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ABSTRACT

A source inversion technique for chemical constituents is presented that uses assimilated constituent

observations rather than directly using the observations. The method is tested with a simple model

problem, which is a two-dimensional Fourier–Galerkin transport model combined with a Kalman filter for

data assimilation. Inversion is carried out using a Green’s function method and observations are simulated

from a true state with added Gaussian noise. The forecast state uses the same spectral model but differs by

an unbiased Gaussian model error and emissions models with constant errors. The numerical experiments

employ both simulated in situ and satellite observation networks. Source inversion was carried out either

by directly using synthetically generated observations with added noise or by first assimilating the ob-

servations and using the analyses to extract observations. Twenty identical twin experiments were con-

ducted for each set of source and observation configurations, and it was found that in the limiting cases of a

very few localized observations or an extremely large observation network there is little advantage to

carrying out assimilation first. For intermediate observation densities, the source inversion error standard

deviation is decreased by 50% to 90% when the observations are assimilated with the Kalman filter before

carrying out the Green’s function inversion.

1. Introduction

Understanding the terrestrial carbon cycle is of prime

importance to predicting the evolution of climate and

ecosystems. It is particularly useful to gain knowledge

of the fluxes of carbon species between land and at-

mosphere and ocean and atmosphere; without this

knowledge, an understanding of the physical and bio-

logical processes that govern the present-day carbon

budget cannot be attained, which in turn means that

there is little chance of accurately predicting future cli-

mate. There are two predominant approaches to de-

ducing these fluxes or source–sink distributions. One of

them, the ‘‘bottom-up’’ method, uses models of ocean
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biogeochemistry or land ecosystems along with data

constraints (meteorological analyses and relevant bio-

physical parameters, such as leaf-area index deduced

from satellite data). Examples of such bottom-up

approaches include Tucker et al. (1986) and Randerson

et al. (1997). In contrast, the ‘‘top-down’’ approach uses

atmospheric concentration measurements in conjunc-

tion with transport fields (winds, cloud mass fluxes, and

diffusivity) deduced from atmospheric analyses or

models. Both approaches are subject to uncertainty as-

sociated with model error, analysis uncertainty, and

characteristics of the various types of observations.

Limitations in the observations include sparse sampling

of inhomogeneous quantities and the inherent averaging

involved in deducing quantities of physical relevance (e.g.,

concentrations) from measurements (e.g., radiances).

A number of inverse modeling studies have used

surface concentration measurements from a sparse

global network to deduce fluxes for a small number

(about 12) of continental- or basin-sized regions. For

example, Gurney et al. (2005) examine some uncer-

tainties in this method by analyzing differences between

deduced fluxes among inverse models that employed

different wind fields. Although the continental-scale flux

estimates were in reasonable agreement in regions

with a few data sources, there was much uncertainty in

unconstrained regions, as would be expected. Pétron

et al. (2002) used synthesis inversion to estimate time-

dependent CO fluxes using ground Climate Monitoring

and Diagnostics Laboratory [CMDL; now called National

Oceanic and Atmospheric Administration/Earth System

Research Laboratory (NOAA/ESRL)] surface station

data. A number of other studies (e.g., Rayner and

O’Brien 2001) have considered the utility of trace gas

constraints derived from space-based instruments, which

offer a vastly enhanced data coverage—potentially

thousands of soundings per day, compared to tens of

observations from in situ instruments.

Inverse methods for estimating chemical sources and

sinks generally use either differential (deterministic) or

integral (Bayesian) methods. Differential methods use a

mass balance to solve for the chemical sources and

therefore require constituent observations on a regular

grid. Bayesian methods involve the minimization of a cost

function and can employ Green’s functions (Tarantola

1987; Enting 2000; Pétron et al. 2004; Arellano et al.

2004), adjoint methods (Kaminski et al. 1999; Rayner

et al. 2005; Kopacz et al. 2009), or ensemble Kalman

filter methods (Peters et al. 2005). Green’s functions

are defined as the set of observed constituent values

that would be expected given a unit source at a single

region (or grid point) using a chemical transport model

(which includes estimated sources and sinks). The actual

observations are then used to invert the resulting system

to calculate a new source–sink estimate. In global

models, there are generally too many grid points to

define a Green’s function for each one, so synthesis

inversion is used in which the sources are defined in

terms of larger emissions regions (or source pattern).

The inversion then solves for the magnitude of each

source region. Adjoint methods compute the new source

estimate using the adjoint of the model (i.e., the trans-

pose of the Jacobian) and apply it to the difference

between the observed and modeled tracer values.

Data assimilation and inverse modeling of atmospheric

constituents are fundamentally interrelated methodolo-

gies, so much so that the terms are often used inter-

changeably within the chemical inversion community.

Both involve the use of transport models and observa-

tions of chemical constituent concentrations. They also

have in common the use of Bayesian formalism and

require an estimate of model and observation error co-

variances. However, they differ in that data assimilation

is generally concerned with obtaining the best possible

estimate of the state of the atmosphere (where the state

refers to the space–time distribution of the chemical

species), whereas chemical inversion is concerned with

estimating surface sources and sinks of the species. The

question arises as to whether these differences in pur-

pose result in an equivalent extraction of information

from the observations. The answer to this will depend in

part on exactly which assimilation and inversion tech-

niques are used.

The Kalman filter (Kalman 1960) produces an optimal

estimate of the state of a system in the minimum error

sense when certain conditions are met. These include

assumptions of unbiased forecast and observation er-

rors, Gaussian error statistics, and linear dynamics. Each

of these requirements is difficult to achieve in atmo-

spheric data assimilation applications, but they can often

be good approximations to real systems. For linear state

estimation problems, the Kalman filter gives a mini-

mum variance solution by minimizing a cost function

that gives weights to the forecast and observations ac-

cording to their relative covariances (Cohn 1997). The

forecast error covariance, Pf, is evolved by the linear-

ized dynamics and therefore contains current infor-

mation on error variance and the correlations between

different locations. In carrying out assimilation, non-

zero correlations are used to spread the corrections to

the forecast to grid points near the observations. The

resulting analysis error covariance, Pa, then includes

the current error variance and correlation lengths for the

analysis field. This approach is only valid for linear sys-

tems, but the extended Kalman filter (EKF) can be ap-

plied to nonlinear systems (Gelb 1974; Jazwinski 1970).
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How can this error covariance information be used

to improve the estimation of chemical sources? The

Kalman filter is generally too computationally expensive

for use in global three-dimensional data assimilation

systems. There have been, however, some studies that use

it on isentropic surfaces in the stratosphere (Ménard et al.

2000; Ménard and Chang 2000; Auger and Tangborn

2004). These studies showed how the error correla-

tion information in Pf can impact the success of the

assimilation. Further investigations have used suboptimal

Kalman filters in tropospheric constituent assimilation

(Khattatov et al. 2000; Lamarque and Gille 2003). (p. 3)

A direct comparison between inversion for source es-

timation and data assimilation is difficult because the end

product is different. One could, however, devise a way to

make a meaningful comparison by adding an extra step to

one of the schemes so that both constituent concentration

and sources–sinks are estimated. For example, after

obtaining a new source–sink estimate using a Bayesian

inversion, the model could be rerun to obtain an im-

proved estimate of the constituent concentration state.

Alternatively, the analysis concentration field obtained

through data assimilation could be used as an input to a

source inversion scheme to obtain a new source estimate.

Kalman filtering has previously been used as a tech-

nique for inverting for sources and sinks. Hartley and

Prinn (1993) defined a vector of source strengths as an

extension of the state space; thus, the observation op-

erator is just the linear transport model, and the forecast

error variance is then a measure of the uncertainty in the

source estimate. This formulation required a perfect

model (transport and chemistry) assumption. Gilliland

and Abbitt (2001) developed an adaptive iterative Kal-

man filter for source inversion in which time-integrated

emissions are treated as unobserved state variables. In

this work they made use of observations that are only

available over short time periods and showed how errors

in initial concentration estimates can persist during the

course of the assimilation.

The value of combining data assimilation and source

inversion is most obvious when using a differential in-

version method. Assimilation spreads the observation

information to nearby grid points, creating the spatial

variations needed to calculate spatial derivatives. Law

(1999) used spline interpolation to spread the observa-

tions, and Dargaville (2000) used a modified interpola-

tion technique to invert CO2 observations for a variety

of regional sources. Neither of these works takes advan-

tage of the covariance propagation or tuning available in

current constituent assimilation systems. Furthermore,

the mass-balance inversion methods are local, using only

nearby grid points, and thus cannot gain any improve-

ment from more distant observations.

This work is motivated by the growth in the quantity of

satellite-derived distributions of atmospheric trace gases.

Measurement of trace gases in the atmosphere has led to

significant increases in efforts to incorporate these mea-

surements into atmospheric transport models with the

goal of obtaining improved estimates of their global dis-

tribution and of their sources and sinks. State estimation

through the combination of observation and model out-

put is generally referred to as data assimilation, whereas

source–sink estimation is referred to as inverse modeling.

The present study examines a highly simplified

system for top-down, or inverse, modeling. A simple

two-dimensional advection model with an analytically

specified wind field is used to compute atmospheric

tracer concentrations from a specified source–sink dis-

tribution. A variety of sampling approaches are then

adopted to examine how accurately the original source–

sink distribution can be retrieved in the presence of

random errors in both observations and source model.

An important aspect of the study is the application of

data assimilation to produce analyses from the obser-

vations; a comparison is made between the source–sink

distribution deduced from analyses and direct observa-

tions. It is thus a highly idealized observation system

simulation experiment (OSSE), which is intended as a

prelude to similar experiments using more realistic sys-

tems. In section 2 we define the two-dimensional trans-

port model and in section 3 we introduce the Kalman

filter for estimating constituent field. This is followed by

the Bayesian Green’s function inversion procedure for

estimating chemical sources in section 4 and the new

combined assimilation and inversion scheme in section 5.

Section 6 presents the results of the new system followed

by the conclusions in section 7.

2. Transport model and observing system

We define the transport model as the solution to the

linear two-dimensional convection–diffusion equations

›c

›t
1 u

›c

›x
1 y

›c

›y
5 a

›2c

›x2
1

›2c

›y2

� �
1 S� Lc, (1)

where c is the mixing ratio, (u, y) are the (x, y) compo-

nents of velocity, a is the diffusivity, S is the rate of

production of c, and L is the loss rate frequency of c. We

treat this system as nondimensional, so all the variables

are unitless. The boundary conditions are periodic in x

and y, and the domain is of size 2p 3 2p. The numerical

model employed is a Fourier–Galerkin scheme p with

Crank–Nicolson time-stepping. The numerical solution

is then written as

ĉ
k11

5 Fĉ
k
1 Ŝ, (2)
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where k is the time step and F represents the numerical

model’s system matrix, and the caret indicates that a

variable or parameter is in spectral space.

The constituent field is related to its Fourier coeffi-

cients by the fast Fourier transform, represented by a

matrix operator F, so that

ĉ
k

5 Fc
k
. (3)

We define the evolution of the true constituent state as

different from the transport model by a random model

error, which implies that

ĉ t
k11 5 Fĉt

k 1 Ŝ 1 b̂
k
, (4)

where b̂k is the Fourier coefficient vector of zero mean

with Gaussian-distributed random vector bk. The model

error is characterized by its covariance:

Q
k

5 hb
k
bT

k i. (5)

The diagonal terms of Qk are the model variance, (sm)2

and are constant in time.

The observations (co) are taken from the true field,

with a spatially uncorrelated random measurement er-

ror, fk. The observations are then

co
k 5 H

k
ct

k 1 f
k
. (6)

The observation errors are characterized by the diago-

nal observation error covariance matrix

R
k

5 hf
k
fT

k i, (7)

which has an error variance of (so)2 along its diagonal

and has a characteristic correlation length scale of lc.

The operator Hk relates the true constituent field to

the actual observation locations. In the next two sections

we relate state estimation using Kalman filtering to

source–sink estimation using synthesis inversion.

The experiments presented in this paper will make use

of synthetic observations obtained from an artificial

‘‘nature’’ run that differs from the model by some dif-

ference in the source plus some random errors in the

constituent field, bk. We define this nature run as the

‘‘true’’ state of the system.

The source in the nature run is defined by a constant

quadratic function centered at the point (0.47, 0.47) with

a peak flux area 5 40, as shown in Fig. 1a. The constit-

uent field that results from running the model (starting

from a uniformly zero field) for 1000 time steps (unit

time of 1.0) is shown in Fig. 2a. In this example the ve-

locity field is u 5 4, y 5 2, the diffusivity a 5 0.02, and

the loss coefficient L 5 0.2.

3. The Kalman filter algorithm

The Kalman filter gives the minimum variance solu-

tion to the estimation of the state of the system from the

model and observations when the errors are unbiased

and Gaussian random vectors. It is also assumed that the

error variance and correlation lengths for the model,

observation, and initial errors are accurately known.

Because our system evolves in terms of Fourier coeffi-

cients, it is most computationally efficient to evolve the

error covariances in the same manner. If the observa-

tions are assimilated into the system every m time steps,

then the algorithm consists of the following steps.

FIG. 1. (a) True source flux, P, which is a quadratic function

centered at the position (0.47, 0.47), with a maximum flux area of 40

at its center, and (b),(c) a priori source estimates with (b) location

error and (c) spread error. The source with location error is cen-

tered about 0.3 units from the true source center and the source

with spread error has the correct center but twice the diameter as

the true source. Note that in each of these plots, only part of the

entire domain of 2p 3 2p is shown.
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Update of the constituent forecast Fourier coefficients

from the previous constituent analysis by m steps

ĉ f
k1m 5 Fmĉ f

k , (8)

where Fm is defined as m applications of the matrix F.

The forecast error covariance (in spectral space) is

propagated m steps starting from the analysis error co-

variance by

P̂
f

k1m 5 FmP̂ a
k (Fm)T

1 Q̂
k
, (9)

where the covariance matrices have all been trans-

formed to spectral space. The analysis error covariance

is determined (in physical space) at assimilation time

from

P a
k 5 (I� K

k
H

k
)P

f
k . (10)

The Kalman gain matrix Kk, which determines the rel-

ative weights given to the observations and forecast, is

K
k

5 P
f
kHT(HP

f
kHT 1 R)�1. (11)

Then the new state estimate or analysis update is given by

ca
k 5 c f

k 1 K
k
(co

k � H
k
c f

k). (12)

Cohn (1997) has summarized some of the important

properties of the Kalman filter for distributed systems.

These include the fact that the error covariances are

independent of the observation values but are depen-

dent on the observation locations and errors. This

means that as observations are assimilated, informa-

tion on their impact on the analysis field is included in

the analysis error covariances. Because the forecast

error covariance is propagated forward starting from

the analysis error covariance, it will also contain in-

formation on past observation locations and accuracy,

insuring that the weighting between forecast and ob-

servation takes into account past as well as current in-

formation.

4. Synthesis inversion

The terms ‘‘synthesis’’ and ‘‘Green’s function inver-

sion’’ are often used interchangeably, though synthesis

inversion is in fact a technique that uses predefined

source patterns to reduce the computational cost of the

inversion. The technique is based on the Green’s func-

tion method for solving differential equations through

the use of an integral operator. The Green’s functions

themselves are the resulting set of observations that

would be obtained from a unit source at a single point

source (or linear combination of sources in the case of

synthesis inversion) of unit strength. This is done by

running the transport model forward in time from some

initial state, for each unit source. Estimates of the

sources are obtained by comparing the Green’s function

with the actual chemical tracer observations and carry-

ing out the inversion.

Synthesis inversion assumes that surface sources of a

particular chemical species will eventually be observed

somewhere in the atmosphere and its algorithm requires

that the lifetime of the species is long compared to the

transport times. If chemical reaction adds or removes a

substantial fraction of the species during the time during

the time of transport, the Green’s functions will not

accurately represent the distribution of the species that

FIG. 2. Concentration field at t 5 1.0 (after 1000 time steps) that

results from (a) the model with the true source, C; (b) the model

with source spread error; and (c) the assimilation run using the

model with spread error, with the satellite observing network. The

random part of the field in (a) is due to the time-varying part of

the source term P, whereas it is due to the assimilated observations

in (c). The center of the source region is represented by a black dot

in each panel.
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results from the surface sources. For this reason, syn-

thesis inversion is generally only used for long-lived

species such as CO and CO2.

The standard nomenclature for chemical source in-

version differs from that used in data assimilation. In this

paper, we will use the usual inversion notation (Enting

2002) but will relate it to the data assimilation notation

to help improve clarity. Green’s functions are created by

using a source of unit strength at each of the Nx 3 Ny

grid points for each Green’s function and running the

transport model forward in time. Thus, each Green’s

function is the solution to the transport model given a

single unit source. The set of all Green’s functions (Nx 3

Ny) is then combined to create a Green’s function ma-

trix, G (NxNy 3 NxNy). Given an existing estimate of the

sources (z) and a set of observations (co), error covari-

ance for the observations (X21 5 R), and error covari-

ance for the source model (W21), the Green’s function

inversion yields the new source estimate (Snew) as

S
new

5 (GTR�1G 1 W)�1(GTR�1co 1 Wz)

5 (GTXG 1 W)�1(GTXco 1 Wz), (13)

where z is the a priori source estimate and c is the ob-

servational dataset. The error covariance of the estimate

Snew is

[GTXG 1 W]�1. (14)

5. A combined Kalman filter and synthesis inversion
algorithm

In this new approach we combine the two schemes in a

way that retains optimal characteristics of the Kalman

filter with the formalism of Green’s function inversion.

The Green’s function matrix is formed in the same

manner, but instead of using observations directly in the

inversion, they are assimilated using the Kalman filter,

resulting in analyses that give a new estimate of the state

of the atmosphere at each observation time. Then the

analyses, ca, are used at every grid point in place of

observations, co, with error covariance X21 5 Pa. The

new scheme for the inversion is then

S
assim

5 [GT(Pa)�1G 1 W]�1[GT(Pa)�1ca 1 Wz], (15)

where Sassim is the new source estimate that uses the

assimilated observations. Because this inversion uses the

analysis ca, the inverse of the analysis error covariance

replaces X from (14), and the new estimated error co-

variance is

[GT(Pa)�1G 1 W]�1. (16)

The advantages to this approach are that the Kalman

filter evolves the error covariance using the linear

model. This results in both forecast and analysis error

covariances that contain correlations that are affected

by transport and diffusion. In particular, information

from the source region is transported downstream by

advection so that forecast errors should be correlated

over greater distances. The estimated source error co-

variances are discussed further in the next section.

6. Numerical experiments

The experiments presented in this paper make use of

synthetic observations that are obtained from an artifi-

cial nature run that differs from the model by some

difference in the source plus some random errors in the

constituent field.

The source in the nature run is defined by a quadratic

function centered at the point (0.47, 0.47) with a peak

flux 5 40 (dc/dt/area), as shown in Fig. 1a. The constit-

uent field that results from running the model (starting

from a uniformly zero field) for 1000 time steps (unit

time of 1.0) is shown in Fig. 2a. In this example the ve-

locity field is u 5 4, y 5 2, the diffusivity a 5 0.02, and the

loss coefficient L 5 0.2.

We have carried out a series of runs to compare the

accuracy of the Green’s function inversion by directly

using the observation networks with the scheme out-

lined in section 5, which uses the analysis field instead of

the observational input to the inversion scheme. We will

refer to these inversions as using direct observations and

assimilated observations, respectively. Testing of the

algorithms and code includes cases with observations at

every point and with only two observations, shown in

Figs. 3a–d. In the former case, the source inversion using

direct observations (Fig. 3a) and assimilated observa-

tions (Fig. 3b) produced identical results, which capture

the true source to within the observational error. This

implies that when the observations are essentially the

entire state, then the assimilation adds nothing to the

accuracy of the inversion. In the latter case, the two

schemes (Figs. 3c,d) were nearly equally unable to im-

prove on the first guess of the source. This test shows

that little or no improvement to the inversion can be

made when the observations are too sparse (and the

system is not observable).

Our interest is in cases that lie between these two

extremes, so we have carried out ensemble experiments

with a variety of source model and observing networks,

including global (satellite) and ground-based (in situ)

observations. The observation networks are shown in
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Figs. 4a,b, and all of the observations are available at

every assimilation time.

The model uses two possible a priori source estimates,

which are shown in Fig. 1. Both of these source estimates

are unbiased in the sense that the total flux is exactly the

same as that in Fig. 1a, but they have an error either in

location (Fig. 1b) or in the localization or spread (Fig. 1c).

We refer to these source errors as source location error

and source spread error, respectively. These two models

also do not account for the random source–sink term in

Eq. (4).

For each source model and each observing network,

we have carried out 20 twin experiments using perturbed

initial conditions. Twin experiments are essentially sim-

ulations that are identical in every aspect except for

randomly perturbed initial conditions. This allows us to

obtain meaningful statistics of the assimilation and in-

version results. In each case the model is run for 1000

time steps, which is roughly the time required for con-

stituents to be transported about 2/3 of the way across the

domain. The results are presented by comparing the

known true source and constituent field with the model

output field and assimilated (analysis) fields as well as

the resulting chemical source inversion for each case.

We compare the source inversion using the observations

directly, and by first assimilating every 20 time steps

using the Kalman filter as described in the previous

section. In all of the experiments, the parameters used

are velocities u 5 4, y 5 2, and diffusivity a 5 0.02; the

loss rate coefficient is L 5 0.2. The observation error

standard deviation is so 5 0.0014, the model error

standard deviation in Eq. (4) is sm 5 0.01, and the model

correlation length scale is lc 5 0.1.

We present detailed results only for the model with

source spread error and then summarize all the cases at

the end of this section. Labels used in the text for each

experiment are defined in Table 1.

a. Concentration field

Figure 2b shows the concentration field that results

from running the model with source spread error for

1000 time steps without assimilation. As one would ex-

pect, the impact of the source is wider than in the true

state (Fig. 2a) and lacks the small-scale structure that

comes from the random source–sink term in Eq. (4). We

plot the RMS error for the concentration field as a

function of time for this case, as well as for the assimi-

lation cases using the in situ (SIA) and satellite obser-

vations (SSA) in Fig. 6. This figure gives an indication of

the relative amounts of information in the observing

FIG. 3. Mean source errors from the inversion for the extreme cases of (a),(b) two obser-

vations and (c),(d) observations at every grid point; (a) and (c) represent direct inversion of the

observations whereas (b) and (d) are represent inversion of assimilated observations.
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networks, which will be important in the success of the

source inversions. With the model alone, the observa-

tions have no impact on the constituent field, and the

resulting RMS grows continuously as a result of both the

local systematic source model error and the random

model error. The errors are consistently smaller for the

satellite observation network, which has more observa-

tions, but fewer in the vicinity of the source. The con-

centration field obtained from assimilation of satellite

observations into the source spread model (SSA) is

shown in Fig. 2c. The field has narrowed and even con-

tains some of the small-scale features present in the true

field. Thus, the assimilation, while not making any cor-

rection to the source, changes the downstream structure

of the field to more closely resemble the true field. The

difference between the assimilation and true final states

(ca 2 ct), shown in Fig. 5, indicates that the analysis field

still retains errors on the order of 20%.

b. Source inversion

For each experiment, a source inversion is carried out

using the Green’s function algorithm, with and without

assimilation. The ensemble of twin experiments is used

to determine the mean and standard deviation errors

relative to the true source. The predicted source inver-

sion error covariances, Eqs. (14) and (16), are valid

when the errors are Gaussian and unbiased. We expect

that if the model and observation errors are unbiased,

then the source inversion should also be unbiased.

Figure 7 shows the predicted error variances for the

source inversions [Eqs. (14) and (16)] with and without

assimilation (SSN and SSA) in a one-dimensional slice

through the source region. The predicted errors for the

inversion with assimilation are as much as an order of

magnitude smaller than the direct inversion errors.

The ensemble mean of the inverted source is defined as

m
inv

5 hS
inv
i, (17)

where the ensemble is the 20 twin experiments run for

each set of parameters. We define the mean inversion

error as

m�
inv

5 m� St. (18)

While all of the errors are globally unbiased, the steady

source term has a local bias in the sense that over a long

period of time the source at one location can be consis-

tently too large or too small. For example, in the model

with source spread error, the flux is consistently too low at

the center of the source and is too large near the edge of

the source. The total from these sources is the same as the

true source total, and the random or short term source–

sink term also has zero mean. The mean inversion error

m�
inv

, is therefore an indication of the local and global bias,

to the extent that they differ from the true source. In all

FIG. 5. Contour plot of analysis field minus true field (ca 2 ct )

at the end of 1000 time steps. The contour levels are 0.3. The largest

errors are around 0.7 and occur near the source term (x 5 0.47,

y 5 0.47).

FIG. 4. (a) In situ and (b) satellite observation locations.

Observation locations are the same at each analysis time.
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cases, the ensemble mean inverted sources are zero far

from the true source, so we only plot in the vicinity of the

source (0 # x # 1; 0 # y # 1).

Figure 8 shows the mean inversion errors that result

from using the source model with spread error. In Fig. 8a,

the inversion without assimilation and in situ observa-

tions (SIN) is seen to have a mean source that is locally

overestimated by as much as 50% (x 5 0.45, y 5 0.3)

and underestimated by up to 50% (x 5 0.6, y 5 0.45).

When satellite observations are directed used in the

inversion (SSN; Fig. 8c), the maximum mean error is

also about 50%.

The inversion using assimilated in situ observations

(SIA; Fig. 8b) has a particularly large bias at the center

of the source (about 70%), whereas the assimilated

satellite observations (SSA; Fig. 8d) are significantly

closer to the true source (20% maximum mean error).

However, the inversion without assimilation using in

situ observations (SSN; Fig. 8a) results in two spurious

constituent sinks near the source. This can be seen from

the negative mean errors around y 5 0.5.

The mean inversion errors described above only tell

us whether there is any systematic difference between

the inverted source and true source. The random com-

ponent of the error is represented by the error standard

deviation

s
inv

5 h(�
S
� m

�
)2i1/2

5 h(S
invert

� S
true

)2i1/2, (19)

where �S 5 Sinvert 2 Strue and m� 5 hSinvert 2 Struei. We

calculate the error standard deviation at each grid point

and plot the results in Fig. 9 using the same source model

TABLE 1. Summary of ensemble results for the assimilation and inversion for the different observation and model types, including the

mean peak flux, maximum mean error, peak error standard deviation, and distance of the peak flux from the true location. The true peak

flux is 40 (at x 5 0.47, y 5 0.47) and the model with location error (at x 5 0.7, y 5 0.4) is a distance of 0.33 from the true location. The labels

identify which model and observation type is used in each set of experiments. All values are nondimensional and the errors presented are

absolute.

Model with spread error

In situ observations

Label Mean peak flux Max. mean error Error std dev Distance from true peak

No assim. SIN 45 25 150 0

With assim. SIA 12 30 10 0

Satellite observations

Label Mean peak flux Max. mean error Error std dev Distance from true peak

No assim. SSN 50 12 50 0

With assim. SSA 32 9 24 0

Model with location error

In situ observations

Label Mean peak flux Max. mean error Error std dev Distance from true peak

No assim. LIN 70 50 170 0.05

With assim. LIA 38 35 9 0.33

Satellite observations

Label Mean peak flux Max. mean error Error std dev Distance from true peak

No assim. LSN 38 20 55 0

With assim. LSA 35 10 22 0

FIG. 6. RMS error in the concentration field relative to the nature

run for the model with spread error. The curves shown are for the

model only (solid), assimilation of in situ observations (dashed),

and assimilation of satellite observations (dashed–dotted).
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and observations as in Fig. 8. The error standard devi-

ations for inversions without assimilation are consis-

tently larger than those with assimilation, and in some

cases the difference can be an order of magnitude. This

is important because source inversion is not generally

done using ensembles, so that the error standard devi-

ation can be a significant contribution to the inversion

error. The difficulty of carrying out ensembles of source

inversions when using global models is due to the high

computational cost, particularly when many source re-

gions are defined. These results show that the random

component is significantly larger than the systematic

component for the inversions using the observations

directly (Figs. 9a,c). This implies that a single inversion

that uses direct observations will have significant un-

certainty in the resulting source estimates. Inversions

using assimilated observations (Figs. 9b,d) are much

smaller than the direct inversion cases.

We summarize the results of the ensembles of assim-

ilation and inversion calculations in Table 1, which lists

the value of the peak mean flux, the maximum mean

error m�
inv

, the error standard deviation sinv, and the

error in the location of the peak mean flux. Overall,

the results show that the satellite observations result

in substantially better inversion accuracy than the in

situ observations (Figs. 8 and 9; Table 1). This is most

likely the result of the fact that both assimilation

and inversion can make use of the greater number of

more distant observations to produce a more accurate

source estimate. Comparisons between inversion using

FIG. 7. Predicted error variance for the source inversion for the

cases SSA (solid) and SSN (dashed–dotted) along a slice of the

source region.

FIG. 8. Ensemble mean errors in source estimates from synthesis inversion using (a) in situ

observations (SIN), (b) assimilated in situ observations (SIA), (c) satellite observations

(SSN), and (d) assimilated satellite observations (SSA). All cases use the model with spread

error.
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observations directly and those using the assimilated

observations are less straightforward. Direct inversion

estimates the mean peak flux more accurately when in

situ observations are used whereas inversion of the as-

similated observations is more accurate when satellite

observations are used (Table 1). If we consider the

maximum mean error (which is not generally at the

same location as the peak), the inversion with assimi-

lated observations is more accurate in three of the four

cases (Table 1).

When the model with location error is used, the direct

assimilation of observations accurately predicts the peak

flux location using either in situ or satellite observations.

The inversion using assimilated observations is suc-

cessful in this regard only when satellite observations are

used. Finally, the variability in the solution is far smaller

when the observations are first assimilated, as indicated

by the large error standard deviations in the direct in-

versions (Table 1). In addition, the direct inversion

created substantial spurious sources and sinks, particu-

larly when using the source model with location error

(Figs. 8a,c).

7. Conclusions

We have considered the question of whether assimi-

lating chemical tracer observations into a transport

model before carrying out the inversion contributes to

the accuracy of the source estimation. The results pre-

sented here show that assimilating the observations us-

ing a Kalman filter first reduces the random error by

factors between 2 and 15 for the cases studied. Im-

provements to the systematic component of error were

less consistent, with decreases in the maximum mean

error in most cases but a less accurate prediction of the

mean peak flux. The direct inversion of observations

results in spurious sources/sinks, whereas the case with

assimilation does not. In each case the model or first

guess source is globally unbiased but has a local bias.

Because Bayesian source inversion is a statistical

weighting of model and observations, the inversion

process can never completely overcome any systematic

errors. Thus, the actual inversion errors are much larger

than the predicted errors (Fig. 7). Additionally, when

directly inverting from the observations, the response of

the inversion algorithm to these biases is generally to

generate spurious sinks in part of the domain while

overestimating the source in other parts. When the ob-

servations are assimilated first, this tendency is greatly

reduced. It is possible that the systematic error in the

assimilation could be eliminated using a bias correction

scheme (Lamarque et al. 2004).

Most striking is the reduction in the error standard

deviation that results from the assimilation. This means

FIG. 9. As in Fig. 8, but for error standard deviation of source estimates from

synthesis inversion.
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that the accuracy of a single source inversion (as op-

posed to the ensemble used here) is greatly enhanced by

assimilating the observations. The primary reason for

this improvement is the more accurate estimate of the

error covariance provided by the Kalman filter and the

spreading (or smoothing) of observational information.

While it is difficult to compare the performance of this

simplified system with other inversion systems, Kaminski

et al. (2001) showed that errors that result from aggre-

gating source regions in synthesis inversion can be on the

order of the emissions themselves. We can therefore state

that the reductions found in the present paper are sig-

nificant in comparison.

The Kalman filter remains a diagnostic tool and is still

too computationally expensive for operational data as-

similation systems, yet many of its advantages can be

translated to other algorithms. Most notably, the en-

semble Kalman filter (EnsKF) is being implemented in

large-scale atmospheric systems, including trace gas as-

similation systems (Arellano et al. 2007). There are also

a number of suboptimal Kalman filter algorithms that

show some promise for reducing the computational load

in evolving error covariances. Finally, even assimilation

systems that do not evolve error covariances generally

rely on covariance tuning to improve the forecast error

estimates. This also acts to improve the inversion com-

putation through improved error statistics.
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