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ABSTRACT

A large number of water- and climate-related applications, such as drought monitoring, are based on

spaceborne-derived relationships between land surface temperature (LST) and the normalized difference

vegetation index (NDVI). The majority of these applications rely on the existence of a negative slope between

the two variables, as identified in site- and time-specific studies. The current paper investigates the generality

of the LST–NDVI relationship over a wide range of moisture and climatic/radiation regimes encountered

over the North American continent (up to 608N) during the summer growing season (April–September).

Information on LST and NDVI was obtained from long-term (21 years) datasets acquired with the Advanced

Very High Resolution Radiometer (AVHRR). It was found that when water is the limiting factor for veg-

etation growth (the typical situation for low latitudes of the study area and during the midseason), the LST–

NDVI correlation is negative. However, when energy is the limiting factor for vegetation growth (in higher

latitudes and elevations, especially at the beginning of the growing season), a positive correlation exists be-

tween LST and NDVI. Multiple regression analysis revealed that during the beginning and the end of the

growing season, solar radiation is the predominant factor driving the correlation between LST and NDVI,

whereas other biophysical variables play a lesser role. Air temperature is the primary factor in midsummer. It

is concluded that there is a need to use empirical LST–NDVI relationships with caution and to restrict their

application to drought monitoring to areas and periods where negative correlations are observed, namely, to

conditions when water—not energy—is the primary factor limiting vegetation growth.

1. Introduction

a. At issue

Periods of persistent abnormally dry weather, known as

droughts, can produce a serious agricultural, ecological, or

hydrological imbalance. Drought harshness depends upon

the degree of moisture deficiency, duration, and the size of

the affected area (Wilhite and Glantz 1985). The serious

effects droughts have on human life and well-being have

led to increasing efforts to develop and implement vari-

ous quantitative measures of drought extent and severity.

Several drought indices utilize ground-based measure-

ments: some indices are based on energy-balance models,

whereas other indices use spaceborne data, either solely

or in combination with energy-balance models (Heim

2002; Quiring and Papakryiakou 2003). Satellite-derived

drought indices typically use observations in multispec-

tral bands, each of which provides different information

about surface conditions. Because droughts are naturally

associated with vegetation state and cover, vegetation

indices (VIs) are commonly used for this purpose (e.g.,

Tucker and Choudhury 1987), utilizing data in the visible

red (R), near infrared (NIR), and the shortwave infrared

bands. Some drought indices are based on observations in
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the thermal infrared (TIR) spectral region, which conveys

information about vegetation health and soil moisture

status.

b. NDVI as an indicator of drought

The most commonly used VI is the normalized dif-

ference vegetation index (NDVI) [Eq. (1)], which is

based on the difference between the maximum absorp-

tion of radiation in R as a result of chlorophyll pigments

and the maximum reflectance in NIR spectral region as

a result of leaf cellular structure (Tucker 1979):

NDVI 5
(r

NIR
� r

R
)

(r
NIR

1 r
R

)
, (1)

where r is reflectance in the respective spectral bands.

The soil spectrum typically does not show such a distinct

spectral difference between these bands, and thus the

NDVI allows for separation of vegetation from the soil

background.

Tucker and Choudhury (1987) found that NDVI could

be used as a response variable to identify and quantify

drought disturbance in semiarid and arid lands, with low

values corresponding to stressed vegetation. More re-

cently, Ji and Peters (2003) found that NDVI is an ef-

fective indicator of vegetation response to drought in the

Great Plains of the United States, based on the rela-

tionships between NDVI and a meteorologically based

drought index. The vegetation condition index [VCI;

Eq. (2)] developed by Kogan (1995, 1997, 2002) nor-

malizes NDVI on a pixel-by-pixel basis, scaling between

minimum and maximum values of NDVI (NDVImin and

NDVImax, respectively), as observed at each pixel over

a long temporal record since 1981:

VCI 5
NDVI9�NDVI

min

NDVI
max
�NDVI

min

, (2)

where NDVI9 is the average NDVI over a composite

period of interest (which can be a week, decade, month,

growing season, or a year). The normalization serves to

emphasize relative changes in the local NDVI signal

through time while reducing the influence of spatial

variability in NDVI phenology between different land

cover types and climatic conditions.

c. LST as an indicator of drought

Land surface temperature (LST) derived from TIR

band data has also been found to provide vital and useful

information on the state of the land surface and is widely

implemented in formulating the energy and water bud-

gets at the surface–atmosphere interface (Gutman 1990).

In this context, LST serves as a proxy for assessing

evapotranspiration, vegetation water stress, soil mois-

ture, and thermal inertia (Moran et al. 1994; Ottle and

Vidalmadjar 1994; Moran et al. 1996; Sobrino et al. 1998;

Gupta et al. 2002; Narasimhan et al. 2003; Jang et al.

2006; Anderson et al. 2007).

Recognizing that LST provides useful information

about vegetation condition, Kogan (1995; 2000) adapted

the VCI normalization approach [Eq. (2)] to LST and

developed the temperature condition index (TCI) based

on brightness temperature (BT) values:

TCI 5
BT

max
� BT9

BT
max
� BT

min

, (3)

where the BT9 is the average BT value for a composite

period of interest, and BTmax and BTmin are pixel-specific

long-term maximum and minimum temperatures identi-

fied over the period of record. Note that to apply the TCI

for determining temperature-related vegetation stress, it

is formulated as a reverse ratio to the VCI. Although the

VCI increases with NDVI, the TCI decreases with LST

based on the hypothesis that higher land surface tem-

peratures indicate soil moisture deficiencies and there-

fore stress in the vegetation canopy (Kogan 1995, 2000).

d. LST–NDVI relationships as an indicator
of drought

Both visible to near-infrared (VNIR) and TIR data

have advantages and disadvantages in terms of utility for

drought detection. Although LST-based assessments of

land surface conditions have shown a better performance

over sparse vegetation cover (Friedl and Davis 1994),

VNIR-based indices are more reliable at assessing the

condition and dynamics of vegetation over intermediate

levels of vegetation cover (about 50%; Huete et al. 1985).

Therefore, extensive work has been devoted to combin-

ing these state variables into a unified drought indicator,

based on the assumption that complementary informa-

tion in these wave bands may provide a more robust

characterization for different phenomena at the land

surface. Studies have revealed a strong negative corre-

lation between NDVI and LST (Gurney et al. 1983;

Goward et al. 1985; Hope et al. 1986; Hope 1988; Goward

and Hope 1989; Nemani and Running 1989; Price 1990;

Smith and Choudhury 1991; Hope and McDowell 1992;

Nemani et al. 1993; Prihodko and Goward 1997; Goward

et al. 2002), resulting from the cooling effects of canopy

transpiration. These early studies were typically limited

to relatively small areas and based on a limited number

of images. The spatiotemporal variability of the LST–

NDVI relationship on continental or global scales has

been investigated in several studies (Schultz and Halpert

1995; Lambin and Ehrlich 1996; Churkina and Running

1998; Nemani et al. 2003; Julien et al. 2006; Olthof and
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Latifovic 2007; Sun and Kafatos 2007; Julien and Sobrino

2009). However, all of these studies used only the yearly

or growing season mean values.

Prior studies have assessed the variability in the slope

of the inverse LST–NDVI relationship in association

with local topographic and environmental conditions.

Goward and Hope (1989), for example, stated that the

LST–NDVI slope and intercept are expected to vary

from day to day based on the magnitude of incident solar

radiation, advective atmospheric conditions, and surface

moisture availability. Simulations performed by Hope

et al. (1988) revealed that soil moisture potential affects

the relationship between canopy temperature and NDVI.

Using a LST–NDVI scatterplot, Price (1990) differenti-

ated between areas of full vegetation cover, dry soils, and

moist soils. Hope and McDowell (1992) used the LST–

NDVI relation to distinguish between burned and un-

burned surfaces. The LST–NDVI slope was also found

to be related to vegetation type and topography as well

as to vegetation cover (Nemani et al. 1993). Goward

et al. (1994) showed that although a negative slope exists

for sparse vegetation cover, the slope of a closed vege-

tation canopy is insignificant. Goetz (1997) showed that

the slope varies with climatic conditions, with steeper

slopes associated with drier situations.

The LST–NDVI slope has been used in numerous

applications associated with water and energy balance.

The slope was found to be related to moisture availability

and canopy resistance, indicating vegetation stress and/or

soil water stress (Nemani and Running 1989; Carlson

et al. 1994; Gillies and Carlson 1995; Gillies et al. 1997;

Goetz 1997). Nemani et al. (1993) found that the slope

is inversely correlated to a crop moisture index. Other

studies showed that the slope is related to the rate of

evapotranspiration from the surface (Prihodko and

Goward 1997; Boegh et al. 1999). Goward et al. (2002)

used NDVI and LST data to predict near-surface air

temperature. The typical ‘‘triangle’’ or ‘‘trapezoidal’’ dis-

tributions of image pixels in the NDVI–LST space have

been used to model soil–vegetation–atmosphere interac-

tions in terms of evaporation and evapotranspiration

(Carlson et al. 1994; Moran et al. 1994; Gillies and Carlson

1995; Moran et al. 1996; Gillies et al. 1997; Sandholt et al.

2002; Jang et al. 2006; Stisen et al. 2007). Other applica-

tions include large-scale land cover classification, change

detection, vegetation phenology, and evaluation of de-

sertification and climate change processes (Achard and

Blasco 1990; Lambin and Strahler 1994a,b; Lambin and

Ehrlich 1995; Ehrlich and Lambin 1996; Lambin 1996;

Lambin and Ehrlich 1996, 1997; Nemani and Running

1997; Sobrino and Raissouni 2000; Dall’Olmo and Karnieli

2002; Karnieli and Dall’Olmo 2003; Tateishi and Ebata

2004; Wan et al. 2004; Julien et al. 2006).

Considerable attention has been given to the inverse

relation between LST and NDVI with respect to drought

monitoring. During drought periods, NDVI at a given

pixel will typically be relatively low, whereas LST is

expected to be relatively high because of both vegeta-

tion deterioration and higher contribution of a soil signal

(Kogan 2000). McVicar and Bierwirth (2001), for ex-

ample, used a simple ratio between LST and NDVI to

map drought. The vegetation health index (VHI) devel-

oped by Kogan (1995) combines two indicators of com-

parable magnitude, using the VCI and TCI described

earlier [Eqs. (2) and (3)]:

VHI 5 aVCI 1 (1� a)TCI, (4)

where a and (1 2 a) define the relative contributions of

each index. Because of the lack of more accurate in-

formation, a has been usually assigned a value of 0.5,

assuming an equal contribution of both variables to the

combined index (Kogan 2000). The VHI has been ap-

plied in a range of applications, such as drought detec-

tion, assessment of drought severity and duration, and

early drought warning (Seiler et al. 1998); monitoring

crop yield and production during the growing season

(Unganai and Kogan 1998); vegetation density and bio-

mass estimation (Gitelson et al. 1998); assessment of

irrigated areas (Boken et al. 2004); and estimation of

excessive wetness (in contrast to drought; Unganai and

Kogan 1998). Such applications have been conducted

in many parts of the world at various scales—from

global (Kogan 1997, 2000, 2002) to regional (e.g., Liu and

Kogan 1996) and local scales (e.g., Seiler et al. 1998).

The VHI is a standard product for drought monitoring,

provided weekly by the National Oceanic and Atmo-

spheric Administration (NOAA; available online at

http://www.orbit.nesdis.noaa.gov/smcd/ and http://lwf.

ncdc.noaa.gov/oa/climate/research/dm/vhi.html) and

other institutes (e.g., http://www.fe-lexikon.info/ and

http://www.reliefweb.int/).

The validity of the VHI as a drought detection tool

relies on the assumption that NDVI and LST at a given

pixel will vary inversely over time, with variations in VCI

and TCI driven by local moisture conditions. However,

when examined over spatially expanded areas and long

periods, the relationship between LST and NDVI is found

to be nonunique and often nonnegative. Kawashima

(1994) distinguished between urban and suburban sites

and observed positive relationships on a clear winter

night as a result of higher vegetation density in the sub-

urban area than in the urban area. Lambin and Ehrlich

(1996) worked on a continental scale in Africa and

found positive correlations over an evergreen forest and

negative correlations over drier biomes. A positive slope
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was also shown for the native evergreen forests in south-

ern Australia (Smith and Choudhury 1991). Karnieli et al.

(2006) demonstrated that the slope of LST versus NDVI

over Mongolia changes with respect to geobotanical

regions and latitude. A negative slope was observed in

the arid regions of southern Mongolia, whereas the

slope was positive in the northern part of the country.

Olthof and Latifovic (2007) showed that the NDVI of

trees and shrubs in Canada correlates positively with

LST, whereas Sun and Kafatos (2007) found that these

correlations over the North American continent are sea-

son and time-of-day dependent. A positive correlation was

found in winter, whereas strong negative correlations

were found during the warm seasons. The global distri-

bution of the LST and NDVI relations shows negative

correlations over drylands and midlatitudes and positive

correlations over the tropics and high latitudes (Schultz

and Halpert 1995; Churkina and Running 1998; Nemani

et al. 2003; Julien and Sobrino 2009).

In summary, positive relationships between LST and

NDVI tend to develop in areas where vegetation growth

is energy or temperature limited. Several studies con-

firmed via warming experiments in high-latitude regions

that warming generally induces an increase in plant bio-

mass, abundance, height, cover, and net primary pro-

ductivity (NPP; Chapin et al. 1995; Graglia et al. 1997;

Dormann and Woodin 2002; Van Wijk et al. 2003; Stow

et al. 2004; Walker et al. 2006). In such areas, higher

LST reflects conditions that are more conducive to plant

development through various biochemical processes

(Badeck et al. 2004). Increased LST also drives pro-

cesses within the soil, such as microbial activity, nitrogen

availability, and nutrient uptake (Nadelhoffer et al. 1991;

Chapin et al. 1995). Therefore, in high latitudes, in-

creasing LST should not be interpreted as a signal of

vegetation stress.

e. Objectives

Diverse findings regarding the LST–NDVI relation-

ship are reported in literature. In general, prior studies

suggest that the sign of the LST–NDVI slope may be

governed by whether vegetation growth is water limited

(negative slope) or energy–temperature limited (posi-

tive slope). The latter condition is prevalent at high

latitudes or in the evergreen tropical forests, whereas

the former may occur at lower latitudes, especially in

drylands (Nemani and Running 1989; Nemani et al.

1993; Lambin and Ehrlich 1996; Karnieli et al. 2006).

The objective of this paper is to investigate the gen-

erality of the LST–NDVI relationship with respect to

drought monitoring and assessment. The study includes

the wide range of moisture and climatic–radiation re-

gimes encountered over the North American continent

(up to 608N) during the summer growing season (April–

September) using long-term (21 years) datasets from the

Advanced Very High Resolution Radiometer (AVHRR).

Over this domain, it was hypothesized that the slope of

LST versus NDVI increases with latitude, and that the

sign of the slope is related to the locally prevalent factor

limiting vegetation growth: energy versus moisture. The

goal is to identify times and areas where simple empir-

ical drought indices—such as the VHI, which assumes

a negative slope between NDVI and LST—should work

well and where their application may be problematic.

2. Data and methodology

A wide range of climatic and physical variables affects

NDVI, LST, and the relationship between plant cover

and temperature. The primary variables among these

are solar radiation, air temperature close to the earth’s

surface, and rainfall (Churkina and Running 1998; Nemani

et al. 2003). Radiation is important because photosynthesis

occurs only in environments with a sufficient amount of

light, and temperature determines photosynthetic and

respiration rates as well as the amount of nutrients avail-

able for plant uptake through the influence on litter de-

composition rate. Precipitation is crucial as the main

source of water supply. Secondary biophysical variables

of interest closely related to these primary climatic fac-

tors include soil moisture, evapotranspiration, and land

cover extent and type. For critical examination of the

NDVI–LST relationship, long-term information about

such variables was assembled from surface and satellite

sources and from numerical weather prediction models.

The current study domain includes the United States

and Canada (up to 608N), where comprehensive ancil-

lary data are available.

a. NDVI and LST data

A suitable spaceborne instrument for retrieving long-

term NDVI and LST data is the AVHRR carried on

the NOAA series of satellites. This instrument pro-

vides imagery in the visible R, NIR, and TIR spectral

bands. Although originally designed for atmospheric

and oceanic applications, the sensor has been widely

used for land applications, particularly for assess-

ing the state and temporal dynamics of vegetation at

coarse spatial resolution (1.1 km) over regional-to-global

scales. Availability of continuous global observations on

a daily basis since June 1981 makes this sensor attrac-

tive for many long-term vegetation and climate change

studies.

In this study, 21 years of NOAA-AVHRR data (July

1981–December 2001) from the NOAA/National Aero-

nautics and Space Administration (NASA) Pathfinder
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AVHRR Land (PAL) dataset (available online at http://

daac.gsfc.nasa.gov/interdisc/readmes/pal_ftp.shtml) are

used. These data were obtained from the afternoon

satellites—namely, NOAA-7, NOAA-9, NOAA-11,

NOAA-14, and NOAA-16. Specifically, the AVHRR

data used here include monthly composites of calibrated

reflectances from bands 1 and 2, and brightness tempera-

tures from bands 4 and 5 at 8-km resolution. Preprocessing

of the PAL dataset included improved navigation, cloud

masking, calibration, and Rayleigh atmospheric cor-

rection [Nemani et al. (2003) and supporting references

and notes therein].

On the basis of the PAL dataset, NDVI values are

computed using Eq. (1) with bands 1 and 2 as rR and

rNIR, respectively. Brightness temperatures of bands 4

(BT4) and 5 (BT5) are used to compute LST utilizing

a split-window algorithm (Coll et al. 1994; Jang et al.

2006):

LST 5 BT
4

1 [1.29 1 0.28(BT
4
� BT

5
)](BT

4
� BT

5
)

1 45(1� «
4
)� 40D«, (5)

where «4, the surface emissivity in band 4, is calculated as

«
4

5 0.9897 1 0.029 ln(NDVI) (6)

and the emissivity difference between bands 4 and 5

(D«) as

D« 5 0.01019 1 0.01344 ln(NDVI). (7)

Monthly LST and NDVI data over the study area were

downloaded for a 6-month period (April–September)

for each year. Pixels representing inland water bodies

(NDVI , 0 and LST , 200 K) were excluded from

the analysis. In addition, a small number of noisy pixels

(mostly due to local registration artifacts) were elimi-

nated from each image. The data were averaged for

two months, representing subperiods of the vegetation

growing season—the beginning (April–May), middle

(June–July), and end (August–September). Long-term

averages of NDVI and LST were also computed from

the bimonthly values. In total, 1 long-term average field

and 21 yearly images were derived for both NDVI and

LST.

b. Primary variables

1) AIR TEMPERATURE

Gridded data of long-term monthly-mean air tem-

perature at 2 m above ground were extracted from the

National Centers for Environmental Prediction (NCEP)

North American Regional Reanalysis (NARR) dataset

(Mesinger et al. 2006; available online at http://www.cdc.

noaa.gov/cdc/data.narr.monolevel.html). This version of

NARR uses the Noah land surface model (LSM) em-

bedded within the mesoscale Eta model (Ek et al. 2003).

The grid resolution is approximately 0.38 (32 km).

2) RAINFALL

Gridded long-term averages of monthly precipitation

for North America at 0.258 spatial resolution were ob-

tained from monthly-mean values from NOAA’s Climate

Prediction Center (CPC) using gauge observations from

1948 to the present (available online at http://www.cpc.

ncep.noaa.gov/products/global_precip/html/web.shtml),

averaged to 0.58. Similar data for Canada, at 18 resolution,

were also used (J. Janowiak and W. Shi 2007, personal

communication).

3) RADIATION

Under the International Satellite Cloud Climatology

Project (ISCCP; Schiffer and Rossow 1985; Rossow and

Schiffer 1999; Rossow and Dueñas 2004) time series

of cloud cover and top-of-the-atmosphere radiances are

produced from an amalgamation of observations from

five geostationary satellites as well as from the AVHRR

instrument on board the polar-orbiting satellites. Over

the United States, most of the observations come from

the Geostationary Operational Environmental Satellite

(GOES) series of satellites. These observations are

gridded at 2.58 spatial resolution at a time scale of three

hours, and daily values are produced by integration from

sunrise to sunset. The daily values are aggregated to

monthly means as used in this study. The ISCCP cloud

products (version D1) are used to produce surface ra-

diative fluxes with the University of Maryland inference

scheme originally described in Pinker and Ewing (1985)

and Pinker and Laszlo (1992) and as modified in respect

to the representation of aerosols (Liu et al. 2005; Liu and

Pinker 2008; Liu et al. 2008), data merging techniques

(Zhang et al. 2007), and elevation correction.

These radiative fluxes have been used in numerous

studies (Sui et al. 2003; Rodriguez-Puebla et al. 2008)

and are being evaluated in the Global Energy and Water

Cycle Experiment (GEWEX) Radiative Flux Assess-

ment framework (available online at http://eosweb.larc.

nasa.gov/GEWEX-RFA/).

c. Secondary variables

1) SOIL MOISTURE AND EVAPOTRANSPIRATION

Soil moisture and evapotranspiration information

was also obtained from the NCEP NARR reanalysis

(Mesinger et al. 2006) at 32-km resolution. Soil moisture

data from two layers were used—namely, average esti-

mates for the uppermost 10 cm and the plant root zone
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(0–200 cm). The 10-cm soil moisture is more closely re-

lated to surface temperature under low-vegetation cover

conditions, whereas the deeper moisture content should

better correlate under high-vegetation cover conditions.

2) FRACTIONAL VEGETATION COVER

Fractional vegetation cover was determined as follows

(Choudhury et al. 1994):

f
c
5 1�

NDVI
scmax

�NDVI
i

NDVI
scmax

�NDVI
scmin

� �0.625

, (8)

where NDVIscmax and NDVIscmin are the maximum and

minimum NDVI values from the scene.

3) LAND COVER CLASSIFICATION

To investigate the relationship of NDVI–LST slope

with cover type, a land cover classification was used con-

sisting of 14 classes at 8-km pixel resolution based on

AVHRR observations (Defries et al. 2000; Hansen et al.

2000; available online at http://glcf.umiacs.umd.edu/

data/landcover/; Defries et al. 2000; Hansen et al. 2000).

An independent land cover database generated from

AVHRR observations over Canada and consisting of

12 classes is available (online at ftp://ftp.ccrs.nrcan.gc.ca/

ad/NLCCLandCover/). In the current work, land cover

classes were aggregated into six classes: 1) evergreen

needleleaf forest (including mixed cover and woodland);

2) deciduous broadleaf forest; 3) crops; 4) grassland and

shrubland (including wooded grassland, closed shrubland,

and open shrubland); 5) low vegetation; and 6) bare soil.

This classification follows the University of Maryland

database except for the ‘‘open shrubland’’ class, which

was split between ‘‘low vegetation’’ for northeast Canada

and ‘‘grassland and shrubland’’ elsewhere. The ‘‘ever-

green broadleaf forest,’’ ‘‘deciduous broadleaf forest,’’

and ‘‘urban and built up’’ classes were excluded from

the analysis.

3. Analysis and discussion

a. Spatiotemporal relationships between LST
and NDVI

In the triangle/trapezoid approach to assessing regional

soil moisture availability, the LST–NDVI relationship is

mapped over the spatial domain of interest. Following this

approach, long-term (1981–2001) averages of NDVI and

LST for each of three bimonthly subperiods—April–May,

June–July, and August–September (Figs. 1a–f)—were

used to create density scatterplots (Figs. 1g–i). In these

plots, yellow and red colors represent higher concen-

trations of pixels. In each subperiod, two distinct pop-

ulations can be identified: one with the typical negative

slope, indicative of moisture-limited vegetation growth;

and a second with a small positive slope, showing little

variability in LST over a wide range in NDVI. To as-

certain whether the slope of LST versus NDVI gradually

varies with latitude (similar to the trend identified in

Mongolia (Karnieli et al. 2006)), eight points along

a north–south transect over the Great Plains were se-

lected at approximately 58 intervals (Fig. 2). For each

point, the April and May monthly LST and NDVI av-

erages were extracted for each of the 21 years of avail-

able data, resulting in 42 data pairs (21 years times

2 months) per point (sufficient for statistical analysis).

Figure 3 shows plots of LST versus NDVI for the eight

points along the transect. As expected, the slope grad-

ually increases from negative to positive from the south

northward. Along this transect, only the two northern

points (Figs. 3a,b) showed positive significant correlations;

the correlations at the four central points (Figs. 3c–f)

were found to be insignificant, and significant negative

correlations are identified only at the two most southern

points (Figs. 3g,h).

To study the spatial patterns of temporal correlations

between LST and NDVI, the correlation coefficient r

was computed for each pixel in the study area, stratified

by subperiod (Figs. 4a–c). The blue areas show negative

correlation coefficients, indicative of moisture-limited

vegetation growth where the VHI may work well. The

red areas have positive correlation and are likely energy

limited, and the VHI may give confusing information.

The white areas show insignificant correlation between

LST and NDVI and therefore the application of the

VHI is not suitable over this region.

Corresponding histograms of r values are shown in

Figs. 4d–f to highlight variations in the distributions of

positive and negative slopes between the seasons. In the

April–May image (Fig. 4a), representing pre-emergence

of vegetation over most of the domain, r is largely

stratified by latitude. Positive r occurred in 60% of the

entire domain and insignificant r in 25%. Only 15% of

the domain, in the southernmost part of the study area,

exhibits a significant negative correlation in the tempo-

ral behavior of NDVI and LST. This is also reflected in

the frequency histograms where negative skewness (g 5

20.79) in r distribution was computed (Fig. 4d). In

comparison, during June–July, 57% of the domain is

characterized by negative correlation, whereas insigni-

ficant and positive correlations in 29% and 14%, re-

spectively. Variation in r is less clearly characterized by

latitude (Fig. 4b) and significant positive skewness in

r (g 5 0.35) is found (Fig. 4e). Toward the end of the

growing season (August–September), a north-to-south

gradient reappears. The positive, insignificant, and neg-

ative correlations are almost evenly distributed—31%,
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37%, and 32%, respectively—with a small positive skew-

ness value (g 5 0.13, statistically significant) (Figs. 4c,f).

b. Climatic factors driving LST–NDVI correlations

The seasonal variability in the spatial distribution of

the LST–NDVI correlation coefficient over the North

American domain implies that different climatic vari-

ables govern the correlation at different times of the

year. The apparent seasonal shifts between energy- and

moisture-limited vegetation growth conditions suggest

that solar radiation and near-surface (2 m) air tempera-

ture may be important factors in spring and fall, whereas

FIG. 1. Long-term averages of NDVI for the three subperiods of the growing seasons: (a) April–May, (b) June–July, and (c) August–

September. (d)–(f) Long-term averages of LST and (g)–(i) density scatterplots of LST vs NDVI for the same subperiods. Note that in the

density plots, in each subperiod, one branch of the correlation is negative while the other is positive or insignificant. Yellow and red colors

represent higher concentration of pixels.

FIG. 2. Map of the study area. Stars mark locations along longitude 408189W where long-term

(1981–2001) LST–NDVI relationships for April–May were examined (Fig. 4). Relevant geo-

graphic locations are marked.
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precipitation can be expected to play a major role during

the summer season. The spatiotemporal distributions of

these variables are depicted in Fig. 5. To identify which

of these climatic factors are most strongly related to

spatial distributions of r in different seasons, a multiple

linear regression was performed for each subperiod,

with r as the dependent variable, and solar radiation, air

temperature, and precipitation, each averaged over long-

term periods, as independent variables. The regression

results are summarized in Table 1.

Additionally, correlation coefficients derived from

simple linear regression between r, the three primary

climatic variables, and a set of secondary biophysical

variables (fractional vegetation cover, soil moisture at

the uppermost 10 cm, mean soil moisture at 0–200 cm,

and evapotranspiration) are listed in Table 2 to highlight

interrelations between these various factors. The b values

in Table 2 are the standardized regression coefficients

(having variances of 1), allowing comparisons of the

magnitude of variation in r explained by each dependent

variable.

The total explained variance (coefficient of determi-

nation R2) resulting from the multiple regression is 0.69,

0.51, and 0.61, for the beginning, middle, and end of the

growing season subperiods, respectively. Solar radiation

appears to be the most dominant driver for the LST–

NDVI correlation at the beginning and at the end of the

growing season. Analysis of the b coefficients (Table 1)

reveals that radiation has the strongest effect on r during

the beginning and the end of the growing season (b 5

20.57 and 20.62, respectively), followed by air tem-

perature (b 5 20.33 and 20.17, respectively), and

precipitation (b 5 0.16 and 0.08, respectively), with the

effects of radiation being more pronounced during the

FIG. 3. LST–NDVI correlations at 58 increments along north–south transects from (g) 258N to

(a) 608N. Note the gradual change of the slope from negative to positive proceeding north.
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August–September subperiod. Note that for both radia-

tion and air temperature, b has negative values—that is,

r decreases as radiation and air temperature increase.

The strong dependence of the correlation coefficient on

radiation in spring and fall supports the hypothesis that

the slope of the LST–NDVI relationship (positive versus

negative) reflects the dominant-growth-limiting condi-

tion. Where solar radiation and air temperature are typ-

ically low (energy-limited conditions), higher LST

[reflecting warmer monthly conditions, or lower cloud

cover and therefore higher intercepted photosyntheti-

cally active radiation (PAR)] is associated with an in-

crease in biomass production, and therefore a positive

correlation is expected in these regions.

During the midsummer season (June–July), air tem-

perature explains most of the variance in r (b 5 20.76),

FIG. 4. Spatial distribution of pixels with positive (r . 0.2), negative (r , –0.2), or insignificant (–0.2 , r . 0.2) correlations for the

(a)–(c) three subperiods of the growing seasons and (d)–(f) their respective frequency histograms. Histograms and g values show that at

the beginning of the growing season, the majority of the area was characterized by positive correlation; at the middle of the growing season

by negative correlation; and at the end of the season by a weaker, yet statistically significant, correlation.
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followed by precipitation (b 5 0.23), with radiation

contributing the least (b 5 0.07). Because of the in-

clination angle of the Earth, the radiation level through-

out the entire study area is higher during this period, and

even in the northernmost part of the study area, radiation

is most likely not a limiting factor for vegetation growth.

This is also reflected in the map of correlation coefficient

for June–July (Fig. 4b), where, in contrast to the other

subperiods, the spatial distribution of r is not strongly

stratified by latitude. Cooler air temperatures in Fig. 5 in

the northeast and northwest portions of the domain, as

well as in the Rockies (as a result of elevation), correlate

with areas of positive r, indicative of thermal limits on

vegetation growth. Although the radiation map does not

correlate with the map of r, the east–west gradient in pre-

cipitation across the United States corresponds to similar

gradients in r (Figs. 4, 5 for June–July), with low pre-

cipitation (moisture-limited growth) areas in the western

United States showing the strongest negative correlations

between LST and NDVI. Note that in June–July, the

overall variance explained by air temperature, radiation,

and precipitation is lower than in the other two subperiods

(Table 1). This suggests that when radiation is limiting

plant growth, it strongly affects the LST–NDVI relation-

ship, whereas under non-radiation-limiting conditions, the

nature of LST–NDVI correlations is more complex and

not easily explained by simple linear relationships.

Multiple regressions were also performed with the full

set of biophysical variables listed in Table 2. Note that

whereas solar radiation, precipitation, and air temper-

ature are primary driving forces in the soil–biosphere–

atmosphere system, these biophysical variables reflect

the response of the system to climatic forcings. Including

FIG. 5. Spatial distribution of (left) solar radiation, (middle) precipitation, and (right) air temperature over the study area in three

subperiods of the growing season.

TABLE 1. Results of multiple regressions between r (dependent

variable) and the driving (independent) variables—precipitation

(Precip), radiation (Rad), and air temperature—performed sepa-

rately for each of the three subperiods. The regression coefficient is

B, and b values are the standardized regression coefficients (having

variances of 1). Std err is standard error.

Model Precip Rad

Air

temperature

Apr–May

R2 0.689

Std err 0.195

B 0.0018 20.0088 20.0167

Significance P , 0.0000 P , 0.00 P , 0.00 P , 0.00

b 0.16 20.57 20.33

Jun–Jul

R2 0.507

Std err 0.228

B 0.0023 0.0010 20.0430

Significance P , 0.0000 P , 0.00 P , 0.00 P , 0.00

b 0.23 0.07 20.76

Aug–Sep

R2 0.605

Std err 0.195

B 0.0008 20.0054 20.0088

Significance P , 0.0000 P , 0.00 P , 0.00 P , 0.00

b 0.08 20.62 20.17
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all eight variables in the analysis resulted in a similar

ranking of the three primary factors, explaining the overall

variance in r.

c. Relationship with land cover

Another biophysical variable that may influence the

temporal relationship between LST and NDVI is land

cover type. Figure 6 presents the spatial distribution of

six main land cover types over the study area, which

were also mentioned in section 2c(3). Inclusion of these

land cover classes as dummy variables in the multiple

regression analyses (similar to the analyses described

earlier) confirms that their contribution is statistically

significant, although the addition to the total explained

variance is small (data not shown). Nevertheless, anal-

ysis of the role land cover plays in the distribution of r is

worthwhile.

Table 3 presents the percent area of the land cover

classes that correspond to negative (r , 20.2), insig-

nificant (20.2 , r , 0.2), and positive (r . 0.2) corre-

lations between LST and NDVI over the entire domain

during the three subperiods. Spatial agreement between

areas of significant r and different land cover classes may

be visually observed by comparing Figs. 4a–c, 6 for each

of the subperiods, respectively. Several examples are

highlighted here. In April–May, 80% of the area of

evergreen needleleaf forest shows a correlation between

NDVI and LST. This class is clearly apparent in Fig. 4a,

including forest patches in the Rockies and the Sierra

Nevada. The deciduous broadleaf forests of the Appa-

lachians, on the other hand, show insignificant LST–

NDVI correlations (white in Fig. 4a). These forests are

located at lower elevations than those in the west and

consequently are more susceptible to moisture-limiting

conditions than to temperature limits, whereas moisture

stress in the low-lying coastal forests in the Pacific

Northwest is less prevalent. These results are in agree-

ment with a study by Churkina and Running (1998), who

demonstrated that vegetation growth in 74% of the

evergreen needleleaf forest, globally distributed, is limited

by temperature, whereas growth in 64% of deciduous

broadleaf forests are limited by water availability. Olthof

and Latifovic (2007) examined the short-term response of

vegetation NDVI to LST in Canada and reported that

TABLE 2. Mean and standard deviation (STD) of variables examined for influence on the LST–NDVI relationship and the correlation

coefficient matrix for each of the three subperiods. The following notations are used: Tair (air temperature at 2 m); fc (fractional veg-

etation cover); SM_10 (soil moisture at the uppermost 10 cm); SM_200 (mean soil moisture at 0–200 cm); and ET (evapotranspiration).

VF stands for volumetric fraction. All correlations are highly significant (P , 0.001).

Means STD r (–)

Precip

(mm day21)

Rad

(W m22)

Tair

(8C) fc (–)

SM_10

(VF)

SM_200

(VF)

ET

(Kg m22)

Apr–May

r 0.29 0.35 1

Precip 55.65 32.12 20.14 1

Rad 224.85 22.71 20.80 0.32 1

Tair 8.73 6.91 20.76 0.35 0.85 1

fc 0.32 0.16 20.23 0.60 0.39 0.51 1

SM_10 0.25 0.06 20.02 0.51 0.16 0.28 0.58 1

SM_200 0.23 0.08 20.25 0.54 0.44 0.45 0.56 0.88 1

ET 0.27 0.13 20.33 0.75 0.50 0.58 0.83 0.70 0.69 1

Jun–Jul

r 20.15 0.32 1

Precip 71.94 31.93 0.13 1

Rad 255.97 24.79 20.55 20.11 1

Tair 18.62 5.77 20.68 0.12 0.78 1

fc 0.50 0.17 0.20 0.54 20.30 20.14 1

SM_10 0.23 0.05 0.39 0.45 20.24 20.31 0.43 1

SM_200 0.24 0.05 0.21 0.18 0.08 20.13 0.25 0.75 1

ET 0.41 0.16 0.02 0.67 20.03 0.13 0.81 0.52 0.39 1

Aug–Sep

r 20.05 0.31 1

Precip 64.05 31.24 0.09 1

Rad 206.14 35.68 20.77 20.01 1

Tair 17.01 5.98 20.72 20.05 0.89

fc 0.50 0.18 0.24 0.50 20.21 20.26 1

SM_10 0.22 0.05 0.27 0.48 20.25 20.36 0.41 1

SM_200 0.22 0.05 0.16 0.31 20.14 20.28 0.08 0.73 1

ET 0.26 0.11 20.13 0.64 0.24 0.15 0.74 0.48 0.18 1
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several land cover types (namely, trees and shrubs) also

exhibit a significant increase in NDVI with higher-than-

normal temperatures. In these areas, the VHI may pro-

duce false signals of vegetation stress.

During June–July, the mid-growing season, the ma-

jority of the cropland areas (80%), along with the grass-

land and shrubland (68%) and bare ground (55%) in the

Southwest (SW) and the Great Plains are characterized

by strong negative correlations between LST and NDVI.

Similarly, according to Churkina and Running (1998),

99% of the growth of C4 grassland and 95% of the desert

shrubland are controlled by water availability. These

findings suggest that the VHI can be effectively applied

to the agricultural areas of North America during the

midsummer season. During this season, 52% of the ev-

ergreen needleleaf forested areas, including the forest

patches in the Rockies and the Sierra Nevada (SN), tend

to exhibit insignificant correlation and 80% of the low

vegetation in northeast Canada corresponds to positive r.

In August–September, visual correlations between r

and the land cover classes are less obvious. The low-

vegetation class (e.g., tundra) in northern Canada shows

the strongest spatial correspondence with r, with 77% of

this class associated with positive correlations between

LST and NDVI. In addition, grassland and shrubland in

Canada are characterized by positive values of r. The

needleleaf forests, however, show mixed trends, with

the majority of this class (44%) showing insignificant

NDVI–LST correlations. Cropland, and grassland and

shrubland classes are almost evenly divided between

negative (44% and 46%, respectively) and insignificant

(48% and 37%) correlations.

The dry season in Florida (FL) extends from November

to April, whereas precipitation in May through October

is enhanced because of thunderstorms and tropical dis-

turbances (Fig. 5). A corresponding transition moisture-

limited (negative r) conditions to energy-limited (positive

r) conditions can be observed in Florida between the

April–May and June–July subperiods (Fig. 4). In most of

Texas, Arizona, and southern California, the negative

LST–NDVI correlation holds during the entire grow-

ing season. In contrast, most of the territory of British

Colombia and northern Quebec is characterized by a

permanent positive correlation. Correlations between

LST and NDVI tend to be less significant along the

Mississippi River basin, where irrigation and shallow

water tables ameliorate moisture limitations to plant

growth even during the midsummer.

4. Summary and conclusions

This paper explores the spatial and temporal relation-

ship between LST and NDVI over the North American

continent during the summer growing season (April–

September) in the context of its utility for drought mon-

itoring. In contrast to the common perception that LST

and NDVI are typically negatively correlated, we dem-

onstrate that this relationship in fact varies with loca-

tion, season, and vegetation type. Many attempts have

been made to interpret this relationship in terms of

FIG. 6. Spatial distribution of six land cover types aggregated from the land cover classification map generated by the Department of

Geography, University of Maryland (Hansen et al. 2000).
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various biophysical and geographical variables (e.g., land

use and land cover, fractional vegetation cover, moisture

conditions, topography). This study revealed that during

the beginning and the end of the growing season, solar

radiation is the predominant factor driving the correla-

tion between LST and NDVI, whereas other biophysical

variables play a lesser role. This behavior has often been

missed in earlier studies of more limited scope, typically

conducted over the central United States during the

growing season.

It was found that when energy is the limiting factor for

vegetation growth, as is the case at higher latitudes and

elevations in the study area, a positive correlation exists

between LST and NDVI. Conversely, during the mid-

season, the radiative flux over most of the study area is

high enough not to limit vegetation growth, and solar

radiation plays a smaller role in determining the nature

of the LST–NDVI correlation. During this subperiod,

except for the northernmost areas, the LST–NDVI cor-

relations are generally negative.

Because droughts occur mostly in low latitudes, sev-

eral vegetation health and drought indices (e.g., the

LST–NDVI ratio and the VHI) were developed based

on the assumption that a strong negative correlation

between NDVI and LST exists. In such areas, water

is ultimately the limiting factor for vegetation growth

throughout the year, making this assumption correct.

Subsequently, however, these indices have been applied

globally with the implicit assumption that NDVI and

LST are always and everywhere negatively correlated.

On the bases of the current study, there is a need to

reexamine this assumption and restrict applications of

such an approach to areas and periods where negative

correlations are observed.

It is concluded that spaceborne monitoring of vegeta-

tion health and droughts based on empirical LST–NDVI

relationships is valid for much of the United States

during the middle of the growing season, but utility is

more limited in the spring and fall and at higher lati-

tudes. Similar and complementary research should be

conducted over other continents to assess the global dis-

tribution of the LST–NDVI relationship and its temporal

variation. Global–annual assessments of the VHI and

other related indices should be used with caution. An

alternative approach for monitoring vegetation health

might be to incorporate understanding of the important

driving physical variables and their effect on NDVI and

LST, for example, through physically based surface en-

ergy balance models (Anderson et al. 2007).
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