard

deviation of normalized innovations (dimensionless) for Catch-

ment (C) and Noah (N) assimilation integrations. The box plots

indicate the average, standard deviation, and minimum and max-

imum of the respective innovations diagnostic across the stations

listed in Table 1.
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unintended and undesirable side effects in terms of the

land surface fluxes and the surface energy balance.

7. Summary and conclusions

An ensemble-based data assimilation method, the

EnKF, was used with and without a priori scaling of ob-

servations and/or dynamic bias estimation methods to

assimilate satellite retrievals of LST into two different

land surface models at 48 CEOP sites scattered around

the globe (Fig. 1). The two land models, CLSM and Noah,

follow distinct modeling approaches for land surface

temperature (Fig. 2). CLSM has model prognostic ‘‘sur-

face temperature’’ variables, whereas Noah diagnoses the

surface temperature from the surface energy balance.

The LST, sensible, latent, and ground heat flux estimates

from the data assimilation integrations were validated

against 27 months of CEOP in situ observations (Fig. 3).

The main conclusions from the experiments are as

follow.

1) There are strong biases between LST estimates from

in situ observations, land modeling, and satellite re-

trievals that vary with season and time of day. Biases

of a few Kelvin are typical, with larger values ex-

ceeding 10 K (Figs. 6–8).

2) The skill of the LST estimates from the CLSM and

Noah land model integrations is superior to that of

the ISCCP satellite retrievals (Figs. 4 and 5).

3) Assimilation of ISCCP LST retrievals into the land

surface models can improve LST estimates by up to

0.7 K for RMSE and by up to 0.05 for the anomaly R,

while not making surface turbulent fluxes worse

(Figs. 4 and 5).

4) Gross errors in surface flux estimates can result if

biases are not taken into account properly, with

a combination of a priori scaling and dynamic bias

estimation methods yielding the best overall results

(Figs. 4, 5, and 8).

5) Assimilation diagnostics for integrations without

a priori scaling strongly reflect the underlying biases,

indicating that without a priori scaling the assimila-

tion system is far from operating in accordance with

its underlying assumptions (Fig. 7).

6) Provided the assimilation system is properly config-

ured for each land model, the benefits from the as-

similation of LST retrievals are comparable for both

land models (Figs. 4 and 5).

There are many reasons why the improvements from the

assimilation of satellite LST, while statistically signifi-

cant, turn out to be modest. First and foremost, the skill

of the satellite data is modest and much lower than that

of the model to begin with. The information gained by

assimilating the satellite data into the model is therefore

naturally limited. More accurate LST retrievals from

newer datasets that have been developed with a focus on

LST should alleviate this constraint in future studies. In

the present study, the parameters of the assimilation

system, including the perturbation (or model error)

parameters and the parameters of the bias algorithm

(a, g), were not optimized. Additional calibration may

further improve the results and may also reveal differ-

ences in what can be achieved with a given land model

structure. Finally, even if the assimilation estimates

were perfect, the performance metrics would not show it

because of errors in the in situ data and because of the

mismatch of the spatial and temporal characteristics of

the satellite, model, and in situ datasets.

By design, the present study was limited to LST (state)

estimation in an uncoupled land modeling system. Ide-

ally, the land model parameters would be calibrated

to minimize LST biases prior to data assimilation,

or perhaps even dynamically within the data assimila-

tion system. Such a calibration could rely on sophisti-

cated parameter estimation methods (Vrugt et al. 2003).

Perhaps more importantly, though, is that the surface

FIG. 8. (top) LST, (second from top) LH, (second from bottom)

SH, and (bottom) GH for Noah integrations, ISCCP retrievals, and

CEOP observations at the MGS station.
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meteorological forcings in the present experiments

were fixed. In other words, LST increments did not

feed back onto the atmospheric state. Future experi-

ments will explore LST assimilation into a coupled

land–atmosphere model with the methods proposed

here. The relative performance of the algorithms may

very well change in the coupled environment.

Another path for future research involves investigat-

ing further the role of specific aspects of LST modeling.

In the present paper, Noah was integrated in its default

configuration, including a 10-cm-thick surface layer,

which implied a small phase shift between the Noah

diagnostic LST (used in the computations of the in-

novations) and the Noah top soil temperature (to which

the increments were applied). Use of a thinner soil layer

may alleviate the problems related to the phase shift in

Noah between LST (observation space) and the top-

layer soil temperature (state space).

Our results suggest that the potential for improving the

surface flux estimates through the assimilation of LST

retrievals is limited. However, one of the most common

uses of LST observations at present is arguably the esti-

mation of surface fluxes over irrigated land or wetland

areas (Kalma et al. 2008) because flux improvements may

be particularly important in areas where there are addi-

tional inputs of river water or groundwater. To the best of

our knowledge, the sites considered here do not receive

water inputs other than rainfall and thus do not address

potential improvements in flux measurements over irri-

gated or wetland areas.

Even if the assimilation of LST retrievals manages to

improve our LST estimates only modestly and fluxes not

at all, the impacts may be significant. In coupled (land–

atmosphere) data assimilation systems, improved LST

may enable the atmospheric assimilation of additional

radiance observations from surface-sensitive channels

that have so far been disregarded, thereby possibly

providing substantial indirect benefits. Obviously, the

present study only scratches the surface of a very com-

plex problem that has been a challenge for many years.

Nevertheless, given the relative abundance of LST ob-

servations from satellites and the importance of accurate

LST estimates, in particular within the context of at-

mospheric data assimilation, the results of the present

study offer an encouraging step forward in land data

assimilation.
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APPENDIX

Additional Bias Estimation Algorithms

In addition to the dynamic bias algorithm b8 discussed

in section 4c, we also tested additional variants of the

algorithm used by Bosilovich et al. (2007). Specifically,

we tested the simplest possible variant that estimates

a single, ‘‘mean’’ bias estimation parameter per state

and per location, here referred to as b1 (also discussed in

section 4c). Bosilovich et al. (2007) also introduced a

bias parameterization with sine and cosine functions

that accounts for variations in the diurnal cycle of the

bias. Here, we implemented two variants: a ‘‘diurnal’’

bias parameterization (constant term plus sine and co-

sine waves with a period of 1 day) and a ‘‘semidiurnal’’

bias parameterization (diurnal terms plus sine and co-

sine waves with a period of ½ day). The diurnal and

semidiurnal algorithms estimate three and five bias pa-

rameters, respectively, per state and location, and are

referred to as b3 and b5.

For the b8 integrations discussed in the main article, we

always applied both the state increments [Eq. (2)] and the

bias increments [Eq. (6)]. More generally, though, any

assimilation integration that uses dynamic bias estimation

can also be done without applying the state increments

[as, in fact, was implemented by Bosilovich et al. (2007)].

We also tested these variants. Per model, we therefore

tested a total of 18 different assimilation integrations,

listed in Table A1.

A close examination of Table A1 reveals that, gen-

erally, the assimilation integrations show more skill

when more bias parameters are used. Reductions in

RMSE values for LST are greater by up to 0.4 K for

CLSM and by up to 0.2 K for Noah when comparing the

b8 and b1 integrations. Corresponding differences in

anomaly R values for LST are up to 0.03, respectively,

for both models. As can be expected, these differences

across bias estimation algorithms of varying complexity

tend to be greater without a priori scaling. Also in line

with our expectations, taking into account the diurnal

cycle of the bias (in b3, b5, and b8, as opposed to b1) has

the biggest impact.

Finally, applying the state increments in addition to

the bias increments contributes only a small amount

of skill, typically less than 0.1 K in terms of RMSE
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reduction (or 0.01 in terms of R increase) for LST esti-

mates. In the case of Noah, applying the state in-

crements contributes commensurately to the worsening

of the GH estimates.

To summarize, as long as the dynamic bias algorithm

takes the diurnal cycle into account, the differences that

result from the exact number of bias parameters used or

that result from not applying the state increments are

much smaller than the assimilation improvements over

the open loop. In other words, the lessons learned in the

main article about the assimilation of LST retrievals in

general and about using a priori scaling and/or dynamic

bias correction are insensitive to the details of the dy-

namic bias estimation algorithm, provided the algorithm

considers the diurnal cycle of the bias.
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