
Evaluation of GSMaP Precipitation Estimates over the Contiguous United States

YUDONG TIAN

Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland

CHRISTA D. PETERS-LIDARD

Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

ROBERT F. ADLER

Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park,

and Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

TAKUJI KUBOTA

Earth Observation Research Center, Japan Aerospace Exploration Agency, Ibaraki, Japan

TOMOO USHIO

Department of Information and Communications Technology, Osaka University, Osaka, Japan

(Manuscript received 2 July 2009, in final form 14 September 2009)

ABSTRACT

Precipitation estimates from the Global Satellite Mapping of Precipitation (GSMaP) project are evaluated

over the contiguous United States (CONUS) for the period of 2005–06. GSMaP combines precipitation

retrievals from the Tropical Rainfall Measuring Mission satellite and other polar-orbiting satellites, and in-

terpolates them with cloud motion vectors derived from infrared images from geostationary satellites, to pro-

duce a high-resolution dataset. Four other satellite-based datasets are also evaluated concurrently with GSMaP,

to provide a better perspective. The new Climate Prediction Center (CPC) unified gauge analysis is used as the

reference data. The evaluation shows that GSMaP does well in capturing the spatial patterns of precipitation,

especially for summer, and that it has better estimation of precipitation amount over the eastern than over the

western CONUS. Meanwhile, GSMaP shares many of the challenges common to other satellite-based products,

including that it underestimates in winter and overestimates in summer. In winter, GSMaP has on average one-

half less precipitation over the western region and one-third less over the eastern region, whereas in summer

it has about three-quarters and one-quarter more estimated precipitation over the two respective regions,

respectively. Most of the summer overestimates (winter underestimates) are from an excessive (insufficient)

number of strong events (.20 mm day21). Overall, GSMaP’s performance is comparable to other satellite-

based products, with slightly better probability of detection during summer, and the different satellite-based

estimates as a group have better agreement among themselves during summer than during winter.

1. Introduction

Precipitation estimates from satellite-based sensors

have great potential for hydrological applications, espe-

cially as a result of their extensive spatial coverage and

fine space and time resolutions. There have been many

efforts in operational production of such high-resolution

estimates, most notably since the launch of the Tropical

Rainfall Measuring Mission (TRMM) in 1997. In addi-

tion, ongoing efforts to improve retrieval algorithms and

estimation techniques from the community have resulted

in newer products.

The Global Satellite Mapping of Precipitation (GSMaP;

Okamoto et al. 2005; Kubota et al. 2007; Aonashi et al.

2009; Ushio et al. 2009) project is a recent addition to the

repository of satellite-based high-resolution precipitation
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estimates. Supported by the Japan Science and Technology

Agency (JST) and Japan Aerospace Exploration Agency

(JAXA), GSMaP seeks to produce a high-precision, high-

resolution precipitation map using satellite data. Cur-

rently, GSMaP incorporates extensive satellite input

data streams from both passive microwave (PMW)

and infrared (IR) sensors, and its global precipitation

maps are appealing for a wide range of hydrological

applications.

To facilitate GSMaP’s application and assess the

improvement from the newer algorithm, it is crucial to

quantify and document its error characteristics. How-

ever, existing assessments are mostly confined over Japan

(Ushio et al. 2009; Kubota et al. 2009). Detailed studies

over other areas are lacking, especially on hydrology-

relevant space and time scales. In this work, we evaluate

GSMaP over the contiguous United States (CONUS).

With the much larger spatial scale and accompanying

variability in climate regimes, this study contributes to

a more comprehensive understanding of GSMaP’s error

characteristics and their potential effects on hydrologi-

cal applications.

To gain a better perspective, we evaluated GSMaP in

parallel with a few other TRMM-era products, including

TRMM Multisatellite Precipitation Analysis (TMPA)

3B42, Climate Prediction Center morphing technique

(CMORPH), Precipitation Estimation from Remotely

Sensed Information using Artificial Neural Networks

(PERSIANN), and U.S. Naval Research Laboratory

(NRL)-blended product (see section 2). These existing

products have been extensively studied (e.g., Gottschalck

et al. 2005; Ebert et al. 2007; Tian et al. 2007, 2009;

Sapiano and Arkin 2009; Kubota et al. 2009), and their

strengths and weaknesses are well understood. A simpli-

fied, near-real-time version of GSMaP (GSMaP_NRT),

which uses less PMW input streams and a forward-only

cloud advection scheme, has been routinely evaluated by

the International Precipitation Working Group (Ebert

et al. 2007; available on line at http://cics.umd.edu/;johnj/

us_web.html). Building upon this existing knowledge,

this study provides a better context and yields more in-

sight into GSMaP’s error characteristics.

2. Data

In this study, we used GSMaP’s surface rainfall prod-

uct currently known as ‘‘GSMaP_MVK1 version 4.8.4.’’

Among the several GSMaP versions currently available,

GSMaP_MVK1 uses the most satellite input streams.

The estimates were obtained by the temporal interpola-

tion of PMW retrievals using a PMW–IR-blended al-

gorithm, with a two-way morphing technique from IR

images (Joyce et al. 2004) and a Kalman filter (Ushio

et al. 2009). The retrievals from the PMW sensors were

computed from GSMaP’s own algorithms using various

attributes from TRMM data (Kubota et al. 2007; Aonashi

et al. 2009). The rain/no-rain classification (RNC) scheme

plays a key role in the PMW algorithms over land, with

the RNC database derived from the TRMM precipitation

radar (PR) for the TRMM Microwave Imager (TMI;

Seto et al. 2005) and other imagers aboard the polar-orbit

satellites (Seto et al. 2008). Rainfall estimates from the

Advanced Microwave Sounding Unit-B (AMSU-B) were

provided by the National Oceanic and Atmospheric Ad-

ministration (NOAA; Ferraro et al. 2005). No ground-

gauge correction is applied to this GSMaP product. The

product’s highest space and time resolutions are 0.18 and

one hour, respectively. We chose a 2-yr period from 2005

to 2006 for this study, and all the datasets were evaluated

at 0.258 resolution with daily accumulation.

For ground reference data, we used a newly available

grid analysis of gauge dataset produced by the NOAA

Climate Prediction Center (CPC), referred to as the

CPC unified daily gauge dataset (CPC-UNI; Chen et al.

2008). This dataset employs an optimal interpolation

(OI) technique to reproject gauge reports over CONUS

to a 0.258 grid. The OI-based interpolation has been

shown to have higher correlation with individual gauge

measurements than other techniques (Chen et al. 2008).

There are about 8000–10 000 gauge reports used daily in

CPC-UNI for our study period.

To assess the uncertainties in the reference data, we

intercompared CPC-UNI analysis with the NOAA CPC

near-real-time daily precipitation analysis (Higgins et al.

2000) and the NOAA Next Generation Weather Radar

(NEXRAD) stage IV data (Lin and Mitchell 2005). Over

the eastern CONUS, the differences between the three

datasets are small, because of the high density of the

gauges and relatively flat terrain in this region. Therefore,

we estimate the errors in CPC-UNI are one order of

magnitude lower than those in the satellite data, and

they will not qualitatively affect the evaluation of the

satellite-based estimates. In the western CONUS, how-

ever, the uncertainties become much larger, especially

in winter [December–February (DJF)]. Stage IV data

severely underestimate relative to either gauge dataset,

mainly because of the complex terrain. Meanwhile, Pan

et al. (2003) show CPC near-real-time analysis also greatly

underestimates by nearly 60%, an amplitude similar

to those of the satellite-based datasets (see their Fig. 3).

Consequently, over the western CONUS, negative biases

in GSMaP could be severely underestimated, and posi-

tive biases overestimated, by roughly a factor of 2.

Four other TRMM-era datasets were used for parallel

evaluation in this study. They are referred to as TMPA

3B42 (Huffman et al. 2007), CMORPH (Joyce et al.
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2004; Janowiak et al. 2005), PERSIANN (Hsu et al.

1997, 1999; Sorooshian et al. 2000) and NRL blended, or

NRL for short (Turk and Miller 2005). They are similar

to GSMaP, as they all are produced from the combina-

tion of PMW and IR retrievals, although the combina-

tion techniques vary greatly. More details can be found

in the references associated with each dataset, or in

Table 1 of Tian et al. (2009). In fact, GSMaP is expected

to be more similar to CMORPH, as it has inherited

CMORPH’s morphing algorithm (Joyce et al. 2004) to

derive cloud motion vectors. However, there are some

differences between them. GSMaP employs a new Kalman

filter approach (Ushio et al. 2009) to assimilate IR-derived

rain rates; although not as accurate as PMW retrievals, it

can help to reduce the total errors with the Kalman filter.

On the other hand, GSMaP has not implemented the

normalization technique CMORPH uses to blend the

various PMW retrievals. Thus, it would be interesting to

see the effect of these trade-offs on the final product.

We also studied another TMPA product, 3B42RT

(Huffman et al. 2009), which is a real-time version of

3B42 but without gauge correction. However, for the

first half of our study period, the data were produced by

an outdated algorithm and thus are considered obsolete;

for the second half, its performance is not particularly

different from other satellite-only products evaluated in

this study. Therefore, the results with 3B42RT are not

presented here.

These reference datasets have been extensively stud-

ied (e.g., Gottschalck et al. 2005; Ebert et al. 2007; Tian

et al. 2007, 2009; Sapiano and Arkin 2009), and each has

its own unique strengths and weaknesses, resulting from

the various enhancements and compromises in its con-

struction. For instance, 3B42 incorporates global gauge

data that help to dramatically reduce its biases, but it has

long delays in availability due to the latency of the gauge

data. As another example, CMORPH is more cautious

in estimating precipitation over snow- and ice-covered

land surfaces, resulting in less precipitation events over

such surfaces. Therefore, the question, ‘‘which dataset

is the best,’’ is often not easily defined. More impor-

tantly, they share many common challenges, which are

largely a manifestation of some more fundamental lim-

itations in the current precipitation remote sensing ca-

pability (Tian et al. 2009) and which partly motivate the

upcoming Global Precipitation Measurement (GPM)

mission.

3. Results

GSMaP performed reasonably well in capturing the

spatial patterns of precipitation over CONUS, espe-

cially for summer [June–August (JJA)]. Figure 1 shows

snapshots of precipitation patterns for two individual

days selected as examples: a winter day (14 January

2006; Fig. 1a) and a summer day (28 July 2006; Fig. 1b).

For both cases, GSMaP replicated the large-scale pre-

cipitation patterns over most parts of CONUS as well as

the other multisensor products. For the winter day (Fig. 1a),

there were two precipitation systems: one over the

northwestern CONUS and the other over the eastern

region. GSMaP, similar to the other datasets, captured

the eastern system better then the one over the North-

west. In fact, the estimates for the system over the

Northwest varied greatly among the five satellite-based

datasets, with GSMaP being closest to CPC-UNI but

still missing considerable fractions of the precipitating

area. This may be related to the difficulty in capturing

maritime or topographically driven low-level precipi-

tation by PMW sensors. In addition, the satellite-based

estimates tend to underestimate at higher latitudes (408N

and greater) for the eastern system. This underestimation

may be caused by two factors: snow and ice cover on

the ground and the lack of TRMM coverage over these

latitudes.

For the summer day (Fig. 1b), GSMaP’s estimates

closely resemble the measurements by CPC-UNI of the

southwest–northeast system across CONUS, and the five

datasets have much better agreement for this summer day

than for the winter day (Fig. 1a). Subtle differences exist

between them, with GSMaP and PERSIANN having

smoother rain patterns and each dataset having a differ-

ent picture for the isolated storm over southern Nevada,

for example, which may be related to PMW retrieval

errors over arid areas.

Figure 2 shows the time series of daily area-averaged

precipitation (Figs. 2a and 2b), probability of detection

(POD; Figs. 2c and 2d), false-alarm rate (FAR; Figs. 2e

and 2f), and equitable threat score (ETS; Figs. 2g and

2h) for the western and eastern CONUS (‘‘the West’’

and ‘‘the East’’), respectively. POD, FAR, and ETS were

computed with a rain/no-rain threshold of 1 mm day21

applied to each dataset. The two regions are delineated

by the 100th meridian. For area-averaged precipitation

amount, the western CONUS (Fig. 2a) sees much higher

uncertainties among the satellite-based estimates than its

eastern counterpart (Fig. 2b), with strong but disparate

overestimates in summer and modest underestimates in

winter (Fig. 2a), and GSMaP is fairly moderate in either

season. In the East, the bias has the similar trend (over-

estimates in summer and underestimates in winter), but

the amplitudes of these biases are relatively smaller than

in the West, and the datasets, including GSMaP, have

better agreement. In fact there is a tendency for the da-

tasets to agree with one another better than their overall

agreement to CPC-UNI, indicating systematic biases in
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all the satellite-based datasets (except for TMPA 3B42).

TMPA 3B42 has the lowest biases, as expected from its

bias correction with gauge data. We speculate the

higher uncertainties in the West are related to more

topographically driven precipitation and fewer favor-

able land surface conditions (e.g., deserts, and snow and

ice cover).

GSMaP has slightly better POD than other satellite-

based datasets (Figs. 2c and 2d), especially during the

second summer. Its highest POD reached nearly 80%

(75%) in the East (West), and its FAR (Figs. 2e and 2f)

is near the lower end of the group. In addition, its ETS is

consistently the highest by itself in the western CONUS,

and with CMORPH in the eastern CONUS. These

favorable scores can be closely connected with the IR

interpolation technique and the RNC scheme of the

PMW algorithm. Kubota et al. (2009) demonstrated the

effective application of the IR techniques for satellite-

based daily averages using the ground-based radar anal-

ysis around Japan. Seto et al. (2005, 2008) showed better

FIG. 1. Snapshots of daily precipitation pattern for (a) a winter day (14 Jan 2006) and (b) a summer day (28 Jul 2006) from

each of the six datasets.

APRIL 2010 N O T E S A N D C O R R E S P O N D E N C E 569



FIG. 2. Time series of (a),(b) area-averaged daily precipitation, (c),(d) POD, (e),(f) FAR, and (g),(h) ETS for

(left) western and (right) eastern CONUS from each of the datasets. A 31-day running average was applied to each

time series.
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performance of the RNC scheme than the Goddard

Profiling algorithm (Kummerow et al. 2001) when evalu-

ated against the TRMM PR data. Overall, all the satellite-

based estimates share the tendency that their PODs

(FARs) are higher (lower) in summer or over the East

than in winter or over the West. Therefore, GSMaP, as

well as the other datasets, has the best (worst) detection

of precipitation in summer over the East (in winter over

the West).

Finally, we show the intensity (or rain rate) distribu-

tions of daily precipitation amount in Fig. 3 and the daily

number of precipitation events in Fig. 4. The intensity

distributions of daily precipitation amount provide unique

insights into the error dependence on rain rate and also the

potential impact of the errors on hydrological applications.

This is because most hydrological processes, such as sur-

face runoff, are highly sensitive to the intensity distribu-

tions as well as the total precipitation amount. For winter,

most datasets, including GSMaP, largely underestimate

over a wide range of rain rates, except NRL in the West

(Fig. 3a) and 3B42 in the East (Fig. 3b). Over the West,

GSMaP, as well as CMORPH and PERSIANN, missed

most precipitation with rain rate higher than 40 mm day21,

whereas over the East, most misses are in the inter-

mediate range (;8–40 mm day21). In summer, except

for 3B42, all the estimates considerably overestimate

over either the West (Fig. 3c) or the East (Fig. 3d),

mostly over the stronger end of rain rates (.20 mm day21).

Again, GSMaP is fairly moderate in these aspects, and for

summer, the differences between the satellite-based da-

tasets (except for 3B42) are smaller than their difference

as a whole from CPC-UNI, suggesting systematic biases

in the common input date streams used by these products.

On the other hand, the intensity distributions of the

daily number of precipitation events, or histograms

(Fig. 4), enable one to see better the errors at low rain

rate. In winter, both the West and East show large dis-

agreements between the datasets. GSMaP has about

20%–50% fewer events than CPC-UNI across the range

of 2–32 mm day21 (Figs. 4a and 4b). In comparison,

FIG. 3. Intensity distribution of precipitation amount for (a),(b) winter and (c),(d) summer over (left) western and (right) eastern

CONUS from each of the six datasets.
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PERSIANN catches more events than CPC-UNI in the

range of 1–8 mm day21, whereas CMORPH has the

fewest events among all the datasets, probably as a result

of its more conservative estimate of raining area in the

presence of snow cover. In summer, GSMaP and other

datasets overestimate the number of precipitation events

for rain rates higher than 4 mm day21 in the West, except

3B42, which has a histogram very close to CPC-UNI

(Fig. 4c). In the East, GSMaP has excellent agreement

with CPC-UNI in the range of 1–20 mm day21 but

overestimates events above this range. In fact, all the

datasets overestimate the number of stronger rainfall

events, except 3B42 (Fig. 4d). Again, all the satellite-

based datasets tend to have better agreement among

them in summer than in winter.

4. Summary

GSMaP (Version MVK1) provides a new high-

resolution precipitation product based on merging the most

available PMW and IR satellite retrievals. It is attractive

to a wide range of hydrological applications, but it has not

been evaluated extensively over continental-scale land

surfaces. In this study, we studied the error characteristics

of GSMaP over CONUS, in parallel with four existing

satellite-based datasets: 3B42, CMORPH, PERSIANN,

and NRL. The findings of this study include:

1) GSMaP compares favorably with the other existing

satellite-based datasets in capturing the spatial pat-

terns of precipitation, especially in summer. Along

with CMORPH, it has the highest probability of

detection and equitable threat scores among all the

datasets in summer (Figs. 2c–2h), but it has 10%–

30% lower biases than CMORPH (Table 1).

2) GSMaP, similar to the other multisensor products,

consistently underestimates precipitation in winter

and overestimates in summer, and it performed

better over the East than the West. The amplitudes

of GSMaP’s errors are not outstandingly higher or

lower than the other datasets. Table 1 summarizes

the biases of all the datasets. GSMaP’s winter bias is

250% (232%) over the West (East), whereas the

FIG. 4. Same as Fig. 3 but for precipitation event count.
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biases of the other four datasets range from 275% to

14% over the West (from 248 to 28% over the East;

248%). For summer, GSMaP has 77% (25%) biases

over the West (East), whereas the other datasets

range from 28% to 109% over the West (from

213% to 32% over the East).

3) The overestimates in GSMaP for summer result from

an excessive number of strong (.20 mm day21)

precipitation events (Figs. 3c, 3d, 4c, and 4d); GSMaP

misses a significant number of such events for winter,

particularly over the West (Figs. 3a and 4a), leading

to substantial underestimates.

These error characteristics will have significant hydro-

logical implications. They will lead to considerable un-

derestimation in streamflow and snowpack accumulation

in the western CONUS in winter, for example (Pan et al.

2003), and their excessive amount of strong events in

summer will overpredict surface runoff and generate false

flood alerts in the eastern CONUS.

Overall, GSMaP and the other multisensor precipi-

tation products without gauge correction produce pre-

cipitation estimates that are closer to each other than

to the CPC-UNI. The gauge-corrected 3B42 is more

similar to the gauge-based CPC-UNI by design. This

highlights the systematic errors in the common input

streams used by these purely satellite-based products (e.g.,

McCollum et al. 2002), and it suggests that all satellite-

only products could benefit from gauge-based bias cor-

rections similar to 3B42. Similarly, improvements made

to one product in reducing detection or false-alarm errors

could possibly be applied to other products as well. More

fundamentally, more efforts should be devoted to re-

ducing the errors in the upstream of the input data, by

measures including better calibration, algorithm improve-

ment, and increased spatial and temporal coverage of

PMW retrievals to be offered by the upcoming GPM

mission.
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