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ABSTRACT

Retrospectively simulated soil moisture from an ensemble of six land surface/hydrological models was used

to reconstruct drought events over the continental United States for the period 1920–2003. The simulations

were performed at one-half-degree spatial resolution, using a common set of atmospheric forcing data and

model-specific soil and vegetation parameters. Monthly simulated soil moisture was converted to percentiles

using Weibull plotting position statistics, and the percentiles were then used to represent drought severities

and durations. An ensemble method, based on an inverse mapping of the average of the individual model’s

soil moisture percentiles, was also used to combine all models’ simulations. Major results are 1) all models

and the ensemble reconstruct the known severe drought events during the last century. The spatial extents

and severities of drought are plausible for the individual models although substantial among-model dis-

parities exist. 2) The simulations are in more agreement with each other over the eastern than over the

western United States. 3) Most of the models show that soil moisture memory is much longer over the

western than over the eastern United States. The results provide some insights into how a hydrological

nowcast system can be developed, and also early results from a test application within the University of

Washington’s real-time national Surface Water Monitor and a review of the multimodel nowcasts during the

southeastern drought beginning in summer 2007 are included.

1. Introduction

Droughts are a recurrent and costly natural hazard.

According to a report of the Martz et al. (2003), an

‘‘extreme’’ or ‘‘severe’’ drought has been experienced in

some part of the United States in every year since 1895.

The 1988 drought alone cost nearly $62 billion, more

than the cost of the 1993 Mississippi River flood and

Hurricane Andrew combined (Ross and Lott 2003).

Historically, droughts of decadal length or longer, such

as the Dust Bowl drought of the 1930s, have occurred

1 or 2 times per century on average (Woodhouse and

Overpeck 1998). Globally, the areal extent of droughts

increased more than 50% during last century, while

changes in areal extent of wet regions were relatively

small (Trenberth 2004). Trenberth et al. (2007) re-

viewed the evidence of drought in North America and

found that the southwestern United States, northwest-

ern Mexico, and the Baja Peninsula in Mexico are

particularly susceptible to drought.

A number of recent studies have suggested that the

interior of the Northern Hemisphere continents will

become more susceptible to droughts over the next

century as a result of greenhouse warming. Dai et al.

(2004) concluded that anthropogenic global warming

induces an increasing risk of drought based on an

analysis of reconstructed historical Palmer drought se-

verity index data (PDSI). On the other hand, Andreadis
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and Lettenmaier (2006) found that, over much of the

continental United States, droughts became less severe

as a result of wetter conditions over the last 80 yr; how-

ever, there was some indication of increased drought

severity over the western United States where increased

evaporative demand seemed to have countered in-

creased precipitation to result in reduced soil moisture.

Droughts can be classified according to their charac-

teristics and impacts as falling in one of four categories:

agricultural, meteorological, hydrological, and socioeco-

nomic (AMS Council 1997); however, most droughts

are classified, based on their physical characteristics,

into one of the first three categories. Two methods have

been used to assess and reconstruct past droughts. The

first is based on indexes derived from meteorological

and hydrological data. The most prominent drought

index is the PDSI (Palmer 1965), which is driven by

precipitation and temperature but essentially recon-

structs a soil moisture index. This index has been ex-

tensively used in drought studies (e.g., Karl 1983, 1986).

Dai et al. (2004) reconstructed PDSI for the entire

global land area based on historical precipitation and

temperature data. They found a close relationship be-

tween monthly PDSI and monthly soil moisture in

warm season months and between basin-averaged annual

PDSI and streamflow over large river basins. They also

found that PDSI is poorly correlated with soil moisture

in cold seasons because of the influence of snowmelt.

Alley (1984) summarized limitations of PDSI, such as

arbitrary criteria for determination of drought proper-

ties (e.g., intensity and timing) and absence of a basis for

interpreting the values at different locations. Other

popular drought indexes include the standardized pre-

cipitation index (SPI) and the surface water supply index

(Keyantash and Dracup 2002). These indexes are indi-

rectly linked to long-term time series of observations.

Another method of assessing drought severity is to

analyze simulated variables from atmospheric or hy-

drological models. The major advantage of this ap-

proach is that it is based on variables (soil moisture,

runoff) that are directly related to drought properties. A

further advantage of this approach is a direct link (i.e.,

by providing model initial conditions) to predictions of

future droughts. One example of this approach, based

on a (global) coupled land–atmosphere model, is the

study of North American drought by Schubert et al.

(2004a). They found, using an atmosphere general cir-

culation model (AGCM) forced with observed SSTs,

that drought over the Great Plains is linked to abnormal

tropical Pacific SSTs. They also found that soil moisture

feedback increases the variance of simulated precip-

itation, to which both agricultural and meteorological

drought are related.

A drawback of using coupled land–atmosphere models

to reproduce drought-related variables is that they are

reliant on the accuracy of the parameterizations and

land–atmosphere feedback mechanisms incorporated

in the model—for instance, model errors in cloud and

radiation parameterizations affect both precipitation

and evapotranspiration. An alternative approach is to

use land surface models (LSMs) offline (i.e., forced by

surface meteorological variables such as precipitation,

temperature, and downward shortwave and longwave

radiation), an approach that removes the effects of at-

mospheric model errors. The drought-related variables

so produced can provide insights into possible charac-

teristics, and perhaps mechanisms, of future drought.

Andreadis et al. (2005) used this approach to recon-

struct agricultural and hydrologic drought over the

conterminous United States for the period 1920–2003

with the Variable Infiltration Capacity (VIC; Liang et

al. 1994) macroscale hydrological model. They were

able to reconstruct the major drought events of the

twentieth century over the continental United States,

including those of the 1930s and mid-1950s. They also

developed a method, which they termed severity–area–

duration (SAD) analysis, to characterize relationships

among drought severity, area covered, and duration.

SAD is an adaptation of the widely used depth–area–

duration (DAD) method for design storm analysis

(World Meteorological Organization 1969).

The U.S. Drought Monitor (Svoboda et al. 2002) uses

a combination of the above two methods to fuse climate

indexes (such as PDSI), and the outputs of numerical

models, as well as input from regional and local experts

into maps of current drought extent.

This product is not a forecast tool, but rather an

assessment of current drought conditions. While the

Drought Monitor provides a useful reference for so-

cioeconomic and agricultural management purposes,

there is a concern that its estimates of drought extent,

and changes in drought extent, are not reproducible in

an objective manner.

The use of macroscale hydrological models, driven

by observed meteorological data, resolves this concern.

This approach has been used for several years in the ex-

perimental University of Washington West-Wide Hydro-

logical Forecast System (Wood and Lettenmaier 2006).

However, the west-wide forecast system (and compan-

ion U.S. surface water monitor, see http://www.hydro.

washington.edu/forecast/monitor) is based on a single

LSM and therefore does not represent variations in

drought delineations that may result from use of alter-

native LSMs. In this paper, we implement and evaluate a

suite of multiple LSMs over the continental United States

and apply the SAD procedure outlined in Andreadis et al.
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(2005) to determine how different reconstructions of

drought properties from different LSMs are over a ret-

rospective period from 1920–2003.

The purpose of this study, therefore, is fourfold: (i) to

evaluate the major drought events according to their

severity and duration, (ii) to assess the degree of simi-

larity of different LSMs in their reproduction of drought

characteristics, (iii) to provide explanations of the phys-

ical differences among model products, and (iv) to de-

velop multimodel ensemble techniques for estimation of

initial conditions for real-time drought forecasting.

2. Models and data

Six widely used LSMs (note that we broadly interpret

the term LSM to include macroscale hydrological models

such as VIC) were incorporated into our multimodel

ensemble system. They include 1) VIC (Liang et al. 1994);

TABLE 1. Comparison of major features of model structures and hydrological schemes.

Model Soil hydrology scheme Soil layers and depth

Soil/vegetation

parameters References

VIC Variable infiltration

capacity curve for surface

runoff, ARNO model

for base flow, and

drainage driven by gravity

3 soil layers with depths

specified differently cell

by cell. Total depth

ranges from 0.8 to 3 m

From NLDAS Liang et al. (1994),

Maurer et al. (2002),

Mitchell et al. (2004)

CLM3.5 TOPMODEL-based

surface runoff;

groundwater scheme

10 soil layers and fixed

depth. Total soil depth is

3.43 m

Vegetation data

are from Moderate

Resolution

Imaging

Spectroradiometer

(MODIS), and soil

data are from

International

Geosphere-Biosphere

Programme (IGBP)

dataset

Bonan et al. (2002),

Oleson et al. (2007),

Niu et al. (2005, 2007)

Noah Exponential distribution

of infiltration capacity for

runoff; base flow

proportional to storage;

drainage driven by gravity

4 soil layers and fixed

depth. Total soil depth is

2 m

Soil and vegetation

parameters from

NLDAS

Schaake et al. (1996),

Chen et al. (1997),

Koren et al. (1999),

Ek et al. (2003),

Mitchell et al. (2004)

Sac Runoff from impervious

and saturated soils; base

flow and percolation

between reservoirs based

on current storage

5 soil water storage

reservoirs. Total storage

capacity ranges from 20

to 600 mm

No vegetation; soil

parameters from

NLDAS

Burnash et al. (1973),

Anderson (1973),

Mitchell et al. (2004)

Catchment TOPMODEL-based soil

hydrology scheme

Total soil depth is from

1.0 to 1.52 m

Soil depth from

State Soil Geographic

Database (STATSGO);

soil texture from the

Food and Agriculture

Organization (FAO);

vegetation classification

from IGBP; soil and

vegetation parameters

are consistent with Global

Soil Wetness Project

(GSWP)-2 global

parameters

Koster et al. (2000a),

Ducharne et al. (2000)

CLM–VIC Same as VIC soil hydrology

scheme

Same as VIC Vegetation data

are the same as

used in CLM3.5;

soil data are the

same as in VIC

Wang et al. (2008)
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2) the Community Land Model, version 3.5 (CLM3.5;

Oleson et al. 2007); 3) the Noah LSM (Schaake et al.

1996; Chen et al. 1997; Koren et al. 1999; Ek et al. 2003);

4) a catchment-based model (catchment; Koster et al.

2000a; Ducharne et al. 2000), 5) Sacramento/Snow-17

(Sac; Burnash et al. 1973; Anderson 1973), and 6) a hy-

brid of CLM 3.5 with the VIC soil hydrology scheme

(CLM–VIC; Wang et al. 2008). Most of these models

have been used as the lower boundary for coupled

models or used in previous offline experiments, and

their performance has been evaluated in the references

noted above. Most have been evaluated in one or more

experiments of the Project for Intercomparison of Land-

Surface Parameterization Schemes (PILPS). As shown in

PILPS experiments such as PILPS-2c (model evaluation

over the Arkansas–Red River basin; Wood et al. 1998)

the structure and parameterizations of these models

differ considerably, as do, in turn, their representations

of soil moisture and runoff. Since hydrological drought

(runoff) is closely linked to agricultural drought (soil

moisture; see Andreadis et al. 2005; Andreadis and

Lettenmaier 2006), we focus our attention here on ag-

ricultural drought (soil moisture).

Because our goal is to examine the performances of

each model’s ability to reproduce past drought events in

their default condition, the parameters are therefore

also model specific. For instance, the soil and vegetation

parameters needed for each model were taken from the

model’s standard setup and provided, where possible,

by the model developers. Table 1 summarizes the pri-

mary differences among models and the sources of soil

and vegetation parameters. All models have a single

vegetation layer (except Sac, which does not explicitly

simulate vegetation) and at least one snow layer. For

different models, the parameterizations of the exchange

of energy and water between canopy and the atmos-

phere above (and below) are also quite different. These

parameterizations have been well documented in model

technical notes or literature. Therefore, we will not

describe the details in this study, but instead refer the

reader to the specific studies cited for each model.

All models were run at 0.58 spatial resolution over the

land area of the conterminous United States (encom-

passing a total of 3322 grid cells) for the period 1915–

2003. The atmospheric forcing data were the same as in

Andreadis et al. (2005) and consisted of daily precipi-

tation, daily wind speed, and daily maximum/minimum

air temperature, which were essentially merged from

the gridded National Oceanic and Atmospheric Ad-

ministration (NOAA) Cooperative Observer (Co-op)

station data and National Centers for Environmental

Prediction (NCEP) reanalysis data. The derivation of

the forcing data was described in Andreadis et al. (2005).

Because most of the models (except VIC and Sac) only

run at subdaily time steps, we disaggregated the daily

forcing data to an hourly time step using methods re-

ported in Nijssen et al. (2001).

Maurer et al. (2002) describe an algorithm to sto-

chastically disaggregate daily precipitation into subdaily

values, in which the probabilities of time of occurrence

and the number of hours of precipitation were derived

from the NOAA/National Climatic Data Center (NCDC)

Co-op stations that report hourly. They found that the

runoff and evapotranspiration simulated by the VIC

model were not substantially affected by the diurnal

precipitation distribution. To test the sensitivities of the

other models to the method of precipitation disaggre-

gation, we subdivided daily precipitation into diurnal

quantities using two methods: uniform distribution of

daily amounts and the Maurer et al. (2002) approach.

With the exception of the catchment model, we found

that the monthly simulated soil moisture (which was our

main interest in this study) did not exhibit high sensi-

tivity to diurnal precipitation distributions. Specifically,

the simulated monthly soil moisture values used in our

analysis were very similar regardless of which of the two

disaggregation algorithms for daily to subdaily precipi-

tation were used (a similar result was found by Maurer

et al. 2002 for VIC). For simplicity, therefore, daily

precipitation for all models other than catchment model

was disaggregated to hourly by simply dividing the daily

precipitation evenly over the entire day; for the catch-

ment model, we used the Maurer et al. (2002) approach.

Surface pressure data were adjusted from sea level

pressure using a high-resolution digital elevation model

and an assumed lapse rate of 0.00658C m21 with a hy-

drostatic assumption. To reduce initialization effects, all

models were first run for a 10-yr spinup period, con-

sisting of the forcing data from 1915 repeated 10 times,

prior to simulation for the period January 1915 to De-

cember 2003. All models other than catchment used an

hourly time step (catchment used a time step of 20 min).

Monthly simulated soil moisture from 1920 to 2003 was

then analyzed.

3. Approach

Because different models differ substantially in their

representations of hydrological processes, differences in

model-predicted soil moisture can be quite large. As

an example, Fig. 1 shows the time series of model-

simulated total column soil moisture over a grid cell.

The tremendous disparities evident in the figure make

it clear that direct use of the models’ simulated

soil moistures, particularly in a multimodel context, is

not feasible. Koster et al. (2009, hereafter KGYDM),
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also motivated by similar intermodel differences in soil

moisture, suggested a method to map the simulated soil

moisture for multiple models into standard normal de-

viates, which essentially expresses variations in each

model’s soil moisture relative to its climatology. An

alternative of the KGYDM approach, used by the U.S.

Climate Prediction Center (CPC) as well as the Uni-

versity of Washington West-Wide Seasonal Hydrologic

Forecast System, is to express soil moisture as percen-

tiles relative to the model’s climatology. This results in

soil moisture being mapped to a variable that ranges

from zero to one and by construct is uniformly distrib-

uted for each model. This method is also used by the

Climate Prediction Center (2005), which defines drought

as occurring when the soil moisture percentile is below

20%. To avoid seasonal biases, we applied the method

on a monthly basis; that is, for each grid cell and each

month, the percentiles were estimated from the clima-

tology of that month. Using this approach, we trans-

formed the 84 yr (1920–2003) of retrospectively simu-

lated monthly soil moisture into percentiles using the

Weibull plotting position algorithm. In the following

analysis, we followed the CPC approach of designating

soil moisture percentiles below 20% as drought.

Two simple ensemble methods were used to combine

soil moisture values from different models: (i) averaging

all models’ simulated soil moisture percentiles (referred

to as ensemble 0) and (ii) normalizing total column soil

moisture from the individual models, then averaging

over models, and finally calculating the percentiles

corresponding to the averaged values (referred to as

ensemble 1). In ensemble 1, the normalizing method can

be described as Ai,nor 5 (Ai 2 Ai,min)/(Ai,max 2 Ai,max),

where Ai,nor is the normalized value of the monthly soil

moisture Ai for grid cell i, and Ai,min and Ai,max are the

minimum and maximum values of Ai during the period

of 1920–2003, respectively. This results in normalized

values (Ai,nor) ranging from zero to one. One important

difference between these two ensemble methods is that

ensemble 1 is expressed as a percentile of its own his-

torical distribution (in similar fashion to the individual

models), while ensemble 0 is simply the average of the

model percentiles. We expect that, in general, the sim-

ple average of ensemble 0 will de-emphasize extremes

in comparison to ensemble 1 because of the rarity of all

models’ percentiles reaching extreme values at the same

time. However, in this study, the two ensemble methods

tended to yield very similar results. All analyses that

follow were performed on all eight time series of per-

centiles (the six models and the two ensembles).

To investigate the similarities and differences among

the models in terms of their representation of droughts,

we applied to following analysis to each model: (i)

comparisons of the differences of model-simulated soil

moisture percentiles; (ii) the SAD relationships; (iii)

correlation coefficients among soil moisture (percen-

tiles) simulated by the different models; (iv) the re-

sponse time of soil moisture (e-folding decay time of soil

moisture autocorrelation) simulated by each model;

and (v) the correlation coefficients among precipitation,

evapotranspiration, soil moisture, and runoff. Aside

from the SAD relationships, each of these quantities was

computed on a gridcell basis; hence results are presented

as maps.

4. Analysis of retrospective multimodel simulations

a. Drought spatial extent and temporal variations

During last century, droughts of the 1930s and 1950s

were the most notable for their duration and geographic

extent (Schubert et al. 2004b; Cook et al. 1999). As an

FIG. 1. Monthly time series of simulated total column soil moisture at one grid cell (40.258N,

112.258W) from the six models in the study: CLM3.5, VIC, catchment, Noah, CLM–VIC, and

Sac.
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example, Fig. 2 shows the spatial distribution of soil

moisture percentiles derived from the six models and

ensemble 0 averaged over the period 1932–38 and at the

height of the 1930s drought (July 1934) from ensemble

0. All models show an extreme areal extent of drought

during this period. At this point, the drought extended

across the Great Plains, and also included several west-

ern states (Idaho, Wyoming, Nevada, Utah, and eastern

Oregon). Among all models, the Noah model has the

largest drought spatial coverage, and severe drought

(percentiles below 10%) was prevalent over the entire

states of Minnesota and Nevada, whereas only parts

of these two states experienced drought in the other

models. On the other hand, the spatial distribution of

drought from the catchment model was the smallest,

and was concentrated in the central and western Great

Plains, with only scattered patches in the western and

eastern states. The map from the ensemble 0 method

displays drought extents that were intermediate be-

tween those of catchment and Noah. The map for July

1934 from ensemble 0 shows that the drought was prev-

alent across entire United States except some of coastline

regions, and most of drought was extreme severe with the

percentile under 10%.

Figure 3 shows the same maps as in Fig. 2 but for the

period of 1950–57 and November 1952 from ensemble 0.

The drought’s areal extent was much smaller compared

with the map in Fig. 2 and was concentrated in the New

Mexico, southern Texas, and scattered patches in the

central and northern states. With respect to severity, the

FIG. 2. Spatial distributions of soil moisture percentiles averaged during the period 1932–38

from individual model and ensemble 0, and in July 1934 from ensemble 0. The percentiles

were calculated based on the retrospective simulations from 1920 to 2003. The four boxes in

the VIC map delineate the four focus regions whose time series are examined in section 4a.
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severe drought coverage simulated by VIC, CLM3.5,

Noah, and CLM–VIC were prominent compared to the

rest of the models. Sac and catchment models show the

smallest drought spatial coverage and drought severities

among all model simulations. The last panel of the Fig. 3

shows that the drought for November 1952 from en-

semble 0 spanned across entire United States except

some coastline regions. This is consistent with conclu-

sions of others (e.g., Cook et al. 1999).

To demonstrate the temporal evolution of agricul-

tural drought from the different models’ simulations, we

examined time series of area-averaged soil moisture

percentiles from four 58 3 58 regions in the west, north-

central, south-central, and southeastern United States

(see Fig. 2) as well as the entire conterminous United

States. Figure 4 shows the 12-month moving average

soil moisture percentiles for the four regions as well as

the entire United States for the period 1920–2003 for all

models and the two ensemble methods. The 1930s

drought is prominent in the west and north-central time

series. The 1950s drought is similarly prominent in the

south-central and southeast time series. The figure also

shows the presence of severe droughts in the west and

southeast in the early 2000s.

From the figure, we also can see that both multimodel

methods tend to yield results that are intermediate in

the range of individual model results (this is guaranteed

for ensemble 0 by construct, since it is the average of the

individual models). Variations of soil moisture from

ensemble 1 are slightly larger than those from ensemble

0, as expected from the fact that ensemble 0 is not

reexpressed as a percentile of its own historical distri-

bution. For the most part, differences between the

two ensemble methods are small. Notable exceptions

FIG. 3. Same as Fig. 2, but for the period of 1950–57 and November 1952.
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include differences of approximately 5% for the 1930s

drought in the west and north-central regions, and other

extreme dry and wet periods in the west during the

1950s, 1980s, 1990s, and early 2000s. During these pe-

riods, ensemble 1 falls near an extreme end of the range.

Figure 5 shows the soil moisture percentiles for 1930s.

The most severe portion of the 1930s drought occurred

in mid-1934, with average percentiles below 10% in all

four regions, making it clear why this event is often

referred to as the ‘‘drought of the century’’ (Schubert

et al. 2004b). Among the six models’ simulated soil

moisture percentiles, simulations from the CLM3.5 model

have the least variation, and the catchment model has

largest variation across most of the regions. This may be

because of the relatively high water-holding capacity

of CLM3.5 relative to the catchment model (Fig. 6); a

shallow water-holding capacity is more easily affected

by atmospheric conditions (this will be addressed in

more detail in section 4d). Results for the 1950s drought

(figure not shown) were similar with respect to among-

model variations.

b. Severity–area–duration analysis

SAD analysis, as described in Andreadis et al. (2005),

provides a means of showing relationships among the

maximum area covered by drought for a given duration

and (space–time) average severity (here the average of

the total column soil moisture percentile). Based on a

simple clustering algorithm that incorporates spatial

contiguity, the SAD analysis first groups the monthly

soil moisture time series into a number of clusters and

then merges those clusters under minimum area con-

straints. Andreadis et al. (2005) describe the search al-

gorithms and protocols used to define contiguous drought

areas. Using the SAD approach, the most severe events

for each duration and area covered from 1920 to 2003

were identified. The SAD curves are essentially enve-

lopes, and it is possible as a subsequent step to deter-

mine which drought events contribute to the various

points on the envelope curves. Figure 7 shows the SAD

envelope curves for the different LSMs and the two

ensemble methods. For all models, the 1930s drought

covers a substantial portion of the SAD space, even

though the durations at which these maximal severities

occurred differed among the models. In contrast to the

other models, CLM3.5’s simulation of the 1930s drought

was the most dominant event in all durations, with the

early 2000s drought appearing only for relatively small

areas. It also can be seen that the 1930s drought in

CLM3.5 lasted the longest. This may well be explained

by the deep total soil column in CLM3.5, which results

in longer soil moisture persistence as compared with

the other models (the issue of soil moisture persistence

is addressed further in section 4d). In general (except

for ensemble 0), all models showed that the drought of

the late 1990s to early 2000s was the most severe for

small areas (smaller than 2 3 106 km2). In most of the

models, the 1950s drought was second in prominence to

the drought of the 1930s, and most models (except for

CLM3.5 and Noah) showed this drought appearing at

the longer durations (12 months or longer) and areas

expanded up to 7 3 1026 km2. The literature also in-

dicates the occurrence of a drought in the mid-1970s

(e.g., Wilhite 1983), but from our simulations only three

models (Noah, Sac, and catchment models) showed that

this drought event contributed to the SAD envelope

curves for small areas.

FIG. 4. Monthly soil moisture percentiles averaged over the

areas of four boxes shown in Fig. 2 (VIC) and over the whole

contiguous United States. The curves shown in the figure are 12-

month moving averages. For each box, we have plotted the en-

velope of the percentiles from all models (shown in gray shadow)

and the percentiles from the two ensemble methods (shown in

solid and dash lines). The lines of 20th percentile are also plotted

on each panel.
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It should be noted that SAD technique considers the

area of the drought, which differs from model to model,

and thus the SAD curves differ, even though the se-

lected time series from points in the centers of the

droughts may appear similar among the models (Fig. 4).

Differences among the individual models are especially

apparent when considering the range of drought se-

verity for a given area (or the range of area for a given

severity). In Fig. 7, CLM3.5’s SAD curves occupy the

narrowest range of severity for a given area, while those

from the catchment model occupy the widest range. As

we might expect, the two multimodel ensemble plots

show an intermediate range of severity for a given area.

If we interpret the range of severity for a given area as

an indication of the sensitivity of simulated drought to

climatic conditions and antecedent soil moisture, then

the multimodel ensembles tend to have an intermediate

sensitivity compared to the individual models. Whether

this is a more accurate representation of the areal ex-

tents of these droughts is not clear, given the absence of

an observational basis for comparison.

c. Correlation coefficients between models’ simulated
soil moisture

KGYDM used the cross-correlation coefficients (r)

among pairs of models as a means of characterizing

similarities in their dynamic variability. We used the

same approach, where r for each model pair was based

on the time series of monthly soil moisture percentiles

for the two models. Larger r values indicate more

agreement between the pair of models. Table 2 shows r

values, computed from the entire 84-yr period and av-

eraged over all grid cells, for each of the 15 pairs of

models (the values in parentheses are for the two pe-

riods of 1932–38 and 1950–57, respectively). All r values

were larger than 0.6; the smallest value (0.67) was from

the CLM3.5 and catchment pair, and the largest value

was from the Noah and Sac pair. During the two ex-

treme drought periods (i.e., 1930s and 1950s), the r

values are also comparable to values calculated from

the whole 84-yr period. The values in Table 2 suggest

that the models generally agreed with each other in

terms of the simulated soil moisture, although the sim-

ilarities of some pairs of models are more pronounced

than others. We also examined the spatial distribution

of model agreement. For each grid cell, we averaged the

r values of all 15 model pairs. Figure 8a) shows the

spatial distribution of the averaged r for the periods of

1920–2003. The Great Plains clearly divides the r map

into two parts, with the r values in the western part

smaller than in the eastern part. The r values in most of

the west are smaller than 0.8 except for some larger

values appearing along the northwest coast, while in

most of the east the r values are larger than 0.8, and in

particular are larger than 0.9 over parts of Indiana,

Missouri, and Illinois. Over the Great Plains, the r values

mostly are the range 0.7;0.8. Figure 8b, which shows

spatial variations in the standard derivation of annual

precipitation during the period 1920–2003, shows that

precipitation variations over the eastern United States

tend to be larger than over the western United States

(note that, because annual average precipitation is larger

over the eastern United States than the western United

States, the coefficient of variation of annual precipita-

tion actually decreases from west to east). There is a

close correspondence between r and the variance of

annual precipitation (e.g., Fig. 4 of Koster et al. 2000b).

In areas for which the precipitation varies greatly from

FIG. 5. Monthly soil moisture percentiles averaged over the

areas of four boxes shown in Fig. 2 (VIC) and over the whole

contiguous United States. For each box, we have plotted the per-

centiles from all models (shown in gray shadow) and the percen-

tiles from the two ensemble methods (shown in solid and dash

lines). The lines of 20th percentile are also plotted on each panel.
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year to year, the interannual variations of soil moisture

should also be large, and large variations are easier for

all models to capture than are small variations. The

averaged r map for the periods 1932–38 and 1952–57 are

similar as Fig. 8 (figures not shown).

d. Response time of soil moisture

To investigate the persistence of soil moisture, we

calculated the response times implicit in the soil mois-

ture time series. Response time is defined here as the lag

time at which the autocorrelation of the time series of

soil moisture has decayed to 1 e21 (Delworth and

Manabe 1988). Figure 8 shows the spatial distribution of

soil moisture response times computed from the per-

centile time series for the period 1920–2003. The models

show a wide disparity in response times, particularly in

the western United States, with the catchment and Sac

models showing low values (less than 1 yr) and the other

models showing response times as high as several years.

Previous work has shown that soil moisture memory

is related to soil depth and soil characteristics (e.g.,

porosity and texture), with deeper soil moisture pro-

ducing longer memory than shallower layers (Wang

et al. 2006). Indeed, the differences seen in Fig. 9 relate

directly to differences in the models’ total water-holding

capacities—how deep into the soil the precipitation

signal is allowed to penetrate. The figure clearly shows

that the models with the largest soil water-holding ca-

pacities (i.e., Fig. 6) also have the largest response times

(i.e., Fig. 9). In addition, Fig. 9 shows that soil moisture

simulated from most models except catchment and Sac

is more persistent in the interior of the United States

than on the East and West Coasts, which, to some extent,

is consistent with one of Karl’s (1983) early findings—

‘‘spells of abnormally wet or dry weather have more per-

sistence in the Rocky Mountain and High Plains states

than states farther east or west.’’

The above analyses are based on temporal or spatial

averages, which tend to reduce the variations of the

variables. To explore the relationship between precipi-

tation and soil moisture in finer spatial detail, we chose

two points (indicated on Fig. 9) from the simulations of

CLM3.5 and Sac that represent two extreme cases of

arid and wet conditions. The top two panels of Fig. 10

illustrate this with a comparison of Sac and CLM3.5

relative soil moisture (i.e., ratio of total column soil

FIG. 6. Map of soil water–holding capacity from the models used in this study. Note that the

water-holding capacity of the catchment model includes only water in excess of the wilting

point.
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moisture to soil-holding capacity) for an extreme case, a

western point for which the time series of annual rainfall

shows, on average, a long-term dip between 1930 and

1985. The CLM3.5 clearly transforms this multidecadal-

scale variability in the precipitation forcing into a cor-

responding multidecadal-scale variability in total soil

moisture. Furthermore, the dip in soil moisture for

CLM3.5 during the middle of the century is more pro-

nounced than that of precipitation because the soil

moisture variable filters out higher frequencies of rainfall

variability (Delworth and Manabe 1988). For CLM3.5, it

is this multidecadal-scale dip—this manifestation of long-

term variability in the model forcing—that is primarily

responsible for the high response time (e-folding time)

seen in Fig. 9 at this point.

Now consider the Sac model, for which the total

water-holding capacity is much smaller (about 30 cm at

this point as opposed to almost 144 cm for CLM). The

FIG. 7. The maximum severities of drought events at the different durations (3, 6, 12, 24, 48,

and 72 months) derived from soil moisture simulated by the different models and the two

ensembles. Different markers correspond to different durations, and different colors corre-

spond to different specific drought events.
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smaller water-holding capacity means that the midcen-

tury dip in rainfall cannot affect the soil moisture as much;

the soil moisture is already close to zero prior to the

dip in rainfall, and it cannot get much drier than that

once the lower rainfalls begin. The soil moisture re-

covers quickly once the larger rains return, and overall,

the year-to-year soil moisture variations appear to be of

the same order as the multidecadal-scale variations.

These properties point to a much smaller response time.

Why, then, does a model like CLM, with its large

water-holding capacity, show low response times in the

eastern United States? An answer is suggested by the

bottom two panels in Fig. 10, which show the same type

of comparison for an eastern point (soil-holding ca-

pacity: about 49 cm for the Sac model and 148 cm for

CLM). Here, conditions are generally wet enough that,

even in relatively dry years, the soil moisture remains

near the high end, as defined by saturation (or possibly

field capacity). (Though total soil moisture does de-

crease seasonally with summer evaporation, it appar-

ently recovers easily with winter precipitation.) For ei-

ther model, the large, decadal-scale positive rainfall

anomaly in the 1940s cannot manifest itself in the total

soil moisture because the soil is already about as wet as it

can be—again, even for relatively dry years. As a result,

the soil moisture response time at this eastern point does

not reflect the long-term variability of the forcing.

e. Relationship between hydrological variables

To investigate the possible reasons for the differences

among the models’ simulated soil moisture, we calcu-

lated the area-averaged correlation coefficients be-

tween the precipitation forcing and the models’ simu-

lated hydrological variables (soil moisture, evapotrans-

piration, and runoff), and examined the water balance

for the period 1920–2003. For each month, the water

balance equation at the land surface can be expressed as

DSM 5 P 2 E 2 R 2 DSWE, where DSM is the net

change in soil water storage over the month and P, E, R,

and DSWE are the total precipitation, evapotranspira-

tion, runoff, and the changes of snow water equivalent

if snow is present for that month, respectively. In this

work, P is the same for all models, and therefore the

changes in water storage are determined primarily by E,

R, and DSWE. From the long-term point of view, DSWE

would be turned into E, R, or SM and DSM does not

change much, therefore DSWE and DSM can be con-

sidered negligible. The spatially averaged correlation

coefficients among P, SM, E, and R are shown in Table

3. In general, runoff was much more highly correlated

with P than with the other variables except for CLM3.5,

probably because of its large water-holding capacity in

the deeper soil layers, which are less affected by atmo-

spheric conditions, as mentioned above. The positive

sign of the correlation coefficients usually reflects a

feedback relationship between the two quantities. For

example, catchment and VIC showed the highest cor-

relation between P and R among the models, implying

that R was more efficiently responsive to P than for the

other models. The relationship between soil moisture

and E largely depends on transpiration removing soil

water from the root zone layer and bare soil evapora-

tion. The root distribution within soil is one of the fac-

tors that determine transpiration. The catchment and

Sac models show higher correlation coefficients be-

tween E and soil moisture than do the other models. In

the case of catchment, the reason may be that the soil

water removal by transpiration is more prominent than

in other models. But the Sac model does not explicitly

include a vegetation layer. The Sac model’s evaporation

is a bulk computation that results in moisture being

extracted directly from subsurface storage. From Fig. 2

of Mitchell et al. (2004), Sac shows larger evaporation

than VIC and Noah in the North American Data As-

similation Systems (NLDAS) simulations. Given that

we employ the NLDAS soil parameters for the Sac and

Noah models in this study as well, the high correlation

observed between the Sac model’s E and soil moisture

may be due to the choice of soil parameters, expressed

through Sac’s soil evaporation.

Also shown in Table 3 are the runoff coefficients

computed as the ratio of simulated total runoff to total

precipitation over the United States for each model.

For reference purposes, for the period 1950–2000, the

TABLE 2. Correlation coefficients among models’ simulated soil moisture percentiles. Values in parentheses are for the periods 1932–38

and 1950–57, respectively.

Model VIC CLM3.5 Noah Sac Catchment CLM–VIC

VIC 1

CLM3.5 0.71 (0.69, 0.71) 1

Noah 0.75 (0.74, 0.76) 0.83 (0.82, 0.83) 1

Sac 0.81 (0.78, 0.79) 0.76 (0.75, 0.75) 0.84 (0.85, 0.84) 1

Catchment 0.79 (0.77, 0.78) 0.67 (0.65, 0.67) 0.74 (0.75, 0.76) 0.87 (0.86, 0.87) 1

CLM–VIC 0.75 (0.73, 0.75) 0.79 (0.81, 0.83) 0.76 (0.78, 0.78) 0.76 (0.77, 0.75) 0.71 (0.70, 0.71) 1
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inferred runoff ratio is about 0.26, based on VIC simu-

lations in which model runoff was calibrated to obser-

vations (Maurer et al. 2002). Especially for Noah and

catchment (and to a lesser extent, Sac), the relatively

low simulated runoff ratios may also suggest that runoff

production is somewhat less dynamic than in the other

models. On the other hand, comparison of the simulated

runoff ratios with precipitation–runoff correlations does

not support such a hypothesis in general.

5. Application to real-time hydrological nowcast

The techniques outlined have been implemented into

a real-time drought nowcast system over the continen-

tal United States, as an extension to the University of

Washington’s Surface Water Monitor (Wood 2008). This

system originally was based around the VIC model alone,

we report here an expansion that includes three addi-

tional models: Noah, Sacramento/Snow-17, and CLM3.5.

The system produces daily ‘‘nowcasts’’ of soil mois-

ture, consisting of a simulation spanning a time window

from an initial model state 1–2 months prior to the

current day, up through the day before the current day

(the prior 1–2 months are rerun each day to allow in-

corporation within the model forcing data of gridded

station data that incorporate stations not available in

real time but that become available later). Meteoro-

logical forcings during this window are computed via the

index station method described in Tang et al. (2009). All

models use the same set of meteorological forcings as

input. Sac requires potential evapotranspiration (PET)

as an additional input, which is taken from the corre-

sponding Noah simulation as in Mitchell et al. (2004).

Soil and vegetation parameters for all models are the

same as in the retrospective simulations. Simulated to-

tal column soil moisture from each model is converted

into percentiles relative to that model’s retrospective

monthly climatology. Although there is a minor issue in

comparing current daily soil moisture to the historical

distribution of monthly average values for the current

month, and alternative approaches could be used, the

inherent error is small, and we prefer not to effectively

average conditions over a window leading up to the

current day (which would remove the problem) in the

interest of obtaining an estimate of the current days’

conditions. We use an ensemble average that is similar

to ensemble 1 described above, with the exception that

the individual models’ percentiles (rather than nor-

malized soil moistures) are used to construct the aver-

age, which is then converted into a percentile of its

historical distribution.

Figure 11 shows soil moisture percentiles for the four

individual models, and the multimodel averages for 1

November 2007, 1 December 2007, and 1 January 2008.

Evolution of a well-publicized drought over the south-

eastern United States, centered on Georgia, is of par-

ticular interest. Over this region, VIC shows a notably

less extensive, and less persistent, drought than the

other models, and Noah is more extensive and persis-

tent than the other models. CLM3.5 and Sac are inter-

mediate. It is interesting that VIC and Sac, and to a

lesser extent CLM3.5, show the drought essentially

gone over Georgia by 1 January, whereas Noah shows

it persisting. The multimodel mean also shows the

drought gone by 1 January. Similarly, while all models

agree in general that dry conditions exist in California

and Nevada during at least part of this period, the flu-

idity with which these conditions change varies across

the set of models. The model having the most persistent

soil moisture in this case is CLM 3.5, whose dry areas

appear virtually static for the entire period. At the other

extreme, Sac’s dry areas along the West Coast bear little

FIG. 8. (a) Averaged correlation coefficients between soil

moisture percentiles from all pairs of model simulation over the

period of 1920–2003 and (b) the std variation of annual precipi-

tation for the period of 1920–2003.
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resemblance to each other from one month to the next.

On the other hand, the individual models agree more

strongly with respect to wetter than normal conditions

in the Great Plains. It is easier to see the evolution of

conditions in these regions on the multimodel map be-

cause of the removal of ‘‘noise’’ from the individual

models. In the context of real-time monitoring, such

behavior can be beneficial, as it reduces the sensitivity

of the ensemble to uncertainty in the real-time meteo-

rological forcings.

As noted above in our discussion of the retrospective

simulations, the soil moisture response times vary con-

siderably, not only among models, but also geographi-

cally (Fig. 9). In the case of the drought in the Southeast,

model response times are more or less similar, while in

the Great Plains and on the West Coast model response

times exhibit a wider range. The stronger agreement

among models with respect to wet conditions in the

Great Plains may stem from the fact that precipitation

events can recharge a soil column within a matter of

days, bringing all models up to more or less saturated

conditions, regardless of differences among model pa-

rameterizations, while dry periods, which require drain-

age and evapotranspiration to empty the soil column,

bring out the differences among models (even in the case

of the Southeast drought, where soil-holding capacities

are similar, but other parameters, such as evapotranspi-

ration, may differ). Thus, we may expect greater uncer-

tainty from the multimodel ensemble under dry condi-

tions (or dry regions such as the western United States,

where year-to-year water storage is an important issue)

than under wet conditions.

FIG. 9. Spatial distribution of the response time (months; e-folding decay time of autocor-

relation) of model-simulated soil moisture.
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FIG. 10. (a) Time series of monthly relative soil wetness for CLM3.5 (bold curves) and Sac

(light curves) for a point in the southwestern United States. The relative soil wetness was from

the ratio of total column soil moisture to soil water-holding capacity at the specific point. (b)

Time series of annual precipitation at this point. (c), (d) Same (a), but for a point in the

eastern United States.

TABLE 3. Spatially averaged correlation coefficients between precipitation (prec) and model-simulated variables [evapotranspiration

(evap), runoff, and soil moisture (soilm)] and runoff ratios computed from model-simulated runoff.

Model Prec and evap Prec and soilm Prec and runoff Evap and soilm Runoff and soilm Runoff ratio

VIC 0.44 0.38 0.62 0.46 0.64 0.25

CLM3.5 0.36 0.26 0.31 0.22 0.41 0.17

Noah 0.49 0.28 0.42 0.53 0.45 0.088

Sac 0.39 0.38 0.51 0.54 0.62 0.16

Catchment 0.39 0.38 0.58 0.58 0.48 0.10

CLM–VIC 0.51 0.32 0.51 0.26 0.65 0.31

Average 0.43 0.33 0.49 0.43 0.54 0.18
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6. Discussion

As described in section 2, large disparities exist in the

parameterization processes incorporated in the various

LSMs, and the differences shown in the previous sec-

tions are complicated and not easy to explain. Model

intercomparison projects such as PILPS have investi-

gated many products of model simulations in various

ways, and the results still showed large disparities

among different models. Even so, all models’ results are

plausible in their reproduction of the major agricultural

drought events over the conterminous United States

during the period 1920–2003.

The differences among model behaviors can be at-

tributed to a number of causes. For the identification

of drought as studied here, differences in soil water-

holding capacities among the models are clearly one of

the major reasons. On the other hand, model parame-

ters (e.g., those model parameters related to soil and

vegetation) are a major cause of intermodel differences,

and in fact the same model with different parameters

may produce quite different results. Exploration of the

parameter spaces for each model was not feasible, so

instead we made the pragmatic decision to use fixed

parameters for the different models, taken where pos-

sible from the North American Land Data Assimilation

FIG. 11. Soil moisture percentiles for the models VIC, Noah, SAC, CLM3.5 (CLM), and the multimodel average, for the dates

1 Nov 2007, 1 Dec 2007, and 1 Jan 2008.
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(NLDAS; Mitchell et al. 2004). Even though most

vegetation parameters are derived from satellite data,

and soil parameters are derived from high-resolution

soil texture data, some uncertainties are inevitable.

Another limitation of this study is that we did not con-

sider land use change during the last century. Some

studies have shown that land cover change can lead to

surface cooling and reduce the diurnal ranges of surface

temperature (e.g., Bonan 1997; Matheussen et al. 2000;

Oleson et al. 2004)—although it should be noted that

the historic forcing data (although not vegetation char-

acteristics) would have reflected such changes.

In all of our analyses, the multimodel ensembles ten-

ded to yield results that were intermediate within the

range of the individual models. This was more true for

ensemble 0 (by construct) than for ensemble 1. Since

ensemble 1 was expressed as a percentile of its own

historical distribution in the same manner as the indi-

vidual models, it is arguably a more appropriate method

to use when comparing with the individual models.

However, this method is more sensitive to the coher-

ency of the individual models than ensemble 0. For

example, during events for which the majority of the

models yield low percentiles (e.g., the 1930s drought in

Fig. 4), ensemble 1 will yield a percentile lower than the

average of the individual model percentiles, because of

the rarity of agreement among all the models within

their historical distribution. Without more comprehen-

sive soil moisture observations, the questions of whether

the range of model results is a good measure of model

uncertainty and whether ensemble 1’s sensitivity to model

agreement is a more skillful predictor of actual soil

moisture conditions than the method of ensemble 0 are

still open. Nevertheless, in this study, differences be-

tween the two ensemble methods tended to be small.

7. Summary and conclusions

We used six LSMs to retrospectively simulate soil

moisture for the period 1915–2003 over the contermi-

nous United States. All model simulations were per-

formed at 0.58 resolution. The atmospheric forcing data

were interpolated from station data, and vegetation and

soil parameters were from the standard packages of

each model. Simulated monthly soil moisture was con-

verted to percentiles via empirical probability distribu-

tion functions for each model. The percentiles were

used to represent drought events. Differences among

model-simulated soil moisture were evaluated by com-

parisons of between-model correlation coefficients, the

response time of soil moisture, and severity–area–duration

analysis. Two ensemble methods were developed to

combine the six models’ simulations. To further evaluate

the relationships among hydrological components from

model simulations and precipitation, we calculated

the correlation coefficients between precipitation, soil

moisture, evapotranspiration, and runoff.

Our major conclusions are the following:

1) All six models and the two ensembles all identified

the spatial patterns of major drought events during

the period 1920–2003 over the conterminous United

States. The spatial patterns of severities and dura-

tion for severe drought events from all models were

plausible, albeit disparities exist between different

models’ simulations. For example, the 1930s drought

event has the longest duration and most severities in

CLM3.5 compared to other drought events.

2) The models’ simulations were more in agreement

with each other over the eastern than over the

western United States, probably because the models

can agree more easily when forced with larger in-

terannual rainfall amounts. Note here that Sac and

catchment have the lowest water-holding capacities.

3) The persistence of soil moisture from different

models showed longer retention times of soil mois-

ture over the western than the eastern United

States. The model with the deepest soil column

(i.e., CLM3.5) generally had the longest soil mois-

ture memory, while the Sac and catchment models

had the shortest soil moisture memory.

4) As a preliminary test, the techniques of multimodel

ensemble to retrospectively reconstruct the drought

have been implemented into a real-time drought

nowcast system over the continental United States,

as an extension to the University of Washington’s

Surface Water Monitor.

5) Given the lack of the long-term soil moisture data,

we speculate that the products of the multimodel

simulations provide a better way to study the long-

term hydrological variations of the land surface,

especially in studies of drought, than using a single

model. Using multiple models in a nowcast system

could contribute to the monitoring of the current

state of soil water. A useful application of the

methodology employed in this work could be ap-

plied to evaluate the susceptibility of the United

States to drought, and for estimation of drought

recovery probabilities in the future.
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