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ABSTRACT

Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to

the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow-

covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and

coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the

assimilation of SCA observations is complicated by an information deficit in the observation—SCA indicates

only the presence or absence of snow, not snow water equivalent—and by the fact that assimilated SCA

observations can introduce inconsistencies with atmospheric forcing data, leading to nonphysical artifacts in

the local water balance. In this paper, a novel assimilation algorithm is presented that introduces Moderate

Resolution Imaging Spectroradiometer (MODIS) SCA observations to the Noah LSM in global, uncoupled

simulations. The algorithm uses observations from up to 72 h ahead of the model simulation to correct against

emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is ac-

complished by using future snow observations to adjust air temperature and, when necessary, precipitation

within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation

of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier

SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and

energy fluxes during the snow season and, in some regions, on into the following spring.

1. Introduction

Average monthly snow cover in the Northern Hemi-

sphere varies from 7% of all land area to more than

40%, making snow cover the fastest varying large-scale

surface feature on Earth (Chang et al. 1990; Hall 1988).

This variability has a dramatic impact on surface mois-

ture and energy fluxes. Snow insulates the ground be-

neath, moderating soil temperatures during winter

(Decker et al. 2003). Because of its high albedo, snow

significantly reduces the absorption of radiation at the

land surface, restraining turbulent energy fluxes and

lowering near-surface air temperature (Baker et al.

1992; Liston 2004). In high-latitude and high-altitude

regions, snow plays a dominant role in the local and

regional hydrologic balance, with associated impacts on

soil moisture, aquifer recharge, and vegetation growth

(Flerchinger et al. 1994; Marsh 1999; Ren et al. 2007).

Moreover, it is now understood that snow’s influence

on local energy fluxes has remote impacts, modifying

atmospheric temperature and circulations on the re-

gional scale (Elguindi et al. 2005; Ellis and Leathers

1999; Zaitchik et al. 2007) and climate dynamics on the

continental to hemispheric scales (Bamzai and Shukla

1999; Cohen and Entekhabi 2001; Dery et al. 2005).

Given these significant effects, it is critical that models

used in seasonal forecasts and retrospective climate

studies accurately simulate the snowpack. For this
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reason, most modern land surface models (LSMs) in-

clude sophisticated snow routines designed to capture

the accumulation, aging, and melt of snow under a range

of weather conditions (Ek et al. 2003; Roesch et al. 2001;

Stieglitz et al. 2001; Takata et al. 2003). Unfortunately,

even the most refined LSMs have difficulty capturing

these processes over an extended simulation (Foster

et al. 1996; Pitman 2003). In a sense, snow is an inher-

ently difficult quantity to model: for large areas of the

planet, accumulation and melt processes are sensitive

to small changes in air temperature, radiation fluxes, or

surface properties, yet the presence versus absence of

snow will itself have a dramatic impact on these varia-

bles. This means that small uncertainties in parameter-

ization or forcing data can trigger errors in snow cover

that quickly cascade into larger inaccuracies in albedo,

soil moisture, energy exchange, and atmospheric con-

ditions. As these inaccuracies compound, the model

‘‘drifts,’’ leading to severe reductions in skill on the

seasonal time scale. For hydrologic applications, drift

with respect to snow simulation is an even larger prob-

lem; in many regions, accurate simulation of the snow

water equivalent (SWE) of the snowpack and timing of

snowmelt are the most important aspects of hydrologi-

cal monitoring and prediction systems.

The Moderate Resolution Imaging Spectroradiometer

(MODIS) instruments, on the National Aeronautics and

Space Administration (NASA) Terra and Aqua satel-

lites, offer twice-daily observations of the snow-covered

area (SCA) at 500-m resolution, with near-global cov-

erage (Hall et al. 2002). The reliability of these obser-

vations is much greater than that of LSM predictions at

a similar resolution, but the information contained in a

MODIS observation is much less. The LSM simulation

of the snowpack includes information on SWE, snow

depth, albedo, and, in some models, time-variable snow

density. The simulation is also continuous in space and

time, at a user-specified resolution. MODIS contains

no information on SWE or snow depth, can provide a

maximum of two daylight observations per day, and

frequently suffers from data gaps due to cloud cover.

Because the MODIS SCA product is derived from in-

formation in the visible and near-infrared portions of

the electromagnetic spectrum, observations can only be

obtained under clear-sky, daytime conditions.

Data assimilation (DA) algorithms attempt to use the

information in such discontinuous observations by inte-

grating them into a numerical model. The model provides

spatial and temporal continuity as well as physically based

schemes that allow an observation of one quantity to in-

form predictions of other modeled variables. The obser-

vation system provides reliable, independent information

on a variable that the model simulates imperfectly, pre-

venting model drift and improving the accuracy of the

simulation. The MODIS SCA observation is a strong can-

didate for use in a DA system because it has demon-

strated reliability (Hall et al. 2002), but it is discontinuous

in time and provides hydrologically incomplete infor-

mation. Further, because LSMs are frequently employed

in a coupled mode with atmospheric models, a MODIS

SCA assimilation system can be used to improve the

initialization of numerical forecasts, a powerful predic-

tive application of MODIS-derived information.

In this study, MODIS observations of SCA were as-

similated into the Noah LSM (Chen et al. 1996; Ek et al.

2003) in global, retrospective simulations at 0.258 reso-

lution. Simulations were performed for two Northern

Hemisphere snow seasons, September 2005–June 2006

and September 2006–June 2007. The results of two as-

similation algorithms are presented. The first, a rule-

based direct insertion scheme, is a refinement of a system

first presented by Rodell and Houser (2004, hereafter

RH04). In this algorithm, MODIS SCA observations

are assigned a SWE equivalent on the basis of land

cover, and this value is used to overwrite simulated

SWE whenever there is a contradiction between model

and observation. The second algorithm is a novel, phys-

ically based assimilation update that uses MODIS SCA

observations from up to 72 h ahead of the simulation to

adjust snow accumulation and melt processes. This al-

lows for smooth updates of snow that attempt to preserve

the local hydrologic balance while preventing unrealistic

add/melt and remove/accumulate cycles that occur in

standard snow assimilation schemes whenever observa-

tions are in conflict with atmospheric forcing data.

The remainder of the paper is structured as follows:

section 2 provides background on the Noah LSM, satellite-

derived snow observations, and data assimilation. Sec-

tion 3 gives details of image processing, validation data,

and the assimilation scheme. Simulation results and

evaluation are presented in section 4. Section 5 contains

conclusions.

2. Background

a. Noah LSM

The Noah land surface model is an advanced 1D

column model that simulates soil temperature, surface

temperature, soil moisture (frozen and liquid, in four

soil layers), snow states, surface energy and hydrologic

fluxes, and subsurface runoff (Chen et al. 1996). The

model is currently supported by the National Centers

for Environmental Prediction (NCEP) and is in active

development (e.g., Ek et al. 2003). It is widely used

in operational and research applications and can be run
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in either the coupled or the uncoupled mode. Noah

employs finite-difference spatial discretization methods

and a Crank–Nicholson time-integration scheme to

solve the governing equations of the physical processes

of the soil-vegetation-snowpack medium.

Noah contains a one-layer snow model that simulates

snow water equivalent (SWE) as the residual of snow-

fall (snowmelt 1 sublimation). Snowfall occurs when-

ever there is nonzero precipitation and 2-m air

temperature is� 08C. Melt occurs whenever there is net

available energy within the snowpack. When melt oc-

curs, some water is stored within the snowpack and

excess water is removed as runoff. Fractional snow-

covered area is diagnosed as a function of SWE using a

generalized snow depletion curve:

SCA 5 min

�
1�

�
exp

�
� t SWE

SWESCA51:0

�

� SWE

SWESCA51:0
exp

�
�t
��
; 1:0

	
; ð1Þ

where t is the snow distribution shape parameter that

relates the total amount of snow in the grid cell to the

percent snow cover within the grid cell (currently set to

4.0, globally) and SWESCA51.0 is a land cover specific

parameter that defines the minimum SWE required for

full snow cover (ranging from 13 mm for bare soil to

40 mm for forests). Snow depth is solved on the basis

of SWE and snow density. Snow density is itself a pre-

dicted field and is a function of total SWE in the

snowpack, a temperature and SWE-dependent com-

paction scheme, and air temperature for freshly falling

snow (Koren et al. 1999).

b. Satellite-derived snow observations

Satellite-based snow detection algorithms can be di-

vided into two general categories: those that attempt a

direct measurement of SWE and those that produce es-

timates of SCA. SWE algorithms take advantage of the

fact that the diameter of snow grains falls within the same

size range as microwave radiation (Chang et al. 1987,

2005). This means that snow scatters microwaves of dif-

ferent wavelengths with widely differing efficiency and

that the difference in scattering between two or more

microwave channels can be used to estimate SWE. Al-

gorithms founded on this principle have been used to

retrieve SWE from the Special Sensor Microwave Im-

ager (SSM/I), the Advanced Microwave Scanning Radi-

ometer for Earth Observing System (AMSR-E), and

other passive microwave sensors. All such algorithms,

however, are plagued by the fact that microwave scatter-

ing is sensitive to snow grain size, phase changes within

the snowpack, vegetation, ice lenses, and the presence of

liquid water on the snow surface. While there has been

considerable progress on the theory of SWE retrieval from

passive microwave sensors (e.g., Durand and Margulis

2006), these data products are not yet ready for practical

use in DA (Andreadis and Lettenmaier 2006), particularly

in global applications (Cordisco et al. 2006).

Detecting the presence or absence of snow is a sim-

pler problem for remote sensing, and several sensors

currently offer acceptably accurate estimates of SCA

over the globe (Bitner et al. 2002; Brubaker et al. 2005).

With respect to the two general goals of assimilating

observations of snow—to improve representation of

(i) the surface energy balance and (ii) snow water

reserves—the assimilation of estimated SCA offers the

potential to improve (i) in all regions of the globe and

(ii) only in locations with partial or sporadic snow cover,

or areas where there is substantial model error in the

timing of the initiation and final melt of the seasonal

snowpack. This expectation follows from analyses of in

situ snow observing stations, which show strong corre-

lations between SCA and SWE during periods of ac-

cumulation and ablation but weak correlations in the

middle of the snow season, when SCA nears 100% in a

snowy region (Gong et al. 2007).

SCA can be retrieved by passive microwave sensors,

such as SSMI and AMSR-E, that provide measurements

under both clear and cloudy conditions but have coarse

spatial resolution (25 km or more) and by sensors that

use the visible and near-infrared (VNIR) portion of the

spectrum. VNIR sensors cannot penetrate clouds, but

they offer superior spatial resolution. MODIS, for ex-

ample, can detect snow presence/absence at 500-m res-

olution, which is more than adequate for most climate

and many hydrological applications. MODIS was se-

lected for this study on account of its high spatial reso-

lution and general reliability. It is our expectation that

DA routines can effectively interpolate between dis-

continuous measurements in time and space but that

it is more difficult to disaggregate a spatially coarse

measurement or to extract useful information from an

error-prone observation. Because our goal is to design

an assimilation scheme that can be applied globally but

also at resolutions finer than 25 km, MODIS was iden-

tified as the best available data source.

c. Data assimilation

The guiding principle of DA is that an observation

and a prediction can be combined such that the result

contains less uncertainty than either input. Here, the

predictions are provided by a physically based numeri-

cal model of land surface processes. The model con-

tributes a high-resolution, spatially and temporally

continuous, first-guess approximation of the assimilated
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state (in this case, snow water equivalent), based on

numerical representations of physical processes and

other relevant data. The observations provide an ex-

ternal check on model predictions, preventing drift and

correcting the model with respect to essential state

variables. Hence, the data assimilation scheme enables

both scientific understanding and observations to in-

form estimates of a given variable, as well as associated

states and fluxes, while addressing the spatial and tem-

poral limitations of the observing system.

The assimilation of a SCA observation presents some

challenge because it provides only partial information

on the model field that it is used to inform. A SCA

observation contains no information on snow depth,

snow density, or snow water equivalent, which will all be

influenced by the assimilation update, and the physical

link between SCA and these variables is inconsistent in

space and time. An early season snowfall, for example,

might coat 100% of the observation footprint with a

very thin layer of snow, while springtime melt might

leave behind deep piles of dense snow that cover only

30% of the footprint.

The relationship between SCA and SWE at a given

location can be described using a contextual snow de-

pletion curve (SDC), which relates SCA to SWE on

the basis of prior information and ground measurements

(e.g., Anderson 1973). Ideally, such a geographically

specific SDC is informed by local data on typical pat-

terns of snow-depth distribution (e.g., Andreadis and

Lettenmaier 2006; Kolberg et al. 2006). Because such

data are not available globally, Liston (2004) proposed

a dichotomous key that divides the world into nine

SDC landscapes, allowing for some refinement to

globally uniform SDCs in the absence of local data. The

key lacks the local specificity and spatial resolution of

some regionally specific SDCs, but it was shown to have a

significant impact on the simulation of snow processes

in a regional model. The Subgrid Snow Distribution

(SSNOWD) model derived from this key could be im-

plemented within the framework of many existing LSMs.

Another approach to SCA assimilation is to map SCA

observations onto predicted variables in the LSM on the

basis of cross-state covariance estimates. Andreadis and

Lettenmaier (2006) applied an ensemble Kalman filter

(EnKF) assimilation scheme that used SCA observa-

tions to directly update SWE, while Clark et al. (2006)

demonstrated a more extensive EnKF scheme that

mapped SCA observations to update SWE, soil mois-

ture, and groundwater. Both studies showed promise

in a watershed scale, but the requirement for reliable

cross-state covariance estimates and statistically robust

observation error estimates currently preclude global

application of the techniques (Clark et al. 2006).

Acknowledging the information deficit encountered

by both regionally specific SDC assimilation schemes

and EnKF routines, RH04 proposed a simple, conser-

vative rule-based assimilation scheme to link SCA ob-

servations to SWE. In their assimilation of MODIS

SCA into the Mosaic LSM, they implemented a rule in

which a thin layer of SWE (5 mm) was applied to any

model grid cell for which MODIS reported SCA was

.0.4 and the LSM had no snow cover. For cells with

MODIS SCA ,0.1, all snow was removed from the grid

cell. This simple approach can be applied globally

with reasonable confidence, and it requires no modifi-

cation to the basic routines of the LSM. As our goal is a

globally applicable assimilation routine that can be ap-

plied to existing operational versions of the Noah LSM,

we use the RH04 algorithm as the starting point for the

algorithm developed in this study.

The RH04 algorithm, like most SCA assimilation

methods, suffers from the inherent sensitivity of a snow

update to any inconsistencies that might exist between

the SCA observation and forcing fields of air tempera-

ture and precipitation. This leads to two problems. First,

SCA assimilation tends to be much more effective at

removing snow than adding snow. This is because model

errors that increase SCA are the product of episodic

snowfall events, and these events can be quickly coun-

teracted by a single snow-free observation. Snowmelt,

on the other hand, can occur continuously as a function

of air temperature. The assimilation of a SCA obser-

vation that adds SWE to a grid cell is subject to imme-

diate melt if air temperature is above the freezing point.

If added snow cover is melted away before the next

observation becomes available, then a primary goal

of SCA assimilation—to correct SCA and surface al-

bedo, preventing errors in surface energy fluxes to the

atmosphere—is compromised, and, if it happens day

after day (an ‘‘add/melt cycle’’), soil moisture and run-

off are unduly amplified. In RH04 this problem was

observed at a few isolated points, but on the whole as-

similation was effective, in large part because the LSM

used in that study, Mosaic, suffered from over-

accumulation rather than underaccumulation of snow.

For an LSM such as Noah, which is prone to under-

estimating snow, the problem of preventing inaccurate

snowmelt is more critical.

The second related difficulty in updating snow fields

in an LSM is that most assimilation schemes upset the

water budget without consideration of the underlying

errors in the simulated precipitation and melt processes.

Such introduced imbalances can compound over time

and manifest themselves as soil moisture and runoff

biases. As mentioned above, the advanced DA schemes

capable of simultaneously updating all snow-related
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hydrological states at once (e.g., Clark et al. 2006) are

not yet ready for global applications.

In an effort to mitigate hydrologic imbalance caused

by simply adding or removing snow, we present a novel

assimilation algorithm that uses MODIS observations

from up to 72 h ahead of simulation time. These ‘‘future’’

data are used to nudge the forcing air temperature and,

when necessary, precipitation toward likely precursors

of the observed SCA. When it is successful, this approach

minimizes disruption of the local water balance and

provides a smooth simulation of snowpack as informed

by MODIS observations. We feel that the use of SCA

observations to nudge forcing data is justified by the re-

liability of MODIS observations. Furthermore, the ac-

tual impact on forcing fields typically is small: snow

accumulation and melt are sensitive to small changes in

air temperature in the range of 08C, so it is rarely nec-

essary to alter forcing air temperature by more than a few

degrees Celsius. In a coupled simulation, the modifica-

tion would not directly affect the atmospheric model, as

air temperature within the LSM is not communicated

back to the atmosphere. The modification of air tem-

perature could indirectly affect atmospheric processes,

via its influence on surface energy fluxes, but that influ-

ence was found to be modest relative to the energetic

impacts of snow cover itself (see section 4).

In concept, this algorithm bears some resemblance to

the EnKF update presented by Clark et al. (2006), in

which snow accumulation and melt were used to update

SWE indirectly on the basis of a SCA observation, and

soil moisture and groundwater were updated statisti-

cally on the basis of locally determined coefficients of

variation. Beyond this the methods diverge, as our

scheme employs model physics rather than statistical

relationships to update hydrological fields. This avoids

the need for detailed local cross-state covariance esti-

mates, allowing for global applications.

3. Methods

a. MODIS data

In this study we use the daily, 0.058-resolution MODIS

climate-modeling grid-level-3 product (MOD10C1),

which is based on 500-m Terra MODIS observations

(Hall et al. 2002). MOD10C1 specifies the fraction of

each 0.058 grid cell that was observed to be snow cov-

ered, the fraction that was cloud covered, and the

fraction (known as the ‘‘confidence index’’) in which the

land surface was visible (i.e., not obscured by clouds,

night, or other interference) at the time of the satellite

overpass [approximately 1000 local time (LT)]. The

MOD10C1 product has been evaluated extensively

against independent satellite and ground-based data-

sets, and it has shown good agreement (Bitner et al.

2002; Maurer et al. 2003). Nonetheless, there are ac-

knowledged limitations to MOD10C1, including the

binary nature of the 500-m observations that are used to

derive percent cover and the difficulty of distinguishing

patchy snow from clouds in some regions.

Following RH04, the reliability of a MODIS snow-

cover observation within a given grid square was de-

termined using the MOD10C1 confidence index.

MODIS is not cloud penetrating, but clouds are often

pervasive where snow exists, so it is essential to make

prudent use of data from grid squares that are partially

cloud covered, lest useful information be neglected.

Taking this reasoning into account and based on a visual

assessment of the credibility of the observed snow-cover

state at varying levels of the confidence index, it was

decided that 6% is the minimum visibility for which a

0.258 aggregation of observations is useful. This pa-

rameter can easily be adjusted if a more appropriate

value is later identified. For 0.258 tiles that achieved this

confidence threshold, the percentage of visible, snow-

covered 500-m pixels is divided by the confidence index

to establish the fraction of ground-visible (cloud free)

pixels that were snow covered at the time of the MODIS

observation.

We selected the relatively coarse spatial resolution of

0.258 to accomplish lengthy global simulations, but

MODIS would allow the application of the same algo-

rithm at significantly higher resolution. Recently,

Salomonson and Appel (2004) have extracted fractional

SCA from MODIS at 500-m resolution. High-resolution

assimilation experiments using this product are the

subject of current investigation.

b. Assimilation procedure

We implemented Noah LSM (version 2.7.1) for

global, uncoupled simulations at 0.258 resolution for

the periods September 2005–June 2006 and September

2006–June 2007. Experiments were initialized using

Global Land Data Assimilation System (GLDAS) Noah

restart fields from a multidecadal simulation parameter-

ized and forced by a hybrid dataset (Rodell et al. 2004).

Three-hourly atmospheric analyses from the Global

Data Assimilation System (GDAS), the operational at-

mospheric DA system of NCEP (Derber et al. 1991),

forced the experimental simulations. GDAS runs on a

thinned Gaussian grid, with a resolution of about 0.478.

The operational 2.58 5-day Climate Prediction Center

(CPC) Merged Analysis of Precipitation (CMAP) was

used to bias correct the higher-resolution GDAS pre-

cipitation fields (Rodell et al. 2004). CMAP estimates are

based on a blending of satellite data (microwave and IR)
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and gauge observations (Xie and Arkin 1997). The com-

bination of GDAS forcing with CMAP bias correction

for precipitation was selected to match the standard set

of forcing fields that drive GLDAS, as the DA algo-

rithms developed in this study will eventually be used

in GLDAS.

All Noah simulations were performed using the

NASA Goddard Space Flight Center (GSFC) Land

Information System (LIS), version 5.0. LIS is a software

framework that supports the integration of observa-

tional data with coupled or uncoupled LSMs using a

range of DA techniques (Kumar et al. 2006). Imple-

mentation of the assimilation algorithm within LIS

allows for simulations with a number of different at-

mospheric forcing datasets and for application to cou-

pled land–atmosphere modeling systems. The LIS

framework also facilitates transfer of the assimilation

scheme to forthcoming versions of Noah or to other

similar LSMs. In LIS–Noah, subgrid variability is cap-

tured by simulating each major land-cover class within

the grid cell as an independent, 1D ‘‘tile.’’ Gridded

output is returned as the area-weighted sum of tiles

within a grid cell (Rodell et al. 2004).

As discussed in section 1, we used two assimilation

procedures in this study, the push and pull algorithms

(Fig. 1). The push algorithm consists of a single update

routine, invoked once daily for each LSM tile. It is

largely analogous to the scheme used in RH04, slightly

modified for Noah’s snow routines.

1) THE push ALGORITHM

At 1000 LT, Noah SCA is checked against the present

MODIS observation. At this time, if Noah differs from

MODIS (LSMSCA 6¼ OBSSCA), then

(i) if MODIS SCA . 0.5 and Noah SCA , 0.2,

Eq. (1) is inverted to calculate the minimum depth

of SWE that must be added to the tile to bring

Noah into agreement with MODIS; this quantity

is added directly to SWE, and snow depth is also

updated, on the basis of added SWE and Noah’s

snow density routine for incoming snowfall;

(ii) for MODIS SCA , 0.2 and Noah SCA . 0.5,

Eq. (1) is inverted and Noah SWE is replaced

with the value indicated by MODIS.

These thresholds were chosen based on the properties

of the MODIS observation. The MODIS SCA product

reports a ‘‘bird’s-eye view’’ of snow cover rather than

an estimate of actual snow cover on the ground (as is

produced by most microwave-based snow-cover prod-

ucts). This means that in areas with tall vegetation or

steep topography, MODIS frequently reports SCA be-

low 100%, even when the ground below canopy is

completely snow covered. For this reason we take a

conservative approach, removing snow only when

MODIS SCA is particularly low (,20%) and, in adding

snow, only adding to nearly snow-free tiles for which

MODIS reports considerable (.50%) snow cover. For

all other tiles, we accept that LSMSCA ’ OBSSCA and

do not update the model. The push algorithm differs

from that of RH04 in that the volume of SWE added/

removed is determined by inverting the internal Noah

snow-depletion curve rather than setting it as a constant

for the entire simulation. Use of the SDC allows for

land-use specificity in the assimilation update and al-

lows us to apply the update as a continuous function of

SCA. The Noah SDC is highly generalized, however,

and is in no way equivalent to the detailed, geographi-

cally specific SDCs applied in watershed-scale studies

(e.g., Andreadis and Lettenmaier 2006; Kolberg and

Gottschalk 2006).

2) THE pull ALGORITHM

The pull algorithm comprises two update routines,

the first invoked for every tile at each LSM time step,

and the second invoked only once daily for each tile.

(1) At each time step, the assimilation scheme checks

the simulated SCA for the tile [calculated using

Eq. (1)] against the most proximal future MODIS

SCA observation. This is the same-day MODIS

observation when local time is 10:00 A.M. or

earlier and it is the next-day MODIS observation

when local time is later than 1000 LT. When the

most proximal future observation is unavailable,

the algorithm looks up to 3 days (72 h) ahead to

find a usable observation. If current Noah SCA

differs from the future MODIS observation, then

forcing is adjusted as follows.

(i) If MODIS SCA . 0.5 and Noah SCA , 0.2,

forcing air temperature is set to 238C for the

time step—this inhibits melt and causes any

incoming precipitation to be treated as snow-

fall.

(ii) If MODIS SCA , 0.2 and Noah SCA . 0.5,

forcing air temperature is set to 138C—this

promotes melt and prevents the accumulation

of any new snowfall.

(2) Whenever local time is equal to 0945 LT—that is,

the time step just prior to the time of MODIS

observation—the precipitation field is modified

directly.

(i) For MODIS SCA . 0.5 and Noah SCA , 0.2,

if precipitation in the forcing dataset is insuf-

ficient to produce the MODIS-observed SCA
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by the end of the time step, the precipitation

rate is increased to the minimum rate required

to produce SCA that is consistent with

MODIS. Routine (1) guarantees that this

added precipitation will fall as snow.

(ii) For MODIS SCA , 0.2 and Noah SCA . 0.5,

the remaining snowpack is forcibly melted,

with meltwater converted to soil moisture and,

if the soil saturates, to surface runoff.

All modifications to the forcing fields are recorded

throughout the simulation to track the impact of assim-

ilation on simulated air temperature and precipitation.

Modifications to forcing imposed through assimilation

are relevant only to the LSM, not to any coupled at-

mospheric model; in coupled simulations, precipitation

and air temperature are inputs to the LSM, which are not

reported back to the atmosphere. The modifications will,

however, influence surface fluxes of energy and water.

Effects on these variables are presented in section 4.

Forcible melt of a recalcitrant snowpack [pull, step

2(ii)] was included in the algorithm because Noah de-

termines the available energy for snowmelt as a function

of both air temperature and soil surface temperature

(Koren et al. 1999). In locations where the LSM has

erroneously generated a deep snowpack, the insulating

properties of the snow inhibit melt from the top. This

difficulty in melting a thick snowpack from the top is

inherent to the one-layer snow model in Noah 2.7.1, and

would be of less concern for LSMs that contain multiple-

layer snow models. In practice, however, the last rule

2(ii) was rarely invoked in the global 0.258 Noah simu-

lations reported in this paper.

c. Evaluation data

Model predictions of SCA and SWE were evaluated

using ground-based observations wherever possible.

For the United States, snow-depth observations were

provided by the National Weather Service Cooperative

observer program (Co-op). The Co-op network does

not provide direct measurements of SWE, but it is

nonetheless preferable to other snow observation net-

works (e.g., SNOTEL), both because it offers extensive

FIG. 1. General format of the two MODIS SCA assimilation

algorithms used in the study. (a) A rule-based direct insertion al-

gorithm (push), in which observed SCA is used to update model

SWE by inverting the snow-depletion curve within the model to

obtain an effective ‘‘Observed SWE’’ consistent with model pa-

rameters. (b) A forcing modification algorithm (pull) in which

information from a future MODIS observation is used to nudge

snow accumulation and melt processes within the model. This is

accomplished by adjusting air temperature or, when that fails,

ground temperature and precipitation.
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coverage over the United States and because it is not

specifically designed as a snow observation network.

Observation stations designed for snow monitoring are

intentionally sited in high-altitude locations with deep-

snow accumulation, as these are the areas of greatest

relevance for most snow studies. Because SCA updating

is most effective in areas that have marginal snow cover

or an ephemeral seasonal snowpack, Co-op stations,

which are distributed randomly with respect to snow-

accumulation zones, are a better source of evaluation

data. Snow water equivalent was estimated as 8.0% of

observed depth at Co-op stations, representing an av-

erage for the dynamic range of snow density in the Noah

LSM.

For locations outside of the United States, observa-

tions of snow depth were extracted from the National

Climatic Data Center (NCDC) Global Summary of the

Day (GSOD) dataset. As with Co-op stations, GSOD

observations provide information on snow presence/

absence and snow depth. Unfortunately, many GSOD

stations report snow observations only when snow

depth is greater than zero. It is still possible to evaluate

the distribution of snow cover predicted in Noah sim-

ulations against the distribution reported by GSOD

stations, but with the understanding that snow-free

station locations are underrepresented.

In all cases, our analysis is limited by the difficulty of

using point location in situ data to evaluate a relatively

coarse-scale gridded model. Wherever possible, multi-

ple observations within each 0.258 grid cell were aver-

aged to provide more representative evaluation data for

model results. In the majority of cases, however, only a

single observation was available for each grid cell, so

this single data point was assumed to be representative

of the 0.258 area. For assessment of snow presence/

absence, snow was deemed to be ‘‘present’’ whenever

reported depth exceeded the snow depth required for

50% grid cell coverage in Noah LSM.

4. Results and discussion

a. SCA and SWE

Over most regions of marginal snow cover, data as-

similation using the push or pull algorithm led to an

increase in total snow-covered area relative to open-

loop simulations (Fig. 2). This included earlier onset of

the snow season in northern Europe and across most of

North America, larger total extent of winter snow cover

in the western United States and central Asia—but with

markedly less winter snow in Tibet—and later spring

melt for much of Canada and, with the exception of

Tibet, Eurasia.

Comparisons with in situ reports of snow presence/

absence indicate that DA-informed simulations of snow

cover were substantially more accurate than the open

loop simulation. First, open-loop simulations with

Noah systematically underestimated snow presence at

reporting Co-op stations in the contiguous United

States (CONUS; Fig. 3a). This was true for test regions

outside of the United States as well, with the largest

discrepancy occurring during springtime melt in high-

latitude regions (central Canada and Siberia, Figs. 3b,c)

and throughout the snow season in midlatitude regions

(Mongolia, Fig. 3d; CONUS). In central Canada, the

springtime (March–May) hit rate for observed snow

cover was 68% for open loop versus 86% in pull in

2005–06 (n 5 1071) and 65% open loop versus 83%

pull in 2006–07 (n 5 975). In Siberia, 2005–06 spring-

time hit rates were 75% and 88% (n 5 2484) and 2006–

07 hit rates were 74% and 89% (n 5 1889) in open loop

and pull, respectively. Summed over the entire snow

season, the ratio of simulated snow cover to observed

snow cover (r, Table 1) indicates that both push and,

more dramatically, pull simulations corrected the low

snow bias for the CONUS, Siberia, and Mongolia dur-

ing both the 2005–06 and 2006–07 snow seasons. In

central Canada, only pull led to a reduction in the low

snow bias. Reduction in bias was associated with an

improvement in overall accuracy for all tested regions

in both years, with the exception of central Canada in

the push simulation (Table 1). This improvement can

be quantified using Cohen’s Kappa statistic, which ac-

counts for errors of omission and commission in the

assessment of accuracy (Congalton and Green 1999).

Kappa analysis indicates that improvement over open

loop was statistically significant (a,0.05) for both push

and pull as measured against Co-op stations for the

CONUS in 2005–06 and 2006–07. In both cases, both

assimilation runs were significantly improved relative

to open loop, and pull performed significantly better

than push. Outside of the CONUS statistical measures

of improvement were weaker, largely due to under-

reporting of snow-free conditions at GSOD stations

(see section 3). Nevertheless, statistically significant

improvement was observed for the pull simulation in

Mongolia and central Canada in 2005–06. In Siberia,

and in all three non-U.S. regions in 2006–07, improve-

ments were not statistically significant in this analysis.

Unfortunately, station reports from Tibet were too

limited to allow for a full station-based evaluation of

DA results in this interesting region. However, the

general tendency of DA to produce patchy, rather than

complete, snow cover for Tibet is consistent with

the known character of snow cover on the Tibetan

plateau, as established in field survey and independent
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remote sensing analyses (Qin et al. 2006). MODIS SCA

observations, for their part, have been validated for

Tibet in a focused regional-scale study (Pu et al. 2007),

further increasing our confidence in DA results for the

plateau.

With respect to snow volume, DA had a positive in-

fluence on the simulation of SWE in regions with partial

or transient snow cover, including the U.S. Southwest,

where deep-snow accumulation occurs only in elevated

areas and snow cover exhibits strong interannual vari-

ability, the U.S. high plains, and the Mongolian steppe

(Fig. 4). Following the pattern observed for SCA, DA

tended to increase SWE relative to open loop simu-

lations in these regions. In regions with deep seasonal

snowpack, assimilation was only able to provide a mar-

ginal improvement in the simulation of SWE. Such was

FIG. 3. Percent of stations reporting snow cover for Co-op sites in the CONUS and GSOD sites in central Canada, Mongolia, and Siberia,

along with the percentage of those site locations that had snow cover in open loop, push and pull simulations.
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the case for the West Coast focus region, which included

the Sierra Nevada and Cascade ranges. DA increased

SCA in these ranges (see Fig. 2) and did provide a

nominally statistically significant improvement in SWE

for certain months (not shown). However, DA could

not improve model simulation of SWE in a hydrologi-

cally meaningful way for the deep-snow conditions

observed in 2005–06 (Fig. 4), as MODIS provides no

information on snow mass or depth.

b. Hydrological fluxes

As the SCA and SWE results indicate, the pull ap-

proach applied MODIS information more effectively

than the push approach, primarily because it offset dis-

crepancies between the satellite observation and atmo-

spheric forcing data. By nudging the atmospheric forcing

into consistency with the MODIS observation, the al-

gorithm updated snow fields in a more robust manner,

reducing the incidence of daily add/melt cycles and re-

lated artifacts. Thus pull maintained a realistic local

hydrological balance throughout the simulation. In

contrast, the simple addition or removal of snow in

the push simulation overwhelmed the water balance in

certain locations. This is demonstrated in Fig. 5. For the

CONUS, the sum of daily residuals in the local water

balance in pull closely resembled those of the open loop

simulation: in both cases there is some variability around

zero, and pull exhibits a small positive bias due to deep-

snow corrections early in the simulation and, to a lesser

degree, during the melt season. In contrast, push yields

consistent negative departures from balance, and these

become highly significant in late winter and spring. This

is inconsistent with model physics and is a product of the

repeated add/melt cycles in the push simulation.

Figure 6 shows an example of the contrasts between

push and pull for a location in Colorado where MODIS

observed nearly complete cover throughout the winter

months, while open loop Noah simulations exhibited

sporadic coverage (Fig. 6a). Both the push and pull

integrations effectively corrected the low snow bias,

adding SWE to the simulation, and thus bringing the

model into better agreement with Co-op observations

of snow depth (Fig. 6b). Push, however, accomplished

this by the direct addition (removal) of snow to (from)

the land surface, which caused nonphysical imbalances

in the local water balance (Fig. 6c). Pull maintained the

local hydrological balance as effectively as did open-

loop simulations by anticipating the presence of snow

and reducing air temperature (Fig. 6g). The relatively

modest reduction in air temperature was sufficient to

change the phase of available incoming precipitation to

snow (Fig. 6e) from rain (Fig. 6f), and additional

snowfall was added where precipitation was inadequate

to provide snow cover. The physically consistent ap-

proach to snow updates also had an influence on

snowmelt (Fig. 6h) and, by extension, soil moisture. In

this case, runoff (Fig. 6d) was small for all simulations.

This example also demonstrates some of the limitations

of MODIS SCA assimilation: neither push nor pull

can remedy the model’s low snow bias in response to

the precipitation event on 20 December, as the model

TABLE 1. Evaluation of simulated snow cover, as measured against daily in situ reports over the snow season (September–May). The

parameter Nobs indicates the total number of daily observations within each region; r is the ratio of simulated snow events to observed

snow events, such that values , 1.0 indicate a low snow bias in the simulation; P0 is overall agreement in the identification of snow-

covered and snow-free pixels; K is the Kappa statistic, K 5 (P0 – Pc) / (1 – Pc), where Pc is agreement due to chance, and accounts for

errors of omission and commission and can be tested for significance using a two-tailed Z score with variance adjusted for covariance

between simulations (Donner et al. 2000). Boldface indicates K values for push or pull that are significantly different from open loop, and

the asterisk indicates values for pull that are significantly different from push. Note that K values and statistical tests for regions outside of

the CONUS are deflated due to limited reporting from snow-free stations (see section 3c).

Region

2005–06 2006–07

Nobs Open loop push pull Nobs Open loop push pull

CONUS 366,874 r 0.44 0.53 0.80 431 085 r 0.48 0.57 0.88

P0 0.86 0.87 0.91 P0 0.85 0.86 0.91

K 0.49 0.54 0.69* K 0.51 0.56 0.74*
Central Canada 3,350 r 0.85 0.85 0.94 4361 r 0.87 0.87 0.93

P0 0.85 0.85 0.94 P0 0.87 0.87 0.93

K 0.11 0.10 0.23* K 0.11 0.11 0.19

Siberia 8,038 r 0.90 0.87 0.92 7802 r 0.90 0.87 0.93

P0 0.90 0.86 0.92 P0 0.90 0.87 0.93

K 0.10 0.07 0.11 K 0.04 0.03 0.05

Mongolia 1,259 r 0.37 0.80 0.92 1823 r 0.63 0.77 0.93

P0 0.38 0.81 0.92 P0 0.63 0.77 0.93

K 0.02 0.11 0.25 K 0.02 0.04 0.13
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achieved 100% snow cover, and SCA observations

cannot provide any further information. Also, the ac-

cumulated snowpack melted from DA assimilations

during a gap in MODIS data in February. Because there

is a corresponding gap in Co-op data, we don’t know

whether this melt was accurate, but it was unavoidable

due to the MODIS data gap.

Figure 7 demonstrates the advantages of pull for a

location where DA had to remove snow from the

model. In this example, from a location in Wisconsin,

FIG. 4. Snow water equivalent, as predicted in Noah simulations and as estimated from snow-depth reports at the locations of Co-op

and (for Mongolia) GSOD observing stations. Maps within each panel indicate the averaging region within the United States. The

Mongolia averaging region is the same as that mapped in Fig. 2; N 5 number of stations used to calculate the average.
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the open loop Noah simulation erroneously overesti-

mates the magnitude of a late-November snow event,

creating a snow cover error that persists for the first

half of December. In the push simulation, low-snow

MODIS observations allow for a rapid correction of

the erroneous snow accumulation, but this is not ach-

ieved until after the initial error has occurred (Figs.

7a,b), and the correction imposes a nonphysical de-

parture from local water balance (Fig. 7c). In pull,

MODIS advance observations were utilized to prevent

false snow accumulation from occurring. This was ac-

complished through a slight increase in air temperature

(Fig. 7g) that caused precipitation to fall as rain rather

than snow (Figs. 7e,f). As a result, the pull simulation

was closer to Co-op observations (Fig. 7b) and exhibited

less snowmelt (Fig. 7h) and runoff (Fig. 7d) over this

period.

The secondary pull add-snow procedure—increasing

the local precipitation rate when air temperature mod-

ifications failed to produce an adequate snow cover—

preserves the surface water balance at the expense of a

possible precipitation bias. That consequence should be

examined closely in any application. For the simulations

performed in this study, the influence of pull on pre-

cipitation was substantial in some locations, but dif-

ferences between pull and open loop precipitation

were generally within the uncertainty level, that is, the

range of estimates from various global precipitation

FIG. 5. (a) Daily average deviation from local water balance, Precipitation 2 Evapotrans-

piration 2 Runoff 2 DStorage, calculated as the sum of the deviation in each grid point in the

CONUS divided by the total number of grid points, then adjusted to the open loop mean.

(b) Same as (a), but calculated as the sum of the absolute values of deviation for each grid point.

This demonstrates that the relative area-wide agreement between open loop and pull observed

in (a) is not the product of offsetting positive and negative local errors.
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datasets. In fact, the pull algorithm often brought the

open loop precipitation (disaggregated CMAP) into

better agreement with alternative forcing datasets

(Table 2). One exception is for high-latitude regions in

the spring. In these regions, the DA-induced addition of

precipitation due to the pull algorithm did sometimes

impose a wet bias beyond the range of common pre-

cipitation datasets. This assimilation artifact reflects a

limitation in the MODIS SCA data. Because MODIS

depends on visible and near infrared data to determine

snow cover, the sensor cannot provide SCA estimates at

high latitudes during winter. During this extended data

gap, the model has the opportunity to drift to lower

SCA values (e.g., Fig. 3, central Canada). When the

MODIS record for these regions resumes in spring, a

relatively large volume of snow must be added to the

simulation to regain accurate snow cover. To address

this issue, we have begun to investigate the use of

multisensor snow-cover products (Helfrich et al. 2007;

Romanov et al. 2003) that use high-resolution visible/

near-infrared observations whenever available but use

microwave data to fill in data gaps at high latitudes. It is

anticipated that such multisensor products will correct

for any artificial wet bias that pull produces at high

latitudes.

Pull generally produced more realistic snowmelt, soil

moisture, and runoff than push. This was most obvious

in locations where push repeatedly caused add/melt

cycles over the course of the snow season (e.g., Fig. 7).

These cycles resulted from inconsistencies between

observation (SCA . 0.5) and atmospheric forcing (Tair .

08C). By making small adjustments to air temperature

(Fig. 7g), pull made it possible for the LSM to retain an

applied positive snow increment rather than melt it

away (Figs. 7b,c,h). Even under less dramatic circum-

stances, differences between pull and push can accu-

mulate over the season to have a substantial impact on

total snowmelt, as well as the associated fields of soil

moisture and runoff.

c. Energy fluxes

As expected, data assimilation had a substantial

impact on the surface energy balance and on land–

atmosphere energy fluxes. Changes to SCA altered

surface albedo, which in turn influenced radiative and

turbulent fluxes. These effects were most pronounced at

midlatitudes during winter and at high latitudes in fall

and spring, and they were quite substantial for some

regions. On the West Coast of the United States, for

example, DA increased snow- covered area and albedo,

FIG. 6. (a) MODIS and open loop Noah estimates of SCA for a simulation grid box including Fleming, CO (40.68N,

102.88W). Daily open loop, push, and pull values of (b) SWE (with Co-op–derived estimates of SWE provided as an

in situ comparison), (c) local water balance, (d) accumulated runoff, (e) accumulated snowfall, (f) accumulated

rainfall, (g) air temperature, and (h) daily snowmelt for the same location. In (c), the pull simulation falls directly on

top of open loop. In (d)–(f), the push simulation is identical to open loop.
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causing a significant reduction in net radiation and

sensible heat flux in winter (Table 3). The effects of the

SCA update persisted into spring, when snowmelt in the

DA simulations led to significantly enhanced latent heat

flux, along with a nonsignificant increase in soil moisture

and decrease in surface temperature. The influence of

DA on energy fluxes was also observed in midlatitude

Eurasia. In Mongolia, DA produced simulations with

increased wintertime SCA and albedo and significantly

decreased sensible heat flux and net radiation (net ra-

diation effect significant for pull only). The persistence

of snow memory in the form of soil moisture was smaller

in this region than it was on the West Coast.

At high latitudes, where winter snow cover was not

ephemeral, DA had a smaller impact on energy fluxes

during winter, but it had consistent, significant impacts

in spring (Table 3: central Canada and Siberia). Both

push and pull increased springtime snow cover and

surface albedo in these regions, which in turn reduced

net shortwave radiation at the surface (statistically

significant for pull only). Outgoing longwave radiation

also decreased, owing to reduced surface temperature.

The reduction in surface temperature was caused by

increased snow cover and, in the case of the pull simu-

lation, reduced air temperature. Sensible heat flux was

diminished significantly relative to open loop because of

the combined effects of reduced net surface radiation

and enhanced latent heat flux.

These results demonstrate the value of SCA obser-

vations for coupled land–atmosphere simulations. They

also allay a concern associated with the pull algorithm—

that manipulation of air temperature might lead to un-

realistic radiation and energy fluxes. For example, in

locations where the pull algorithm reduces air temper-

ature to increase SCA, it is possible that the enhanced

surface-to-air temperature gradient might lead to in-

creased surface sensible heat flux, even though the ad-

dition of snow would be expected to reduce it. In this

application, it was found that pull imposed only small

changes in the air temperature forcing field, and any

influence that this had on turbulent fluxes was small

relative to the influence of improving the model’s rep-

resentation of SCA. This is clear from the fact that push

and pull had similar influences on energy fluxes in all

regions: increased SCA led to substantial reductions in

sensible heat flux, and any mitigation of this due to

enhanced surface-to-air temperature gradient in pull

was negligible both in the monthly average (as shown in

Table 3) and on daily and 3-hourly time scales. Simi-

larly, the influence of DA on radiative fluxes was

dominated by the impact of SCA on surface properties

rather than the influence of pull on atmospheric forcing

fields. Even in high-latitude regions such as central

Canada, where pull reduced surface temperatures and

net longwave radiation relative to push, the energetic

differences between simulations is attributed to the fact

FIG. 7. Same as Fig. 6, but for Argyle, WI (42.78N, 89.98E).
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that pull more effectively maintained snow cover,

leading to larger values of SCA. The direct manipula-

tion of air temperature (Table 2) was small relative to

simulated differences in surface temperature (Table 3)

and would be expected to have the opposite influence

on longwave radiation than was observed in the simu-

lation: the magnitude of net outgoing longwave radia-

tion at the surface was reduced in pull relative to other

simulations, even though the manipulation of air tem-

perature decreased incoming radiation, which would, on

its own, have increased outgoing net radiation.

5. Conclusions

The assimilation of MODIS SCA observations to the

Noah LSM yielded improved estimates of snow cover in

offline global simulations. This had significant impacts

on the surface radiation balance, indicating that the

technique would be of value in coupled land–atmosphere

simulations. Regions where assimilation had a significant

impact include the western United States and Mongolia,

in winter, and Siberia and central Canada in spring. Both

assimilation schemes tested in this paper—the rule-based

push assimilation scheme and the pull assimilation

scheme that updated air temperature and precipitation

fields—improved the simulation of SCA and SWE rela-

tive to open loop simulations. Pull tended to produce

more robust results, in large part because positive snow

increments in push often melted away rapidly. Any un-

intended influence that pull might have had on surface

energy fluxes as a by-product of air temperature manip-

ulations was small compared to the effect of updating

SCA. Improved realism in the simulation of SCA and

associated surface energy fluxes is important for retro-

spective climate analyses and, in the context of coupled

models, for seasonal forecasts. This is particularly true

for regions like Siberia, where variability in SCA is

known to have a significant impact on atmospheric cir-

culations and climate throughout the Northern Hemi-

sphere (Gong et al. 2003), and for midlatitude regions

such as the U.S. Great Plains, where snow influences

springtime soil moisture and vegetation, both of which

are involved in important land–atmosphere feedbacks

on climate (Koster et al. 2004). The degree to which

local improvements in the simulation of SCA lead to

improved seasonal predictions on the regional scale will,

of course, depend on the accuracy of model physics and

parameterizations (Schlosser and Mocko 2003).

With respect to hydrological variables, the benefits of

data assimilation were more modest. The assimilation of

SCA is inherently limited in this regard, as most snow is

stored in regions of deep snow, where SCA observations

TABLE 2. Precipitation and air temperature during the 2006–07 snow season (September 2006–May 2007) as reported by GDAS,

CMAP, the NCEP– National Center for Atmospheric Research (NCAR) reanalysis project (NNRP), version 2, and the Tropical Rainfall

Measuring Mission (TRMM) 3B43 merged precipitation product (Huffman et al. 2007), not available for high-latitude regions, and as

estimated in the pull assimilation integration. Data are shown for two regions in North America and two in Eurasia, as mapped in Fig. 2.

All simulations in this paper used GDAS atmospheric forcing corrected with CMAP precipitation. Thus, the combination of GDAS air

temperature with CMAP precipitation is representative of forcing fields in the open loop and push integrations. The pull fields of

precipitation and air temperature represent the effects of the assimilation algorithm on a background of GDAS/CMAP forcing.

West Coast Central Canada

GDAS CMAP NNRP TRMM pull GDAS CMAP NNRP TRMM pull

Precipitation (mm day21) October 1.39 0.78 1.19 1.02 0.92 2.01 1.66 2.39 — 1.90

January 0.73 0.33 1.07 1.14 0.58 0.87 0.59 0.79 — 0.60

April 1.81 0.85 1.55 1.06 1.14 1.33 0.66 1.22 — 1.66

Total 12.02 6.83 11.56 9.75 8.87 13.53 9.86 13.90 — 11.46

Tair (K) October 280.7 — 280.9 — 280.2 274.1 — 272.8 — 273.5

January 267.6 — 267.0 — 267.7 257.4 — 255.2 — 257.5

April 280.0 — 279.2 — 279.4 271.2 — 268.0 — 270.1

Average 277.5 — 277.2 — 277.2 267.7 — 265.9 — 267.3

Mongolia Siberia

GDAS CMAP NNRP TRMM pull GDAS CMAP NNRP TRMM pull

Precipitation (mm day21) October 0.25 0.22 0.23 0.28 0.31 1.42 0.99 1.31 — 1.29

January 0.10 0.05 0.21 0.08 0.16 0.70 0.52 0.69 — 0.58

April 0.38 0.25 0.57 0.29 0.35 1.33 0.48 2.42 — 1.94

Total 2.41 1.86 2.85 2.27 2.71 11.76 7.22 10.69 — 10.09

Tair (K) October 279.1 — 276.6 — 279.0 266.6 — 264.6 — 268.0

January 257.6 — 254.9 — 259.2 254.3 — 253.4 — 254.9

April 279.0 — 276.9 — 278.8 270.2 — 286.2 — 269.6

Average 272.3 — 270.2 — 272.9 262.3 — 261.1 — 262.7
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have little information to provide beyond the first few

weeks and last few weeks of the snow season. In eval-

uation against snow-depth measurements from avail-

able surface stations, data assimilation did appear to

improve simulation of SWE in some regions. Not sur-

prisingly, these were regions of ephemeral snow cover,

where SCA observations are most indicative of SWE.

The pull algorithm did produce an increase in precipi-

tation in some regions. However, the CMAP-based

forcing data used in the experiments had a low bias

compared with other precipitation products, and the

resulting total precipitation in the pull simulation was

somewhere between CMAP and the others. Conse-

quently, pull also tended to generate more runoff, latent

heat flux, and soil moisture than open loop. Push, in

contrast, had mixed hydrological effects, as the net im-

pact of add/melt and remove/accumulate cycles some-

what offset each other when averaged across focus

regions. These results could not be evaluated reliably

against observations, because of the many possible sources

of biases in modeled runoff and soil moisture, and hence

the difficulty determining an improvement or degradation.

In high-latitude regions the hydrological benefits of

data assimilation were limited by the fact that MODIS

cannot observe surface conditions without daylight or

during periods of extended cloud cover. This problem

will be mitigated by the use of multisensor snow-cover

products in future studies. Nonetheless, MODIS ob-

servations alone do provide significant information for

many snow-covered regions of the world.

TABLE 3. Snow, hydrology, and surface energy variables for the open loop, push, and pull simulations for October, January, and April

of the 2006–07 snow season. All values are monthly averages. Boldface indicates statistical significance at a 5 0.05, as assessed using a

Student’s t test with effective sample size adjusted for first-order-in-time autocorrelation (Dawdy and Matalas 1964); SW 5 shortwave

radiation, LW 5 longwave radiation, Rnet 5 net surface radation, H 5 sensible heat flux, lE 5 latent heat flux, SM 5 soil moisture, Q 5

total runoff.

West Coast Central Canada Mongolia Siberia

Open

loop push pull

Open

loop push pull

Open

loop push pull

Open

loop push pull

SCA Oct 0.01 0.02 0.04 0.16 0.21 0.30 0.01 0.03 0.04 0.38 0.38 0.42

Jan 0.27 0.36 0.53 0.99 0.98 0.99 0.33 0.42 0.52 0.98 0.97 0.98

Apr 0.02 0.03 0.05 0.38 0.43 0.58 0.02 0.02 0.03 0.40 0.46 0.63

Albedo Oct 0.20 0.21 0.21 0.21 0.23 0.25 0.24 0.25 0.26 0.27 0.27 0.28

Jan 0.29 0.32 0.38 0.46 0.46 0.46 0.39 0.43 0.48 0.42 0.41 0.42

Apr 0.19 0.19 0.20 0.28 0.29 0.33 0.23 0.23 0.23 0.26 0.28 0.32

Net SW (W m22) Oct 126.4 125.7 125.1 63.9 62.8 61.4 121.9 120.6 119.7 59.6 58.9 57.9

Jan 79.5 74.7 67.9 21.4 21.5 21.3 55.1 50.9 46.8 13.4 13.5 13.4

Apr 194.8 193.5 192.2 138.7 135.5 128.6 207.5 207.3 206.3 141.0 137.3 128.8
Net LW (W m22) Oct 287.3 287.0 284.4 255.9 255.4 251.7 297.2 296.9 296.0 261.3 260.6 264.5

Jan 272.0 270.9 270.2 244.8 243.1 244.8 270.7 269.8 274.6 245.0 244.6 246.7

Apr 291.9 290.9 287.2 259.6 258.0 251.9 2108.0 2107.9 2106.7 262.6 261.3 257.2
Rnet (W m22) Oct 39.1 38.7 40.7 8.0 7.4 9.7 24.7 23.7 23.7 21.7 21.8 26.6

Jan 7.4 3.8 22.3 223.4 221.6 223.4 215.6 218.9 227.8 231.7 231.1 233.3

Apr 102.9 102.6 105.0 79.1 77.5 76.7 99.6 99.4 99.6 78.4 76.0 71.6

Tsurface (K) Oct 281.4 281.4 280.8 274.1 274.0 273.2 278.6 278.5 278.3 266.4 266.2 267.1

Jan 267.3 267.1 266.9 256.6 256.1 256.5 255.7 255.5 256.6 252.2 252.1 252.7

Apr 282.2 282.0 281.4 272.6 272.2 271.0 280.2 280.2 280.0 271.8 271.5 270.6

H (W m22) Oct 34.0 32.7 35.8 7.8 6.1 10.3 26.3 24.6 25.2 7.2 6.2 0.6

Jan 13.3 8.8 5.2 24.5 28.4 24.8 26.2 28.6 214.2 216.5 217.3 217.7

Apr 71.1 64.6 68.1 46.3 38.5 40.3 79.9 78.1 74.4 49.8 41.2 35.6

lE (W m22) Oct 11.8 12.7 11.9 11.4 12.4 11.5 4.9 5.7 5.4 7.8 8.2 8.9

Jan 3.3 5.3 5.3 2.4 1.7 2.5 0.6 0.7 20.2 20.6 20.7 20.6

Apr 25.0 30.1 28.8 20.9 27.2 26.5 8.1 9.5 12.6 15.0 21.5 22.8

SWE (mm) Oct 0.08 0.22 0.43 2.89 3.62 6.17 0.11 0.27 0.48 6.36 6.63 8.26

Jan 4.52 5.14 9.37 58.08 58.16 66.08 3.33 4.69 6.73 72.03 68.24 71.40

Apr 0.18 0.35 0.65 24.75 24.63 31.63 0.29 0.24 0.41 24.46 22.53 27.78

SM (m m21) Oct 0.22 0.22 0.22 0.39 0.40 0.39 0.18 0.18 0.18 0.31 0.32 0.32

Jan 0.26 0.28 0.28 0.42 0.43 0.42 0.18 0.18 0.19 0.31 0.32 0.33

Apr 0.28 0.32 0.33 0.46 0.51 0.47 0.18 0.18 0.21 0.36 0.39 0.40

Q (mm day21) Oct 0.01 0.01 0.01 0.14 0.15 0.13 0.00 0.00 0.00 0.05 0.06 0.12

Jan 0.05 0.07 0.09 0.05 0.05 0.07 0.00 0.00 0.01 0.00 0.00 0.09

Apr 0.05 0.10 0.14 0.85 0.69 1.38 0.01 0.01 0.02 0.80 0.89 1.21
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In summary, the shortcomings of existing snow-cover

assimilation schemes motivated the development of the

new pull algorithm. In particular, the algorithm over-

comes a key limitation: in cases where the atmospheric

forcing fields contradict the assimilated observation,

updates to SWE can be quickly nullified by subsequent

snowmelt or (less frequently) accumulation. The new

scheme nudges the air temperature and precipitation

into consistency with the near-future SCA observation,

thus preserving the update. In our experimental simu-

lation, this led to simulated SCA values that were higher

than push and the open loop and that were more con-

sistent with ground-based observations. The second

shortcoming we addressed was the tendency of assimi-

lation schemes to disrupt the local water balance. Pull

inherently prevents nonphysical hydrological imbalance

and limits the add/melt and remove/accumulate cycles

that produce undesirable artifacts in the simulated

snowmelt, soil moisture, and runoff fields. Nevertheless,

there is still room for improvement in the application of

data assimilation to snow hydrology on the global scale.

More reliable satellite retrievals of SWE are needed to

update snow fields in areas of 100% cover. In the in-

terim, the application of multisensor SCA products will

fill gaps in the MODIS product, allowing for smoother

and more complete updates in high-latitude and cloud-

covered regions.
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