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[1] A new data mining technique called MineTool-TS is introduced which captures the
time-lapse information in multivariate time series data through extraction of global
features and metafeatures. This technique is developed into a JAVA-based data mining
software which automates all the steps in the model building to make it more accessible to
nonexperts. As its first application in space sciences, MineTool-TS is used to develop
a model for automated detection of flux transfer events (FTEs) at Earth’s magnetopause in
the Cluster spacecraft time series data. The model classifies a given time series into one of
three categories of non-FTE, magnetosheath FTE, or magnetospheric FTE. One
important feature of MineTool-TS is the ability to explore the importance of each variable
or combination of variables as indicators of FTEs. FTEs have traditionally been identified
on the basis of their magnetic field signatures, but here we find that some plasma
variables can also be effective indicators of FTEs. For example, the perpendicular ion
temperature yields a model accuracy of �93%, while a model based solely on the normal
magnetic field BN yields an accuracy of �95%. This opens up the possibility of searching
for more unusual FTEs that may, for example, have no clear BN signature and create
a more comprehensive and less biased list of FTEs for statistical studies. We also find that
models using GSM coordinates yield comparable accuracy to those using boundary
normal coordinates. This is useful since there are regions where magnetopause models are
not accurate. Another surprising result is the finding that the algorithm can largely detect
FTEs, and even distinguish between magnetosheath and magnetospheric FTEs, solely
on the basis of models built from single parameters, something that experts may not do so
straightforwardly on the basis of short time series intervals. The most accurate models use
a combination of plasma and magnetic field variables and achieve a very high accuracy
of prediction of �99%. We explain the high detection accuracies both in terms of the
existence of clear physical signatures of FTEs (for the majority of cases) and in terms of
the capability of the data mining technique to explore the data set in a much more
thorough fashion than expert human eyes. A list of 1222 FTEs from Cluster data during
years 2001–2003 is provided as auxiliary material.
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1. Introduction

[2] Many data analysis problems in space sciences stand
to benefit from the application of data mining techniques.
One such class of problems is automated detection of
events. Examples of events include boundary (e.g., bow
shock, current sheet) crossings and flux transfer events

(FTEs), among others. The traditional approach for search
algorithms in space sciences has been based on rote meth-
ods where one assumes very specific signatures and/or
threshold conditions and writes code to find matching
conditions in the data. For example, Khurana and Schwarzl
[2005] used the reversals in the radial component of the
magnetic field to identify current sheet crossings. Kawano
and Russell [1996] used isolated bipolar signatures satisfy-
ing a predetermined set of conditions including its duration
and the peak-to-peak amplitude of the bipolar field compo-
nent BN to search for FTEs in ISEE 1 data. Such schemes
are most effective in cases where the events of interest have
simple and well established signatures. Rote methods lack
computational ‘‘intelligence’’ as they are bound by the
specific criteria hardwired by the user. In contrast, data
mining algorithms autonomously determine criteria and
conditions to uniquely identify an event.
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[3] Here we introduce a new multivariate time series
analysis technique called MineTool-TS and as its first
application, we apply it to the automated detection of flux
transfer events in the Cluster data. Besides offering high
accuracy of the resulting predictive models, a key advantage
of MineTool-like approach is that it makes data mining
more accessible to nonexperts, by offering a self-contained
step by step procedure for model building.
[4] Flux transfer events (FTEs) are thought to be the

result of patchy, intermittent reconnection at the Earth’s
magnetopause, i.e., the boundary that separates the solar
wind and shocked magnetosheath plasma from the magne-
tospheric cavity [Russell and Elphic, 1979; Berchem and
Russell, 1984]. Although several models have been invoked
to account for their formation [e.g., Lee and Fu, 1985;
Southwood et al., 1986; Sonnerup, 1987; Scholer, 1988; Pu
et al., 1990; Raeder, 2006; Karimabadi et al., 2005, 2007a],
the presence of a bipolar signature in the normal component
of the magnetic field BN (relative to the ‘‘locally planar’’
magnetopause boundary) is the common signature that is
typically used for their identification. However, there is also
evidence of FTEs without the characteristic bipolar pertur-
bation [e.g., Le et al., 2008]. This indicates the need to be
able to find FTEs on the basis of other signatures than just
the bipolar signature in BN.
[5] Here we use MineTool-TS and a labeled list of FTEs

to develop a search algorithm for FTEs. For a given time
series, the algorithm produces one of three outputs, non-
FTE, magnetosheath FTE, and magnetospheric FTE. The
distinction between the two ‘‘types’’ of FTEs is based on
which side of the magnetopause the spacecraft encounters
the FTE and does not refer to a different physical process.
The observed signatures do show differences between the
two types of FTEs [e.g., Elphic, 1995; Le et al., 1999] and
hence we will keep the distinction of the two types here. We
emphasize that the three output detection is a much more
challenging problem in data mining than the two output
case.
[6] Our goal was threefold. (1) Develop an automated

scheme for detection of FTEs. (2) Experiment with different
combinations of variables, including models based on only
one variable (e.g., Vy or BL, etc.) to determine the relative
role of each variable for identification of FTEs. This study
addresses such questions as the following: Can FTEs be
detected in the data on the basis of their plasma signature
alone, can other components of magnetic field besides BN

be good indicators of FTEs, and can FTEs be detected
without using boundary normal coordinates? (3) Run the
algorithm on an existing FTE list to check for consistency
and accuracy of the list.
[7] The results show many surprises regarding the influ-

ence of different magnetic and plasma variables on the
detection of FTEs. For example, we found that the algo-
rithm is able to distinguish between magnetospheric and
magnetosheath FTEs solely on the basis of the magnetic
field data. The paper is structured as follows. Section 2
describes the MineTool-TS algorithm. For readers more
interested in how to use the algorithm, they can refer to
Appendix A where it is shown that by virtue of automating
the modeling steps, no knowledge of the algorithms is
required to use this tool. In fact using the default settings,
running the models is as simple as opening a file and

clicking a button. The workings of MineTool-TS, behind
the scenes and masked from the user, are discussed in
Appendix B. Section 3 describes the application of Mine-
Tool-TS to detection of FTEs in the Cluster data. Section 4
compares the model predictions with current understanding
of FTEs. Summary and conclusion are presented in section 5.

2. MineTool-TS Algorithm

2.1. Background

[8] In a static data, each data point is an independent
observation. An example is the position of magnetopause as
a function of solar wind conditions. In contrast, in a time
series the neighboring points define a pattern and one is
often interested in an automated fashion to detect such
patterns in the data.
[9] Time series analysis has become one of the most

important branches of mathematical statistics and a variety
of techniques have been developed. The techniques range
from a single time series forecasting such as the ARIMA
method [Mills, 1990] to multivariate time series analysis.
The latter, which is the focus of the present work, is used
when one is interested in understanding and modeling the
interactions among a group of time series variables. Just like
in any other classification problem, we are given examples
of labeled data in order to build a predictive model.
Historically, Hidden Markov Models (HMMs), recurrent
Artificial Neural Networks (recurrent ANNs) and Dynamic
Time Warping (DTW) have been used to build predictive
models of multivariate time series data for classification
tasks [Rabiner and Juang, 1986; Meyers and Rabiner,
1981; Rumelhart and McClelland, 1986]. Even though
these techniques are useful for certain tasks, they have
several disadvantages which make them impractical for
large data sets. In case of HMMs, for example, the number
of parameters that needs to be set and examined is very
large. HHMs also make several major assumptions not
readily available in a real-world scientific data set. Recur-
rent ANNs suffer from several of the same problems as
HMMs and require the user to experiment and choose
many parameters and decide on the appropriate network
architecture.

2.2. Our Approach

[10] Recently we developed a new data mining algorithm
for static data called MineTool [Karimabadi et al., 2007]
that automates the modeling process to a simple click of a
button upon selecting a data file. The algorithm is, however,
flexible and does offer the user the capability to modify the
default parameters to experiment with model accuracy.
MineTool could be used for time series data if one could
replace the time series by a static data consisting of
variables that capture its essential and interesting features
(e.g., number of zero crossings, slope, extreme values). One
simple and obvious idea for reduction of time series data is
to replace the time series by its statistical measures such as
the mean, standard deviation, minimum and maximum
values. We have found this approach to be unsatisfactory
and yielding poor accuracy (not shown). Instead we use a
more sophisticated approach to extract features from mul-
tivariate time series data that yields much higher accuracy.
Kadous [2002] used metafeatures in extracting information
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from multivariate time series data, for classification purpo-
ses. In this technique, called TClass, various simple features
of time series data are extracted, and then segmented using
directed segmentation or k-means clustering. This produces
the ‘‘synthetic events’’ data set which is then fed into a
decision tree method [Quinlan, 1993]. Kadous achieved
fairly to very accurate classification results in the domains
of ECG (electrocardiograph) diagnosis (72% accuracy) and
the sign language recognition (98% accuracy). We build on
TClass for the physics domain application by (1) improving
the feature collection and segmentation paradigms, (2) add-
ing more features, and (3) utilizing MineTool [Karimabadi
et al., 2007] as the classification method of choice, which
has the capacity to outperform standard data mining tools
such as decision trees, artificial neural networks [Ripley,
1996] and support vector machines [Cortes and Vapnik,
1995].
[11] We call the extension of MineTool to time series data

MineTool-TS. The main change is in the inclusion of an
extra step that ‘‘flattens’’ the time series data into static data.
By this, we mean that the time lapse information stored in
multiple rows is converted in a single row containing all the
important time varying information. Thus, all the advan-
tages of MineTool, including ease of use, automation of
modeling process, high accuracy, and analytical models, are
preserved. Readers more interested in learning how to use
MineTool-TS rather than the algorithmic issues can skip
the remaining parts of this section and should refer to
Appendix A. Here we describe our procedure for treatment
of time series data:
[12] 1. Metafeature Collection: These are features in the

data that capture the local changes in a time series. Cur-
rently MineTool-TS uses four metafeatures: (1) increasing,
(2) decreasing, (3) plateau, and (4) bipolar. These are
discussed in Appendix A. Others metafeatures can be easily
added.
[13] 2. Global Feature Collection: As the name indicates,

global features describe the global properties of the time
series. Examples include global minimum and maximum,
mean, and number of zero crossings.
[14] 3. Clustering of the Collected Features: The collec-

tion of new metafeature and global feature variables would
potentially increase the number of input variables quite a
bit, as for each of the input variables a total of four
metafeature and four global feature variables is collected
to represent the time varying information. There are several
significant risks to having too many inputs. One is that
potentially useful candidates get overlooked simply because
there are too many variables to evaluate. Another is that if a
systematic routine for evaluating and including variables is
used, it can lead to overfit [Karimabadi et al., 2007].
Finally, many candidate variables are likely to be redundant,
which can cause difficulties for the estimation routines.
MineTool-TS deals with these issues by clustering the
similar novel feature variables into groups or clusters. In
this manner, all the similar features are replaced by one
average (i.e., the cluster center or ‘‘centroid’’) feature. This
decreases the number of variables and increases the predic-
tive power of the feature variables that convert the time
series data into a static set. Unlike the previous efforts that
either use simple directed segmentation or k-means cluster-
ing [Kadous, 2002] which requires a prior specification of

the ‘‘k’’ number of clusters, in MineTool-TS we apply the
Expectation Maximization (EM) clustering [Hartley, 1958;
Dempster et al., 1977; McLachlan and Krishnan, 1997] that
offers an optimal number of clusters. In this way, the
metafeature variables are grouped into an optimal number
of clusters, which assures that no information is lost in
reducing the number of variables (such as in predetermining
that k = 3 where possibly the optimal number of clusters is 5
as given by the EM algorithm). In this way MineTool-TS
performs the no-loss-of-information clustering of the novel
feature variables, for the purposes of having an increased
predictive power and reduced number of input variables into
the intermediate (static) data set.
[15] 4. Intermediate Data Set Creation: This step is used

to ensure that all the information collected using the feature
extraction method is converted into a static data set. This so-
called intermediate data set contains the important time-
varying information from each of the univariate time series
examples. Again, we improve on the previous work in this
area by recording not just presence or absence of a feature
cluster in a univariate time series; rather we create an entry
that effectively describes the specific metafeature. The
global feature entries are then added to the cluster centroids
(i.e., major value group’s average).
[16] By using the above time series preprocessing, we

have created a static intermediate data set that still contains
all the important time-varying information. Standard Mine-
Tool can then be applied to this data set. The procedure for
using MineTool-TS, somewhat similar to a user manual, is
provided in Appendix A. In the following, we focus on the
specific details regarding the selection and preparation of
Cluster data as well as the discussion of the resulting
models.

3. Application to Cluster Data

3.1. Preparation of Cluster Data

[17] There are a number of procedures to prepare the data
before it can be used by the data mining algorithm.
3.1.1. Data Selection
[18] The Cluster mission was launched in 2000. It con-

sists of four identical satellites with an interspacecraft
separation varying over the course of the mission between
100 and several thousand km. It has an elliptic polar orbit
with a perigee of 4 RE, an apogee of 19.6 RE and a period of
�58 h. The plane of the orbit precesses clockwise looking
down from the north, and it extends outside of the magne-
topause from near the end of one year to around summer of
the next year, during which FTEs can be observed. Cluster
magnetic field observations from the Fluxgate Magnetom-
eter (FGM) [Balogh et al., 1997] and ion observations from
the Cluster Ion Spectrometry (CIS) instrument [Rème et al.,
2001] at the spin resolution (4 s) were used for magneto-
pause crossing and FTE identifications.
[19] A stretched Shue et al. [1998] magnetopause model

[Wang et al., 2005] is used for the magnetic field LMN
boundary normal coordinate transformations. This leads to a
total of 14 input variables: Bx, By, Bz, BL, BM, BN, jBj, Np,
Vx, Vy, Vz, jVj,Tk, and T?. Bxyz are magnetic field
components in Geocentric Solar Magnetic (GSM) coordi-
nates; BLMN are those in the LMN coordinates. Vxyz are the
components of the ion velocity in GSM coordinates. Np is
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the total ion density, and Tk and T? are the parallel and
perpendicular (to the magnetic field) ion temperatures. We
also included the additional variables Tp (the total ion
temperature) where Tp = (Tk + 2T?)/3 and T?/Tk in order to
determine their importance as FTE indicators. Note that
MineTool-TS enables us to experiment with different
combinations of these variables and their effects on the
model accuracy.
3.1.2. Time Series Generation
[20] It is important that all time series have the same

temporal span and that all the variables included as input
have the same temporal resolution so that they line up in the
time series. In our case, both the magnetic field and plasma
data have the same resolution. Otherwise, additional data
treatment would be required before data mining can be
performed (e.g., interpolation).
[21] A total of 615 time series, corresponding to intervals

containing magnetosheath, magnetospheric, or non-FTEs,
are generated with each time series consisting of 14 input
variables and spanning 6 min with 89 different time-lapse
measurements. The choice of 6 min is rather arbitrary aside
from the fact that it has to be long enough to accommodate
the typical duration of an FTE, which is typically lower than
1 min [cf. Wang et al., 2006]. The data is then ‘‘cleaned’’ to
remove any gaps or anomalies (see Press et al. [2007] for a
general overview). By anomaly, we mean values that are
beyond the expected range for a given variable. Such
anomalies are found through a simple search algorithm.
3.1.3. Labeling Data
[22] For each time series, we add an integer entry between

0 and 2 that indicates whether it is non-FTE (0), magneto-
sheathFTE (1) or magnetosphereFTE (2). It is important to
note that one does not need to specify the start and finish of
the FTE or even whether there is more than one FTE in a

given time series for the labeled data set. For example,
while rare in a 6 min interval, we did have cases with three
FTEs within the same time series. This makes the creation
of the labeled data set much easier and it is apparently
sufficient given the high accuracy of the resulting models.
The output of the model is an integer between 0 and 2 for
each time series. But the algorithm does not provide the
start and finish of the FTE nor does it specify how many
FTEs are within the 6 min time interval. Rather it specifies
whether there are any FTEs within a time series and if so,
what type. We are currently working on another technique
to pinpoint the start and finish of the FTE in a time series
and will report the results elsewhere.
[23] The expert labeling of the data set used for training

the algorithms was performed through visual inspection of
data based on the following considerations. An event was
labeled as FTE if it exhibits a clear bipolar signature of BN

and an associated enhancement in jBj. It was also required
that an FTE clearly isolates itself from its surroundings,
which avoids identifying FTEs in highly oscillating field
structures. Whether an FTE is a magnetosheath or magne-
tosphere FTE was determined by two methods that yielded
similar results. In the first method, we checked whether
Cluster is moving into or out of the magnetosphere and
whether the FTE is observed before or after the Cluster
magnetopause crossing. For example, if Cluster is moving
into the magnetosphere and the FTE is observed before
Cluster magnetopause crossing, the FTE is a magnetosheath
FTE. The second method was based on the consideration of
the absolute values of the surrounding plasma density and
temperature that are respectively substantially lower and
higher in the case of magnetospheric FTEs. Both methods
were used jointly for the final magnetosphere/magnetosheath
FTE labels used in this study. For more details about LMN

Figure 1. An example of a magnetospheric FTE observed at �0420 UT at (5.8, 0.8, 10.2) RE in GSM
coordinates. Different colors refer to different Cluster satellites. Note the clear BN bipolar signature and
the total magnetic field enhancement.
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transformation and FTE identification, please refer to Wang
et al. [2005]. An example of a magnetospheric FTE is
shown in Figure 1 (shaded region). In this case the FTE has
a clear bipolar signature and an associated enhancement in
the total magnetic field. There is also a less clear FTE at
�0423 UT [Wang et al., 2005].
[24] Note that aside from the label, none of the information

about the movement of Cluster or the temporal sequence of
FTE observation relative to the magnetopause crossing is
captured in the data set used for training the algorithm. But
as we will show shortly, the algorithm can still make the
distinction between the two types of FTEs with very high
accuracy.
[25] Our data set consisted of 195 non-FTEs, 267 mag-

netosheath FTEs, and 153 magnetospheric FTEs. The non-

FTEs were selected from segments where spacecraft did not
see FTEs.
[26] A given FTE may be observed by only one or up to

all four Cluster spacecraft but the data from each spacecraft
is treated as an independent time series. In the case of
labeled FTEs, we center the time series on the FTE
observations time with 3 min before and 3 min after it.
Figure 2 shows the spatial distribution of our FTE list which
includes FTEs from both near-equatorial crossings as well
as high-latitude crossings. Note that By � BN for low-
latitude flank FTEs, Bz � BN for high-latitude FTEs and Bx

� BN for near-equatorial subsolar FTEs. Owing to the orbit
of Cluster, our list does not include any proper near-
equatorial subsolar FTEs.
[27] MineTool automatically breaks the data into a train-

ing set and a test or hold out set. The training set consisted
of two thirds of the examples, and the hold out set of one
third of the instances. This choice of split is a standard
evaluation method in data mining. Only the training data is
visible during the training and modeling phases, and the test
set is held out to evaluate the models.

3.2. Choice of Metafeatures and Global Features

[28] Time series information of each input variable was
converted into a static (i.e., flattened) meta data through the
use of three meta features including increases, decreases,
and plateau (i.e., typical time derivates) as well as three
global features consisting of mean, global maximum and
global minimum. Other metafeatures such as bipolar signa-
ture can be easily incorporated. We excluded the bipolar
signature metafeature for two reasons. First, the bipolar
signature of BN requires transformation to the boundary
normal coordinates whereas here one of the issues that we
wanted to consider was whether FTE detection would be
possible in standard GSM coordinates. Second, our intent
was to have the algorithm identify specific features and
relations between the input variables that uniquely classify
the event into one of the three categories rather than
‘‘hardwire’’ our own prescription of the FTE identifier.
[29] In order to explore the sensitivity of model accuracy

to particular choice of variables, we built fifteen single-
variable and thirteen multivariable models.

3.3. Calculation of Error Estimates

[30] MineTool incorporates several ways to quantify the
model errors. Evaluation measures play an important role in
data mining and are used not only to compare the accuracy
of the different models but also as goals to optimize in
constructing learning models. There are a variety of measures
that have been proposed [e.g., Caruana and Niculescu-Mizil,
2004] such as the correlation coefficient (CC), the root mean
squared error (RMSE), the mean absolute error (MAE), and
the false and true positive rates. One common way to
visualize the results is the confusion matrix where each
column of the matrix represents the number of events in a
predicted class, while each row represents the number of
events in an actual class. The diagonal entries would then
represent the correct predictions while the off-diagonal
terms represent the cases for which the algorithm confuses
the type. However, it is impractical to display the confusion
matrix for all the models that we are considering here. Thus,
we distill the information in the confusion matrix into three

Figure 2. The spatial distribution of the Cluster FTEs used
in this study.
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quantities P1, P2, and P3. P1 is the percentage of cases that
the algorithm correctly distinguishes between non-FTEs and
FTEs, regardless of their type, P2 is the percentage of
correctly classified type of FTEs among the cases that were
correctly classified as FTE by the algorithm, and P3 is an
overall performance measure determined by the percentage
of correct classification of all three event types. To calculate
the accuracy percentages, we use the following notation:

tNtot total number of events in the test data set;
NFTE total number of FTEs in the test data set;

FNon-FTE otal number of FTEs which were misclassified as
non-FTEs;

FFTE total number of non-FTEs which were misclas-
sified as FTEs;

FMsheath total number of magnetospheric FTEs that were
misclassified as magnetosheath FTEs.

FMsphere total number of magnetosheath FTEs that were
misclassified as magnetospheric FTEs.

[31] The P’s are calculated as

P1 ¼
Ntot � FNon�FTE � FFTE

Ntot

; ð1aÞ

P2 ¼
NFTE � FMsheath � FMsphere

NFTE

; ð1bÞ

P3 ¼
Ntot � FNon�FTE � FFTE � FMsheath � FMsphere

Ntot

: ð1cÞ

To express these in percentage, we multiply them by
hundred (e.g., see Table 1). Since the FTE label has three
distinct values: 0 (non-FTE), 1 (magnetosheath FTE) and 2
(magnetospheric FTE), we use the standardized cutoff
values to calculate the percent of correctly classified
instances. To calculate the percentage of correctly classified
instances, all the instances with the model prediction value

of less than 0.5 are set to 0, with the value larger than 1.5
are set to 2, and the rest are set to 1. Then, the instances that
match the actual (label) values are labeled as correctly
classified, the ones that differ are marked as misclassified,
and the percentages are calculated accordingly.

3.4. Test Accuracy of Labeled Set

[32] Once the model is built from the training set of data
(2/3 of the data), we run the model on the test (1/3 of the
data) labeled data set and compare the algorithm’s label
with the expert label for each event. We then compile a list
of cases where the algorithm label did not agree with the
expert label. The mismatch list usually consists of cases
where the algorithm got the label wrong as well as cases
where the expert label was wrong. In our case, we found
18 cases that upon further examination turned out to be due
to error in the expert label. In the process we found several
new FTEs in the data that had been tagged as non-FTEs by
experts. An example is shown in Figure 3 where the initial
expert label had it classified as a non-FTE but the algorithm
tagged it as a magnetosheath FTE. Upon further examina-
tion we concluded that the algorithm is correct and there is
indeed an FTE between 2002/12/08 0609:49.659 and
0610:38.085. Recall that the expert label of whether an
FTE is a magnetosheath or magnetosphere FTE was deter-
mined by checking whether Cluster is moving into or out of
the magnetosphere and whether the FTE is observed before
or after the Cluster magnetopause crossing. An equivalent
method was based on the consideration of the absolute
values of the surrounding plasma density and temperature
that are respectively substantially lower and higher in the
case of magnetospheric FTEs. The algorithm has no knowl-
edge of the movement or positioning of the Cluster space-
craft, but presumably in models that do include Np and Tp

the algorithm could key on their absolute values as a way to
distinguish between the types of FTEs. But as we will show
shortly, even without Np and Tp, the algorithm does manage
to distinguish between the two types of FTEs with high
accuracy, which is somewhat surprising.

Table 1. Comparison of Accuracy of FTE Detection Models Based on Individual Variables in Order to Determine the Relative

Importance of Physical Variables as FTE Indicators

Three-Tier Classification Classification of FTE Versus Non-FTE Classification of Msheath Versus Msphere FTE

Model
Correctly

Classified (P3)

Correctly
Classified

(FTE Versus
Non-FTE) (P1)

Number
of False
Non-FTEs

Number of
False FTEs

Correctly
Classified

(Msth Versus
Msph FTE) (P2)

Number
of False

Msth FTEs

Number
of False

Msph FTEsmsth msph msth msph

T?/Tk 59% 83% 7 0 23 4 67% 50 0
Np 77% 92% 2 0 13 1 79% 30 1
Btot 91% 95% 0 0 8 2 94% 0 9
Bz 92% 93% 9 0 14 0 98% 0 3
Tp 92% 97% 0 0 6 0 93% 0 10
BL 92% 96% 0 0 7 1 95% 3 5
Tk 93% 97% 0 0 5 1 94% 0 9
T? 93% 99% 0 0 2 0 91% 11 2
Vx 93% 98% 0 0 4 0 93% 7 4
Bx 93% 94% 0 0 11 1 99% 0 2
Vz 94% 97% 0 0 6 0 95% 0 7
By 94% 98% 0 0 4 1 95% 0 8
BN 95% 99% 0 0 2 0 94% 3 6
Vy 96% 98% 0 0 3 2 98% 0 3
BM 96% 99% 0 0 2 1 97% 0 5
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3.5. Resulting Models

[33] Flux transfer events have been identified primarily
on the basis of their bipolar signature in the normal
component of the magnetic field, BN. Since different
processes can produce a bipolar signature, usually other
variables such as the total magnetic field are also used in
identifying an FTE. To distinguish between magnetospheric
and magnetosheath FTE, additional information has been
required such as the ion density and temperature, whether
Cluster is moving into or out of the magnetosphere, and
whether the FTE is observed before or after the Cluster
magnetopause crossing. Note that the information about the
movement of Cluster or the relative position of magneto-
pause is not presented to the algorithm. Our goal in this
section is to compare the model accuracy as a function of
different combination of variables to assess their importance
as unique FTE identifiers.
[34] In the foregoing, for each model, we varied the

variable transformation parameters in MineTool-TS, which
regulate the type of transformations of the input variables to
be included into modeling. These include the basic trans-

formations of the input, the logistic and hyperbolic tangent
transformation of the input as well as the Artificial Neural
Network-like transformations of the input [Karimabadi et
al., 2007].

3.6. Single Variable Models

[35] We start by models constructed using the time series
from only one input variable at a time. Since BN has been
used primarily in the identification of FTEs, it is interesting
to compare the model accuracy of other models against that
built on the basis of BN. Table 1 shows the comparison of
single variable models listed from the top in order of
increasing accuracy as measured by P3 (equation (1c)). It
is evident that aside from temperature anisotropy and
density, all other input variables in Table 1 perform well
as distinguishers between the three classes (non-FTE, mag-
netosheath FTE, and magnetospheric FTE) with accuracies
in the range of �91% to 96%. Some of the other important
results of Table 1 are as follows.
3.6.1. As Indicator of FTEs (P1)
[36] If only interested in finding FTEs in the data, and

not concerned about distinguishing between magnetosheath

Figure 3. A segment of Cluster observations showing a structure that the algorithm identified as a
magnetosheath FTE, whereas the original labeled set had it classified as a non-FTE. Upon further
examination the algorithm was found to have the correct classification.
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and magnetospheric FTEs, then all individual variables
considered proved to be good indicators. The model based
on temperature anisotropy has the lowest accuracy of �83%
and that based on either BN or T? has the highest accuracy
of 99%. It is very surprising that some of the variables, such
as Vx, are very good indicators of FTEs. There is a general
lack of systematic behavior of the flows at and around FTEs
since they largely vary both in the magnetosheath (depend-
ing on distance from the nose) and in the magnetosphere
(e.g., dayside plasma sheet, boundary layers and cusp offer
a wide variety of flows). If true, then our result suggests that
there are distinct flow patterns within/around the FTEs that
make the identification of FTEs possible.
[37] In all models, the main source of error in P1 was in

misclassification of non-FTEs as magnetosheath FTEs.
Similarly while some of the magnetosheath FTEs were
misclassified as non-FTEs, none of the models mistook a
magnetospheric FTE for a non-FTE. This indicates that it
may be more difficult to distinguish a magnetosheath FTE
in the data, at least on the basis of the use of a single
variable. This likely stems from the fact that the magneto-
sheath is a much more variable region, in terms of plasma
and field properties, than the magnetospheric region near
the magnetopause.

3.6.2. As Indicator of the Type of FTE (P2)
[38] Of the pool of events correctly identified as FTEs,

most variables served as very good indicators of the types of
FTEs. The one exception is the temperature anisotropy
which misclassified a large number of magnetospheric FTEs
as magnetosheath FTEs and did not do much better than a
random selection. This may be explained by the fact that the
magnetosheath, the dayside magnetosphere and the inside
of FTEs all show perpendicular temperature anisotropies,
thus rendering the distinction unlikely. However, the total as
well as parallel and perpendicular temperatures alone appear
to be good indicators of the types of FTEs. The local
enhancement in the FTEs and the average values in the
surrounding plasma may explain this. The temperatures are
better indicators than the density, but the reason for that is
unclear.

3.6.3. Overall Performance (P3)
[39] Temperature anisotropy T?/Tk leads to a model with

poor accuracy that is not much better than random selection.
Most of the error is in its misclassification of magneto-
spheric FTEs as magnetosheath FTE (this may be explained
along the lines discussed in the previous paragraph).
Density does much better than T?/Tk as an indicator of
the type of FTE but it misclassifies a large number of non-
FTEs as FTEs. Vy, BM and BN yield the most accurate models
with 95–96% correctly classified. Of the plasma variables,
Vy yields the highest accuracy. Although it is expected that a

tangential flow change (which would generally show up in
the Vy component) occurs inside FTEs owing to local stress
balance following from reconnection, it is overall unclear
why this particular component does so well.
[40] It is known that some FTEs do not have signatures in

the plasma bulk velocity or the total magnetic field [e.g.,
Elphic, 1995]. And more recently an FTE was reported with
no clear bipolar signature in BN. Let us consider such an
example. Clearly a single-variable model based on BN alone
would have difficulty to correctly identify such an FTE.
Some of the misclassified cases in the single-variable
models may in fact be cases where the FTEs have no clear
signature in those variables. That is why using models with
combination of variables would be advantageous for finding
unusual FTEs.
3.6.4. Overall Accuracy of the Models
[41] Table 1 shows that most models except those based

on temperature anisotropy and density have a tight range in
accuracy (P3) from �90%–96%. The natural question is
how meaningful are the differences of a few percentages
among the models and can one draw physical conclusions
from them. If we define the error estimate as the degree of
variation in the model accuracies as we choose different
samplings of the data, then the expected error in using 66–
33% split evaluation method is typically about 2%. Note
that this �2% variation is independent of the accuracy of
the model with a model having a 55% model accuracy
would have a similar error estimate of �2% as that having a
model accuracy of 90%. To verify this expectation, we used
different segments of the data for our training and test sets
in the 66–33% split evaluation method and built three
additional models for each of the following single variables
Vy, Bx, Btot, and T?/Tk. The results are shown in Table 2,
which shows the variation in P3 with three different
sampling of the data in addition to that originally used in
Table 1 (marked as set 1). As expected, the variations in P3
are less than 2% for all cases. One should, however,
exercise caution in drawing general conclusions about the
physics of FTEs based on variations of only several
percentages among models. For instance, the present work
is based on a particular labeled set. Using a different criteria
for preparing the labeled set (e.g., clear bipolar signature
and a well defined variations in BM rather than an increase
in Btot) is expected to lead to somewhat different relative
accuracies of the models.
3.7. Multivariable Models

[42] Table 3 shows the comparison of models using
combination of input variables. All models yield classifica-
tion scores P3 of 93% and higher with the best model
achieving �99% accuracy which is comparable to the most
accurate of the single variable models. The robustness of the
results with accuracy almost independent of the particular
combination of variables indicates that FTEs have strong,
distinctive signatures in both their magnetic field and
plasma structures. Note also that of the pool of correctly
identified FTEs, all models do an amazingly good job of
classifying the types of FTEs (P2 > 97%). The fact that the
models can distinguish so effectively between the magneto-
sheath and magnetospheric FTEs is partly due to the fact
that the surrounding plasma density and temperature are
respectively substantially lower and higher in the case of
magnetospheric FTEs. However, this cannot be the only

Table 2. Variations in Model Accuracy as a Function of Different

Sampling of the Training and Test Data for Four Modelsa

Model P3)set1 P3)set3 P3)set3 P3)set4 Variation in P3

T?/Tk 59.0% 57.1% 59.0% 57.6% 1.9%
Btot 90.7% 92.2% 90.7% 91.2% 1.5%
Bx 93.2% 94.6% 93.2% 94.6% 1.4%
Vy 96.1% 95.1% 96.1% 96.6% 1.5%

aSet 1 is the same sample data used for the development of the models in
Table 1. The other three sets consist of different sampling of the labeled
data.
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reason since the models including just the magnetic field
such as the Bx, Btot also yield very high accuracy. One
possible explanation is that magnetosheath and magneto-
spheric FTEs may have systematic differences in their
structures.
[43] Another interesting finding in Table 3 is that using

the three components of the magnetic field in either GSM
coordinates or boundary normal coordinates yields compa-
rable model accuracies of �95% and �98%, respectively.
This is important since there are regions in themagnetosphere
(e.g., high-latitude dayside magnetopause) where the mag-
netopause models are not as accurate and the transformation
to boundary normal coordinates becomes problematic.

4. Physics of Model Results

[44] Overall, the model accuracies are amazingly high.
We may not provide simple, unambiguous explanations for
all of the results reported in Tables 1 and 3. In this section
we only discuss in detail some of the results which we think
are of particular interest.
[45] We noted that the total temperature alone gives high

detection accuracy (92%). Although at first surprising, it
appears in fact obvious that the model can notice a localized
temperature variation, characteristic of the core of FTEs,
and at the same time can make the difference between the
magnetosphere and magnetosheath on the basis of the
average value in the surrounding. Also, it is not necessarily
surprising that the temperature alone does almost as good as
the magnetic field components alone, for instance. Indeed,
large fluctuations in magnetic fields unrelated to FTEs are
likely more frequent than large fluctuations in temperatures,
in the magnetosheath in particular.
[46] Another interesting and rather surprising result is that

BL and BM alone give comparable accuracies to BN alone.
Previous studies of FTEs had revealed no universal trends in
BL and BM. Paschmann et al. [1982] showed considerable
variation of BL and BM from event to event. Rijnbeek et al.
[1984] looked for a correlation between the sign of BM and
the occurrence of FTEs. They found that the crossings with
southward (negative BL) fields tend to be usually associated

with a duskward (negative BM) orientation, with no
corresponding bias for the crossings with positive or inter-
mediate BL fields. However, Kawano and Russell [1996]
showed that there were only 933 out of 1246 FTEs showing
rotational polarity in the MN plane. In contrast to these
works, the algorithm is able to decipher trends in the data
that are not easily discernible to the human eye.
[47] Furthermore, all magnetic field components alone

have high accuracies in distinguishing between magneto-
spheric and magnetosheath FTEs, i.e., even without infor-
mation from the surrounding plasma properties (density or
temperature in particular). This might be explained by the
fact that the magnetosphere has a strong and steady north-
ward component, while the magnetosheath is typically more
variable and generally southward during FTEs. Remnants of
the field orientation and variability are likely present even in
individual magnetic field components (i.e., in their back-
ground value), and which the algorithm might be able to
pick while human eyes might not.
[48] The algorithm’s ability to outperform human eye in

uncovering hidden relations and dependencies in the data is
partly due to the fact that the human eye is ideally suited for
examination of a still frame. With an increase in the size of
data (either in terms of number of variables in a still frame
and/or the presence of many frames), the data mining
techniques quickly gain advantage. In case of time series
classification it is nearly impossible for the human eye to
‘‘see’’ the differences between the time series and collect it
into a coherent pattern. The algorithm does this by taking
into account all the increases/decreases over all the exam-
ples of one category (i.e., FTEs versus non-FTEs), then
generalizes what was collected (by using clustering), and
then only account for the product of gradient and average
value of the event.

5. Summary and Conclusion

[49] We described a new time series analysis technique
called MineTool-TS which automates the modeling process.
We then used it to develop automated models for detection
of flux transfer events (FTEs) at Earth’s magnetopause

Table 3. Comparison of Accuracy of FTE Detection Models Using Combination of Variables

Three-Tier Classification Classification of FTE Versus Non-FTE
Classification of Msheath Versus

Msphere FTE

Model
Correctly

Classified (P3)

Correctly
Classified

(FTE Versus
Non-FTE) (P1)

Number of
False Non-

FTEs
Number of
False FTEs

Correctly
Classified

(Msth Versus
Msph FTE) (P2)

Number
of False

Msth FTEs

Number
of False

Msph FTEsmsth msph msth msph

Bx,Btot 93% 95% 0 0 10 0 97% 0 4
Bx,By,Bz, Btot 95% 95% 0 0 10 0 100% 0 0
Bx,By,Bz, Btot,Tp,Np 96% 96% 0 0 8 0 99% 0 1
BN,Btot 96% 98% 0 0 5 0 98% 0 3
BN,Btot 96% 98% 0 0 5 0 98% 0 3
BN,Btot,Np 96% 97% 0 0 6 0 99% 0 2
Bx,By,Bz, Btot,Vx,Vy, Vz, Tp,Np 96% 96% 0 0 8 0 100% 0 0
T?,Tk 97% 99% 1 0 1 0 97% 0 5
BL,BM,BN,Btot,Tp,Np 97% 99% 0 0 3 0 97% 0 4
BL,BM,BN, Btot 98% 98% 0 0 4 0 99% 0 1
Bx,By,Bz, Btot,Vx,Vy, Vz, Np, T?,Tk 98% 99% 0 0 3 0 99% 0 2
BL,BM,BN, Btot, Np, Vx,Vy,Vz,Tp 98% 98% 0 0 4 0 100% 0 0
BL,BM,BN, Btot,Np 99% 99% 0 0 3 0 100% 0 0
Bx,Btot 93% 95% 0 0 10 0 97% 0 4
Bx,By,Bz, Btot 95% 95% 0 0 10 0 100% 0 0
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using Cluster data. The data including both FTEs and non-
FTEs used for developing the models are provided as
auxiliary material Data Sets S1 and S2.1 Also included is
the list of 1222 FTEs (Data Set S3).
[50] The best model produced about 99% accuracy with

the only cases of misclassification being 3 cases of non-
FTEs which were misclassified as magnetosheath FTEs.
The resulting model can be used in three distinct manners.
First, it can be run on search for new FTEs in previously
unexplored data. Second, by running different models and
comparing their accuracy one can determine the relative role
of each input variable to unique identification of FTEs.
Third, one can run the model on any previously compiled
list of FTEs to check for consistency and accuracy of the
list.
[51] When applied to a time series, the model produces

one of three outputs, non-FTE, magnetosheath FTE, and
magnetospheric FTE. A number of surprises and interesting
results came out of this study:
[52] 1. The surprisingly good accuracies of FTE detection

from many single and combined magnetic and plasma
parameters show much more intrinsic and distinct features
of FTEs than previously thought. Such features are ex-
tremely difficult, if not impossible, for human experts to
decipher but are quite apparent using MineTool-TS. This
finding makes it possible to detect FTEs beyond human
expert capabilities.
[53] 2. The models based on GSM variables had compa-

rable accuracies to those based on boundary normal coor-
dinates. Since magnetopause model is not as accurate in
locations such as high latitude, the use of GSM coordinates
which does not require any assumption of a magnetopause
model is advantageous.
[54] 3. The model is able to distinguish between magneto-

sheath and magnetospheric FTEs even without knowledge
of the relative motion of spacecraft with respect to the
magnetopause, and for a number of models even without the
surrounding density and temperature information. It sug-
gests that the average field orientations in the magneto-
sphere and magnetosheath constitute enough information to
make the difference, and that is true even for only one
magnetic field component.
[55] 4. Although previous studies of FTEs had found no

universal trends in BL and BM, the single variable models of
BL and BM yielded very accurate results, suggesting that
there may indeed be distinctive patterns in these magnetic
components that may not be readily discernable in visual
inspection of time series.
[56] 5. The velocity information does not seem to be

necessary information in the identification of FTEs consid-
ered here. Its inclusion did not yield noticeable improve-
ment in the accuracy of the models with multiple
parameters. It is noticeable, though, that some velocity
components (e.g., VY) can do a good job in identifying
FTEs on their own.
[57] 6. To the best of our knowledge all previous detec-

tions of FTEs have had to rely on the pattern of at least two
variables. The bipolar signature in BN is typically used as a
necessary condition along with at least one more variable

such as Btot or BM. This is the first time it has been shown
that single variables can lead to high-accuracy detection of
FTEs.
[58] 7. The model results are overall unexpectedly high

for almost all parameters, and demonstrate the power of
MineTool-TS algorithm in analyzing time series data in
magnetospheric physics. We should mention that our appli-
cation of MineTool in other areas such as genomic is also
yielding equally accurate results.
[59] These results serve as validation of MineTool-TS as

an efficient and accurate modeling tool for automated
detection of events such as FTEs in magnetospheric phys-
ics. One obvious bias has clearly been the requirement that
FTEs exhibit clear, bipolar signature in BN. Using this as
the necessary condition, Elphic [1995] proposed a taxono-
my of FTEs based on different behavior of plasma and
magnetic signatures among the different classes. A signif-
icant finding here is that one can find FTEs using other
indicators besides BN. This enables us to search for FTEs
that may not have a clear or any variation in BN or may lack
variations in other expected parameters such as Btot. In fact,
more recently an example of an FTE with no clear bipolar
signature in BN was reported [Le et al., 2008]. Thus, an
important extension of our work is in creation of a more
comprehensive and unbiased list of FTEs for statistical studies.
Another potentially interesting application of our work is to
investigate how the technique may similarly help in flux rope
identification in the solar wind and in the magnetotail.

Appendix A

[60] We are in the process of developing a wiki page
under sciberquest.com website where users can download
the program and check for updates. In the mean time, the
source code can be requested from the first author. Here we
describe how to use MineTool-TS. The user is presented
with three options upon launching MineTool-TS: (1) create
a model, (2) run a previously created model, and (3) open
workspace. Use of workspace enables the user to save their
work and come back to it later to finish or make modifica-
tion to a completed run. Figure A1 shows the flowchart for
creating a new model. The first step, currently outside of
MineTool-TS, is to prepare the data in a form suitable for
data mining. This involves ‘‘cleaning’’ the data (e.g.,
removing gaps, interpolating, etc.) [e.g., Press et al.,
2007] and labeling it. As we explained earlier, in the case
of FTE classification problem considered here, we labeled
each time series by adding an extra entry to the time series
indicating whether it was a non-FTE, magnetosheath FTE,
or a magnetospheric FTE. Next release of MineTool-TS will
include some data manipulation routines for interpolation
and removing of out of bound values for convenience. Once
the data is ready to be read, the user can launch MineTool
and select the button to create a new model (not shown).
MineTool-TS has default settings that are designed to
provide accurate results in most cases. Thus, the creation
of a model can be as simple as reading in the data and
pushing the ‘‘create model’’ button. Upon completion of the
calculations by the algorithm, it displays model summary
and if the results are acceptable (e.g., error estimates are
small), the model can be saved. If not, the user can change
the parameters until a satisfactory result is obtained. This is

1Auxiliary materials are available at ftp://ftp.agu.org/apend/ja/
2009ja014202.
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done by modifying the settings in the two boxes labeled as
‘‘optional’’ in Figure A1.

A1. List of Auxiliary Variables

[61] In addition to the original variables, additional vari-
able transformations can be included. MineTool-TS currently
includes the following options with others easily added: (1)
level 2 transformations (xayb, a,b = �1,0,1), (2) level 3
transformations (xaybzg, a,b,g = �1,0,1), (3) level 4
transformations (xaybzgwd, a,b,g,d = �1,0,1), (4) exponen-
tial, log, tanh, cosine, and sine transformations, and (5) ANN-
like transformations.
[62] For a detailed discussion of these parameters, the

reader is referred to Karimabadi et al. [2007]. In addition to
these input parameters, there are time series–specific
parameters that can be selected:

[63] 1. Increasing Metafeature: An increasing metafeature
is recorded for all the consecutive rising time series meas-
urements. MineTool-TS allows for a small amount of noise
to be ignored, so that the true increasing events are captured.
For each increasing event, we record its start point, duration,
gradient and average value, so that the increasing events can
be used for analysis, comparison and data mining later in
the algorithm.
[64] 2. Decreasing Metafeature: For each decreasing

event, similarly to the increasing events, we record starting
point, duration, gradient (which is negative in this case) and
average value.
[65] 3. Plateau Metafeature: A plateau metafeature is

recorded for all the consecutive non-changing time series
measurements. For each plateau, we record its start point,
duration and the (average) value.

Figure A1. The steps in data mining in MineTool-TS from a user’s perspective. Using the default
parameters, the user can create a model by reading in a preformatted data file and clicking a button to run.
MineTool-TS also offers the user the ability to change the default settings to experiment with model
accuracy.

Table B1. MineTool-TS Shielding of the User From the Complexity of the Algorithmsa

MineTool GUI Tab and Action User Input Action of the Algorithm

Input Data Select the input file.
Select the variables to include.

Read in the input file. Check for correct format.
Read in the input variable values.

Change Default Auxiliary Variables Choose from a list of transformations. Creation of basic input transformations.
Creation of advanced transformations, if selected.
Ordering of all the transformations.

If time series data: Choose from a
list of meta and global features.

If time series data: Collection of selected metafeatures.
Collection of selected global features.
Creation of the feature data set. Clustering of similar variables.
Creation of the static, feature data set that captures
time varying info.

Change Default Data Mining Parameters Change the colinearity parameter. Ordering of all the input transformation based on the
correlation to the output.

Create Model Press the Create Model button. Creation of training and test sets. Selection of variables and
auxiliary transformations for inclusion in the model, for each
value of l. Evaluation of all intermediate models, for one value
of l. Selection of the final model. Calculation of all evaluation
scores for the final model.

Analyze Results Check measures of model accuracy. Display the final model and evaluation scores in textual
and graphical formats.

Save Model & Workspace Push the save button. Saves both the workspace as well as analytical model.
aEach user input in Figure A1 activates a series of operations behind the scenes.
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[66] 4. Bipolar Signature Metafeature: A bipolar signature
metafeature is recorded for all the consecutive time series
measurements that increase, decrease and cross the zero,
and increase again. This is a complex metafeature that
consists of several simple metafeatures.
[67] 5. Global Minimum: For each single variable, the

global minimum feature extracts the minimum value of all
of the observations of that variable and records it as the
global minimum feature for that input channel.
[68] 6. Global Maximum: The maximum value of all the

sequential time observations is recorded as the global
maximum feature for that variable.
[69] 7. Mean: The average value of all the sequential time

observations is collected as the global mean feature for that
specific variable.
[70] 8. Number of Zero Crossings: Last, the number of

zero crossings occurring during the recorded measurements
is written down as the number of zero crossings global
feature.

A2. Data Mining Parameters

[71] In addition to the transformations, the accuracy of
MineTool-TS can be affected by the choice of colinearity
(redundancy) parameter l. This parameter controls which
variable transformations are included into the candidate
model. See Karimabadi et al. [2007] for a more description
of this parameter. l can range from 0.1 to 1 with the
default value set to 0.5. MineTool-TS currently uses the
66–33% split for creation of training and test sets but we
plan to include other methods such as cross-validation in
the near future. This would be another factor that could alter
the model accuracy.

Appendix B

[72] The ease of use of MineTool-TS is masked by
complex computations carried out by the algorithm behind
the scenes. Table B1 lists the specific actions of the
algorithms for each of the user inputs in Figure A1.
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